
1

www.nr.no

INF 3300, INF4300
The Hough transform

An introduction

Lars Aurdal,
Norsk Regnesentral,

August 21st 2006 www.nr.no

Plan

1. What does the basic edge detection operators
actually detect.

2. Hough transform.

www.nr.no

Basic edge detection

1. We have already looked at many different edge
detection operators.

2. Ex.: Remember Sobel:

www.nr.no

Basic edge detection

1. What does a Sobel filter produce?

2. Approximation to the image gradient:

3. …which is a vector quantity given by:

www.nr.no

Basic edge detection

1. The gradient is a measure of how the function f(x,y)
changes as a function of changes in the arguments
x and y.

2. The gradient vector points in the direction of
maximum change.

3. The length of this vector indicates the size of the
gradient:

www.nr.no

Basic edge detection

1. The direction of this vector is also an important
quantity.

2. If α(x,y) is the direction of f in the point (x,y) then:

3. Remember that α(x,y) will be the angle with respect
to the x-axis

4. Remember also that the direction of an edge will be
perpendicular to the gradient in any given point

2

www.nr.no

How do we interpret the edge maps?

1. Most natural images will produce a very
complicated edge map under the Sobel filter.

2. Remember this is an approximation to a derivation
and noise is enhanced. Only rarely will the
gradient magnitude be zero.

3. Calculating an approximation to the gradient vector
in an image will generally not tell you were the
salient edges are.

www.nr.no

Hough transform

1. If the image contains edges of known shapes we
might want to look for groups of edge pixels having
this specific shape.

2. One method for searching for such known shapes
is the Hough transform.

www.nr.no

Hough transform – basic idea

1. The Hough transform is based on a very simple
observation: A line through the point (x,y) can be
written as follows:

2. There are infinitely many lines that pass through
the point (x,y).

3. Common to them all is that they satisfy the above
equation for some set of parameters (a,b).

www.nr.no

Hough transform – basic idea

www.nr.no

Hough transform – basic idea

1. This equation can obviously be rewritten as follows:

2. We now consider x and y as parameters and a and
b as variables.

3. This is a line in (a,b) space parameterized by x and
y.

4. Another point (x,y) will give rise to another line in
(a,b) space.

www.nr.no

Hough transform – basic idea

3

www.nr.no

Hough transform – basic idea

1. Two points (x,y) and(z,k) define a line in the (x,y)
plane.

2. These two points give rise to two different lines in
(a,b) space.

3. In (a,b) space these lines will intersect in a point
(a’,b’) where a’ is the rise and b’ the intersect of the
line defined by (x,y) and (z,k) in (x,y) space.

4. The fact is that all points on the line defined by (x,y)
and (z,k) in (x,y) space will parameterize lines that
intersect in (a’,b’) in (a,b) space.

www.nr.no

Hough transform – algorithm

1. Quantize the parameter space (a,b), that is, divide
it into cells.

2. This quantized space is often referred to as the
accumulator cells.

3. In the figure in the next slide amin is the minimal
value of a etc.

4. Count the number of times a line intersects a given
cell.

5. Cells receiving a minimum number of “votes” are
assumed to correspond to lines in (x,y) space.

www.nr.no

Hough transform - algorithm

Hough accumulator cells

www.nr.no

Hough transform - algorithm

1. Matlab example.

www.nr.no

Hough transform – polar
representation of lines

1. In practical life we do not use the equation

in order to represent lines (why?)

2. Rather, we use the polar representation of lines:

www.nr.no

Hough transform – polar
representation of lines

Polar representation of lines

4

www.nr.no

Hough transform - algorithm using
polar representation of lines

1. Input image f is an M×N binary array, edge pixels
are marked as ones.

2. Let θd and ρd be vectors containing the discretized
intervals of the parameter space ρ=[0,sqrt(M2+N2)]
and θ=[0,2π].

3. The discretization of θd and ρd must happen with
values δθ and δρ giving acceptable precision and
sizes of the paramter space.

4. Let the length of the θδ and ρd vectors be Θ and R
respectively.

www.nr.no

Hough transform algorithm using
polar representation of lines

1. Now let H be the [Θ,R] accumulator matrix
initialized to all zeroes.

2. For all pixels f(x,y)=1 and k=1…Θ let:
1. ρ =x sin(θd(k))+y cos(θd(k))
2. Find the index j so that ρd(j) is closest to ρ.
3. Increment H(k,j) by one.

3. Find all cells (kt, jt) with a value above a user
defined threshold t.

4. The output is the set of lines described by
(ρd(kt), θd(kτ)).

www.nr.no

Hough transform - advantages

1. Advantages:
a. Conceptually simple.
b. Easy implementation.
c. Handles missing and occluded data very gracefully.
d. Can be adapted to many types of forms, not just

lines.

www.nr.no

Hough transform - disadvantages

1. Disadvantages:
a. Computationally complex for objects with many

parameters.
b. Looks for only one single type of object.
c. Can be “fooled” by “apparent lines”.

www.nr.no

Hough transform – example 1

1. Example 1: 11x11 image and its Hough transform:

www.nr.no

Hough transform – example 2

1. Example 2: 11x11 image and its Hough transform:

5

www.nr.no

Hough transform – example 3

1. Example 3: Natural scene and result of Sobel edge
detection:

www.nr.no

Hough transform – example 3

1. Example 3: Natural scene and result of Sobel edge
detection followed by thresholding:

www.nr.no

Hough transform – example 3

1. Example 3: Accumulator matrix:

www.nr.no

Hough transform – example 3

1. Example 3: Original image and 20 most prominent
lines:

www.nr.no

Hough transform – exercise 1

1. Next exercise:
a. Test Hough transform for equal size circles.

www.nr.no

Hough transform – exercise 2

1. Next exercise: The randomized Hough transform.
a. Simple idea (line case): From the edge image, pick two

points.
b. Find the ρ and θ corresponding to this set of points.
c. Increment the indicated (ρ,θ) cell.
d. Once a cell reaches a certain (low) count, assume that an

edge is present in the image.
e. Verify this.
f. If truly present, erase this line from the image
g. Continue until no more points or until the number of

iterations between two detections is to high.
h. Orders of magnitude faster than the ordinary transform.

