

#### INF 3300, INF4300 Week 40 exercise solution

The Hough transform

Lars Aurdal,

Norsk Regnesentral,

September 13th 2006

### The randomized Hough transform

- 1. Simple idea (line case): From the edge image, pick two points.
- 2. Find the  $\rho$  and  $\theta$  corresponding to this set of points.
- 3. Increment the indicated  $(\rho, \theta)$  cell.
- 4. Once a cell reaches a certain (low) count, assume that an edge is present in the image.
- 5. Verify this.
- 6. If truly present, erase this line from the image
- 7. Continue until no more points or until the number of iterations between two detections is to high.
- 8. Orders of magnitude faster than the ordinary transform



#### The randomized Hough transform

- 1. Simple idea (circle case): From the edge image, pick **three** points.
- 2. Find x\_0, y\_0 and R corresponding to this set of three points.
- 3. Increment the indicated (x\_0,y\_0,R) cell.
- 4. We assume that we are looking for disks of roughly equal radius, thus the dimensionality of the accumulator matrix remains resonable.
- 5. Once a cell reaches a certain (low) count, assume that a circle is present in the image.
- 6. Verify this (not implemented in the following code).
- 7. If truly present, erase this circle from the image (not implemented).
- 8. Continue until no more points or until the number of iterations between two detections is to high.
- 9. Orders of magnitude faster than the ordinary transform



## Randomized Hough transform, Matlab implementation

```
% Clear everything
clear all
close all
% Get image and display
i=imread('coins2.jpg');
ig=double(rgb2gray(i));
imshow(iq,[min(min(iq)) max(max(iq))])
% Make gradient image and display
h1=fspecial('sobel');
h2=h1';
igh=imfilter(ig,h1);
igv=imfilter(ig,h2);
iqs=abs(iqh)+abs(iqv);
imshow(iqs,[min(min(iqs)) max(max(iqs))])
iqsT=iqs>170;
figure
imshow(iqsT)
% Initialise the accumulator matrix
acc=zeros([size(iq) 21]);
% Get all indexes of points on contours
[r,c]=find(iqsT);
```

```
% Iterate
iter=0;
while(iter<200000)
    iter=iter+1; % Count number of iterations
    N=length(r);
    ind=floor(N*rand(1,3))+1;
    while(length(unique(ind))<3)</pre>
        ind=floor(N*rand(1,3))+1;
    end
    [x0,y0,R]=threepoint([r(ind(1)) c(ind(1))],[r(ind(2))]
c(ind(2))],[r(ind(3)) c(ind(3))]);
    x0=ceil(x0);
    v0=ceil(v0);
    R=ceil(R);
    if(isin(x0,[1 size(iq,1)])) % Test if values are in correct range
        if(isin(y0,[1 size(iq,2)]))
            if(isin(R,[15 25]))
                acc(x0,y0,R-14)=acc(x0,y0,R-14)+1; % Accumulate
                if (acc(x0,y0,R-14)>4) % If we have a sufficient
number of hits
                    s=sprintf('Found cirlce with [x0,y0,R]=[%d %d
%d], press any key to continue\n',x0,y0,R);
                    disp(s)
                    hold on
                    cc=circle([y0 x0],R,20,'-');
                    pause
                end
            end
        end
    end
end
```



# Randomized Hough transform, original image and tresholded edges



