ExERCISES FOR INF3320 AND INF4320

BÉZIER CURVES AND SPLINE CURVES

C. Dyken and M.S. Floater

Revision: 30. oktober 2006

1. Show that if $t_{0}<t_{1}<t_{2}$, the Vandermonde matrix

$$
V=\left(\begin{array}{ccc}
1 & t_{0} & t_{0}^{2} \\
1 & t_{1} & t_{1}^{2} \\
1 & t_{2} & t_{2}^{2}
\end{array}\right)
$$

is non-singular by showing that its determinant can be written as

$$
\left(t_{1}-t_{0}\right)\left(t_{2}-t_{0}\right)\left(t_{2}-t_{1}\right) .
$$

Solution: Using the first column to expand the determinant, we get

$$
\operatorname{det} V=\left(t_{1} t_{2}^{2}-t_{2} t_{1}^{2}\right)-\left(t_{0} t_{2}^{2}-t_{2} t_{0}^{2}\right)+\left(t_{0} t_{1}^{2}-t_{1} t_{0}^{2}\right)
$$

Meanwhile

$$
\begin{aligned}
\left(t_{1}-t_{0}\right)\left(t_{2}-t_{0}\right)\left(t_{2}-t_{1}\right) & =\left(t_{1} t_{2}-t_{1} t_{0}-t_{0} t_{2}+t_{0}^{2}\right)\left(t_{2}-t_{1}\right) \\
& =\left(t_{1} t_{2}^{2}+t_{2} t_{0}^{2}+t_{0} t_{1}^{2}\right)-\left(t_{2} t_{1}^{2}+t_{0} t_{2}^{2}+t_{1} t_{0}^{2}\right)
\end{aligned}
$$

2. Recall the cubic Lagrange basis functions

$$
L_{i}(t)=\prod_{\substack{j=0 \\ j \neq i}}^{3} \frac{t-t_{j}}{t_{i}-t_{j}}, \quad i=0,1,2,3
$$

What is the value of L_{i} at the points $t=t_{0}, t_{1}, t_{2}, t_{3}$?

Solution:

$$
L_{i}\left(t_{j}\right)= \begin{cases}1 & \text { if } j=i \\ 0 & \text { if } j \neq i\end{cases}
$$

We often express this property using the Kronecker delta, as $L_{i}\left(t_{j}\right)=\delta_{i j}$.
3. What are the values and first derivatives of the Hermite polynomials $H_{0}, H_{1}, H_{2}, H_{3}$, defined in the lecture, at the end points $t=0$ and $t=1$?
Solution:

$$
\begin{array}{llll}
H_{0}(0)=1, & H_{0}^{\prime}(0)=0, & H_{0}(1)=0, & H_{0}^{\prime}(1)=0 \\
H_{1}(0)=0, & H_{1}^{\prime}(0)=1, & H_{1}(1)=0, & H_{1}^{\prime}(1)=0 \\
H_{2}(0)=0, & H_{2}^{\prime}(0)=0, & H_{2}(1)=1, & H_{2}^{\prime}(1)=0 \\
H_{3}(0)=0, & H_{3}^{\prime}(0)=0, & H_{3}(1)=0, & H_{3}^{\prime}(1)=1 .
\end{array}
$$

4. Let \mathbf{p} and \mathbf{q} be two Bezier curves of degree d,

$$
\mathbf{p}(t)=\sum_{i=0}^{d} \mathbf{p}_{i} B_{i, d}(t), \quad \mathbf{q}(t)=\sum_{i=0}^{d} \mathbf{q}_{i} \tilde{B}_{i, d}(t)
$$

where

$$
B_{i, d}(t)=\binom{d}{i} \lambda^{i}(1-\lambda)^{d-i}, \quad \tilde{B}_{i, d}(t)=\binom{d}{i} \tilde{\lambda}^{i}(1-\tilde{\lambda})^{d-i}
$$

and

$$
\lambda=\frac{t-a}{b-a}, \quad \tilde{\lambda}=\frac{t-b}{c-b}
$$

and $a<b<c$ and define a spline curve $\mathbf{r}:[a, c] \rightarrow \mathbb{R}^{n}$ by

$$
\mathbf{r}(t)= \begin{cases}\mathbf{p}(t) & a \leq t \leq b \\ \mathbf{q}(t) & b<t \leq c\end{cases}
$$

What are the conditions on the control points for G^{1} and G^{2} continuity?
Solution: The first two arc length derivatives of \mathbf{r} (its tangent and curvature vectors) are

$$
\dot{\mathbf{r}}(t)=\frac{\mathbf{r}^{\prime}(t)}{\left\|\mathbf{r}^{\prime}(t)\right\|}, \quad \ddot{\mathbf{r}}(t)=\frac{\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime}(t)}{\left\|\mathbf{r}^{\prime}(t)\right\|^{3}}
$$

The first two derivatives of \mathbf{p} and \mathbf{q} at $t=b$ are:

$$
\begin{array}{cl}
\mathbf{p}^{\prime}(b)=\frac{d}{b-a} \Delta \mathbf{p}_{d-1}, & \mathbf{q}^{\prime}(b)=\frac{d}{c-b} \Delta \mathbf{q}_{0}, \\
\mathbf{p}^{\prime \prime}(b)=\frac{d(d-1)}{(b-a)^{2}} \Delta^{2} \mathbf{p}_{d-2}, & \mathbf{q}^{\prime \prime}(b)=\frac{d(d-1)}{(c-b)^{2}} \Delta^{2} \mathbf{q}_{0} .
\end{array}
$$

Thus \mathbf{r} is G^{1} continuous at $t=b$ if and only if $\mathbf{p}(1)=\mathbf{q}(0)$ and

$$
\frac{\mathbf{p}^{\prime}(1)}{\left\|\mathbf{p}^{\prime}(1)\right\|}=\frac{\mathbf{q}^{\prime}(0)}{\left\|\mathbf{q}^{\prime}(0)\right\|}
$$

or equivalently $\mathbf{p}_{d}=\mathbf{q}_{0}$ and

$$
\frac{\Delta \mathbf{p}_{d-1}}{\left\|\Delta \mathbf{p}_{d-1}\right\|}=\frac{\Delta \mathbf{q}_{0}}{\left\|\Delta \mathbf{q}_{0}\right\|}
$$

Notice that the interval lengths $b-a$ and $c-b$ cancelled out.
The curve \mathbf{r} is G^{2} continuous at $t=b$ if it is G^{1} at $t=b$ and

$$
\frac{\mathbf{p}^{\prime}(b) \times \mathbf{p}^{\prime \prime}(b)}{\left\|\mathbf{p}^{\prime}(b)\right\|^{3}}=\frac{\mathbf{q}^{\prime}(b) \times \mathbf{q}^{\prime \prime}(b)}{\left\|\mathbf{q}^{\prime}(b)\right\|^{3}}
$$

and again the interval lengths $b-a$ and $c-b$ cancel out, giving

$$
\frac{\Delta \mathbf{p}_{d-1} \times \Delta^{2} \mathbf{p}_{d-2}}{\left\|\Delta \mathbf{p}_{d-1}\right\|^{3}}=\frac{\Delta \mathbf{q}_{0} \times \Delta^{2} \mathbf{q}_{0}}{\left\|\Delta \mathbf{q}_{0}\right\|^{3}}
$$

or

$$
\frac{\Delta \mathbf{p}_{d-2} \times \Delta \mathbf{p}_{d-1}}{\left\|\Delta \mathbf{p}_{d-1}\right\|^{3}}=\frac{\Delta \mathbf{q}_{0} \times \Delta \mathbf{q}_{1}}{\left\|\Delta \mathbf{q}_{0}\right\|^{3}}
$$

Thus the conditions for G^{1} and G^{2} are independent of the intervals $[a, b]$ and $[b, c]$. This is to be expected because tangent and curvature vectors are independent of the parameterization of the curve.

