
Address Translation

Tore Larsen
Material developed by:

Kai Li, Princeton University

Why Virtual Memory?

• Use secondary storage
– Extend expensive DRAM with reasonable performance

• Provide Protection
– Programs do not step over each other, communicate with each 

other require explicit IPC operations
• Convenience

– Flat address space and programs have the same view of the world

Translation Overview

• Actual translation is in 
hardware (MMU)

• Controlled in software
• CPU view

– what program sees, virtual 
memory

• Memory view
– physical memory

Translation
(MMU)

CPU

virtual address

Physical
memory

physical address

I/O
device

Goals of Translation

• Implicit translation for 
each memory reference

• A hit should be very fast
• Trigger an exception on a 

miss
• Protected from user’s 

faults

Registers

Cache(s)

DRAM

Disk

10x

100x

10Mx
paging



Base and Bound

• Built in Cray-1
• A program can only access 

physical memory in [base, 
base+bound]

• On a context switch: 
save/restore base, bound 
registers

• Pros: Simple
• Cons: fragmentation, hard to 

share, and difficult to use disks

virtual address

base

bound

error

+

>

physical address

Segmentation

• Have a table of (seg, size)
• Protection: each entry has

– (nil,read,write)
• On a context switch: save/restore 

the table or a pointer to the table in 
kernel memory 

• Pros: Efficient, easy to share
• Cons: Complex management and 

fragmentation within a segment
physical address

+

segment offset

Virtual address

seg size

...

>
error

Paging

• Use a page table to translate
• Various bits in each entry
• Context switch: similar to the 

segmentation scheme
• What should be the page size?
• Pros: simple allocation, easy to 

share
• Cons: big page table and cannot 

deal with holes easily

VPage # offset

Virtual address

...

>
error

PPage# ...

PPage# ...

...

PPage # offset

Physical address

Page table

page table size

Segmentation with Paging

VPage # offset

Virtual address

...

>

PPage# ...

PPage# ...

...

PPage # offset

Physical address

Page table
seg size

...

Vseg #

error

Multics was the first 
system to combine
segmentation and 
paging. 
www.multicians.org



Multiple-Level Page Tables

Directory ...

pte

...

...

...

dir table offset
Virtual address

How Many PTEs Do We Need?

• Worst case for 32-bit address machine
– # of processes × 220 (if page size is 4096 bytes)

• What about 64-bit address machine?
– # of processes × 252 

Inverted Page Tables

• Main idea
– One PTE for each physical 

page frame
– Hash (Vpage, pid) to Ppage#

• Pros
– Small page table for large 

address space
• Cons

– Lookup is difficult 
– Overhead of managing hash 

chains, etc

pid vpage offset

pid vpage

0

k

n-1

k offset

Virtual 
address

Physical 
address

Inverted page table

Translation Look-aside Buffer (TLB)

offset

Virtual address

...

PPage# ...

PPage# ...

PPage# ...

PPage # offset

Physical address

VPage #

TLB

Hit

Miss

Real
page
table

VPage#
VPage#

VPage#



Bits in A TLB Entry

• Common (necessary) bits
– Virtual page number: match with the virtual address
– Physical page number: translated address
– Valid
– Access bits: kernel and user (nil, read, write)

• Optional (useful) bits
– Process tag
– Reference
– Modify
– Cacheable

Hardware-Controlled TLB

• On a TLB miss
– Hardware loads the PTE into the TLB

• Need to write back if there is no free entry
– Generate a fault if the page containing the PTE is invalid
– VM software performs fault handling
– Restart the CPU

• On a TLB hit, hardware checks the valid bit
– If valid, pointer to page frame in memory
– If invalid, the hardware generates a page fault

• Perform page fault handling
• Restart the faulting instruction

Software-Controlled TLB

• On a miss in TLB
– Write back if there is no free entry
– Check if the page containing the PTE is in memory
– If no, perform page fault handling
– Load the PTE into the TLB
– Restart the faulting instruction

• On a hit in TLB, the hardware checks valid bit
– If valid, pointer to page frame in memory
– If invalid, the hardware generates a page fault

• Perform page fault handling
• Restart the faulting instruction

Hardware vs. Software Controlled

• Hardware approach
– Efficient
– Inflexible
– Need more space for page table

• Software approach
– Flexible
– Software can do mappings by hashing

• PP# → (Pid, VP#)
• (Pid, VP#) → PP#

– Can deal with large virtual address space



Cache vs. TLB
• Similarity

– Both cache a portion of memory
– Both write back on a miss

• Differences
– TLB is usually fully set-associative
– Cache can be direct-mapped
– TLB does not deal with consistency with memory
– TLB can be controlled by software 

• Combine L1 cache with TLB
– Virtually addressed cache
– Why wouldn’t everyone use virtually addressed cache?

Issues

• What TLB entry to be replaced?
– Random
– Pseudo LRU

• What happens on a context switch?
– Process tag: change TLB registers and process register
– No process tag: Invalidate the entire TLB contents

• What happens when changing a page table entry?
– Change the entry in memory
– Invalidate the TLB entry

Consistency Issue

• Snoopy cache protocols can maintain consistency with DRAM, 
even when DMA happens

• No hardware maintains consistency between DRAM and TLBs: 
you need to flush related TLBs whenever changing a page table 
entry in memory

• On multiprocessors, when you modify a page table entry, you 
need to do “TLB shootdown” to flush all related TLB entries on 
all processors


