EXERCISES FOR INF3320 AND INF4320

BÉZIER CURVES AND SPLINE CURVES

C. Dyken and M.S. Floater

1. Show that if $t_{0}<t_{1}<t_{2}$, the Vandermonde matrix

$$
V=\left(\begin{array}{ccc}
1 & t_{0} & t_{0}^{2} \\
1 & t_{1} & t_{1}^{2} \\
1 & t_{2} & t_{2}^{2}
\end{array}\right)
$$

is non-singular by showing that its determinant can be written as

$$
\left(t_{1}-t_{0}\right)\left(t_{2}-t_{0}\right)\left(t_{2}-t_{1}\right)
$$

2. Recall the cubic Lagrange basis functions

$$
L_{i}(t)=\prod_{\substack{j=0 \\ j \neq i}}^{3} \frac{t-t_{j}}{t_{i}-t_{j}}, \quad i=0,1,2,3
$$

What is the value of L_{i} at the points $t=t_{0}, t_{1}, t_{2}, t_{3}$?
3. What are the values and first derivatives of the Hermite polynomials $H_{0}, H_{1}, H_{2}, H_{3}$, defined in the lecture, at the end points $t=0$ and $t=1$?
4. Let \mathbf{p} and \mathbf{q} be two Bezier curves of degree d,

$$
\mathbf{p}(t)=\sum_{i=0}^{d} \mathbf{p}_{i} B_{i, d}(t), \quad \mathbf{q}(t)=\sum_{i=0}^{d} \mathbf{q}_{i} \tilde{B}_{i, d}(t)
$$

where

$$
B_{i, d}(t)=\binom{d}{i} \lambda^{i}(1-\lambda)^{d-i}, \quad \tilde{B}_{i, d}(t)=\binom{d}{i} \tilde{\lambda}^{i}(1-\tilde{\lambda})^{d-i},
$$

and

$$
\lambda=\frac{t-a}{b-a}, \quad \tilde{\lambda}=\frac{t-b}{c-b},
$$

and $a<b<c$ and define a spline curve $\mathbf{r}:[a, c] \rightarrow \mathbb{R}^{n}$ by

$$
\mathbf{r}(t)= \begin{cases}\mathbf{p}(t) & a \leq t \leq b \\ \mathbf{q}(t) & b<t \leq c\end{cases}
$$

What are the conditions on the control points for G^{1} and G^{2} continuity?

