Computer Graphics and Geometric Modelling
 Bezier curves and spline curves

M.S. Floater

October 24, 2006
Id: lecture7b.tex,v 1.6 2006/10/18 09:11:08 michaelf Exp

Bezier curves and spline curves

- Cubic Lagrange interpolation
- Cubic Hermite interpolation (A-M and H: Section 12.1.3)
- Spline curves (A-M and H: Section 12.1.2)
- Bezier curves on arbitrary intervals (A-M and H: Section 12.1.2)

Cubic Lagrange interpolation

Instead of using four Bezier control points to define a cubic polynomial curve, we might prefer to interpolate: define it using four points on the curve. Given four points $\mathbf{q}_{0}, \mathbf{q}_{1}, \mathbf{q}_{2}, \mathbf{q}_{3}$, we can choose any distinct parameter values $t_{0}<t_{1}<t_{2}<t_{3}$ and find the cubic curve \mathbf{p} such that $\mathbf{p}\left(t_{i}\right)=\mathbf{q}_{i}, i=0,1,2,3$. For example we could take $t_{0}=0, t_{1}=1 / 3, t_{2}=2 / 3, t_{3}=1$. If we represent \mathbf{p} in power form as

$$
\mathbf{p}(t)=\mathbf{a}_{0}+\mathbf{a}_{1} t+\mathbf{a}_{2} t^{2}+\mathbf{a}_{3} t^{3}
$$

we must solve the linear system

$$
\left(\begin{array}{cccc}
1 & t_{0} & t_{0}^{2} & t_{0}^{3} \\
1 & t_{1} & t_{1}^{2} & t_{1}^{3} \\
1 & t_{2} & t_{2}^{2} & t_{2}^{3} \\
1 & t_{3} & t_{3}^{2} & t_{3}^{3}
\end{array}\right)\left(\begin{array}{l}
\mathbf{a}_{0} \\
\mathbf{a}_{1} \\
\mathbf{a}_{2} \\
\mathbf{a}_{3}
\end{array}\right)=\left(\begin{array}{l}
\mathbf{q}_{0} \\
\mathbf{q}_{1} \\
\mathbf{q}_{2} \\
\mathbf{q}_{3}
\end{array}\right) .
$$

The matrix is called the Vandermonde matrix.

Alternatively one could find \mathbf{p} in Bernstein form

$$
\mathbf{p}(t)=\mathbf{p}_{0} B_{0,3}(t)+\mathbf{p}_{1} B_{1,3}(t)+\mathbf{p}_{2} B_{2,3}(t)+\mathbf{p}_{3} B_{3,3}(t),
$$

in which case we must solve the linear system

$$
\left(\begin{array}{llll}
B_{0,3}\left(t_{0}\right) & B_{1,3}\left(t_{0}\right) & B_{2,3}\left(t_{0}\right) & B_{3,3}\left(t_{0}\right) \\
B_{0,3}\left(t_{1}\right) & B_{1,3}\left(t_{1}\right) & B_{2,3}\left(t_{1}\right) & B_{3,3}\left(t_{1}\right) \\
B_{0,3}\left(t_{2}\right) & B_{1,3}\left(t_{2}\right) & B_{2,3}\left(t_{2}\right) & B_{3,3}\left(t_{2}\right) \\
B_{0,3}\left(t_{3}\right) & B_{1,3}\left(t_{3}\right) & B_{2,3}\left(t_{3}\right) & B_{3,3}\left(t_{3}\right)
\end{array}\right)\left(\begin{array}{l}
\mathbf{p}_{0} \\
\mathbf{p}_{1} \\
\mathbf{p}_{2} \\
\mathbf{p}_{3}
\end{array}\right)=\left(\begin{array}{l}
\mathbf{q}_{0} \\
\mathbf{q}_{1} \\
\mathbf{q}_{2} \\
\mathbf{q}_{3}
\end{array}\right) .
$$

The 'ideal' basis for Lagrange interpolation is the Lagrange basis:

$$
L_{i}(t)=\prod_{\substack{j=0 \\ j \neq i}}^{3} \frac{t-t_{j}}{t_{i}-t_{j}}
$$

because the solution is explicit:

$$
\mathbf{p}(t)=\sum_{i=0}^{3} \mathbf{q}_{i} L_{i}(t)
$$

but this may not be a good basis for further tasks.

Cubic Hermite interpolation

A good alternative to Lagrange interpolation is Hermite interpolation because it makes it easier to piece together several curves. We can define a cubic polynomial curve by its end points and end derivatives. Given points $\mathbf{q}_{0}, \mathbf{q}_{1}$ and vectors $\mathbf{m}_{0}, \mathbf{m}_{1}$, we seek the cubic curve $\mathbf{p}:[0,1] \rightarrow \mathbb{R}^{n}$ such that

$$
\mathbf{p}(0)=\mathbf{q}_{0}, \quad \mathbf{p}^{\prime}(0)=\mathbf{m}_{0}, \quad \mathbf{p}(1)=\mathbf{q}_{1}, \quad \mathbf{p}^{\prime}(1)=\mathbf{m}_{1} .
$$

Using properties of Bezier curves we find that

$$
\begin{aligned}
\mathbf{p}(t) & =\mathbf{q}_{0} B_{0,3}(t)+\left(\mathbf{q}_{0}+\frac{\mathbf{m}_{0}}{3}\right) B_{1,3}(t)+\left(\mathbf{q}_{1}-\frac{\mathbf{m}_{1}}{3}\right) B_{2,3}(t)+\mathbf{q}_{1} B_{3,3}(t) \\
& =\mathbf{q}_{0} H_{0}(t)+\mathbf{m}_{0} H_{1}(t)+\mathbf{q}_{1} H_{2}(t)+\mathbf{m}_{1} H_{3}(t),
\end{aligned}
$$

where $H_{0}, H_{1}, H_{2}, H_{3}$ are the Hermite polynomials

$$
\begin{array}{ll}
H_{0}(t)=B_{0,3}(t)+B_{1,3}(t), & H_{1}(t)=\frac{1}{3} B_{1,3}(t) \\
H_{2}(t)=B_{2,3}(t)+B_{3,3}(t), & H_{3}(t)=-\frac{1}{3} B_{2,3}(t) .
\end{array}
$$

Splines

We can create complicated geometrical shapes by piecing together polynomial curves. A piecewise polynomial curve is called a spline curve. There are many ways of representing and generating a spline curve. One way is to piece together several cubic Hermite curves. For example, given three points $\mathbf{q}_{0}, \mathbf{q}_{1}, \mathbf{q}_{2}$ and vectors \mathbf{m}_{0}, $\mathbf{m}_{1}, \mathbf{m}_{2}$ we could find the cubic Hermite curve \mathbf{p} such that

$$
\mathbf{p}(0)=\mathbf{q}_{0}, \quad \mathbf{p}^{\prime}(0)=\mathbf{m}_{0}, \quad \mathbf{p}(1)=\mathbf{q}_{1}, \quad \mathbf{p}^{\prime}(1)=\mathbf{m}_{1} .
$$

and the cubic Hermite curve \mathbf{q} such that

$$
\mathbf{q}(1)=\mathbf{q}_{1}, \quad \mathbf{q}^{\prime}(1)=\mathbf{m}_{1}, \quad \mathbf{q}(2)=\mathbf{q}_{2}, \quad \mathbf{q}^{\prime}(2)=\mathbf{m}_{2} .
$$

Then the curve $\mathbf{r}:[0,2] \rightarrow \mathbb{R}^{n}$, defined as

$$
\mathbf{r}(t)= \begin{cases}\mathbf{p}(t) & 0 \leq t \leq 1 \\ \mathbf{q}(t) & 1 \leq t \leq 2\end{cases}
$$

is piecewise cubic and has C^{1} continuity at $t=1$. In short, \mathbf{r} is a C^{1} cubic spline curve.

Another way of generating a spline curve (of arbitrary degree) is to piece together several Bezier curves. For example, we could piece together two degree d Bezier curves

$$
\mathbf{p}(t)=\sum_{i=0}^{d} \mathbf{p}_{i} B_{i, d}(t), \quad \mathbf{q}(t)=\sum_{i=0}^{d} \mathbf{q}_{i} B_{i, d}(t)
$$

to form a spline curve $\mathbf{r}:[0,2] \rightarrow \mathbb{R}^{n}$ of degree d, defined as

$$
\mathbf{r}(t)= \begin{cases}\mathbf{p}(t) & 0 \leq t \leq 1, \\ \mathbf{q}(t-1) & 1<t \leq 2 .\end{cases}
$$

Continuity conditions

The curve \mathbf{r} has continuity of order k at $t=1$ if

$$
\left.\frac{d^{j}}{d t^{j}} \mathbf{p}(t)\right|_{t=1}=\left.\frac{d^{j}}{d t^{j}} \mathbf{q}(t)\right|_{t=0}, \quad j=0,1, \ldots, k
$$

From the derivative formula in the last lecture we have

$$
\frac{d^{j}}{d t^{j}} \mathbf{p}(1)=\frac{d!}{(d-j)!} \Delta^{j} \mathbf{p}_{d-j}, \quad \frac{d^{j}}{d t^{j}} \mathbf{q}(0)=\frac{d!}{(d-j)!} \Delta^{j} \mathbf{q}_{0}
$$

So \mathbf{r} has C^{k} continuity at $t=1$ if and only if

$$
\Delta^{j} \mathbf{p}_{d-j}=\Delta^{j} \mathbf{q}_{0}, \quad j=0,1, \ldots, k
$$

The conditions for C^{0}, C^{1}, and C^{2} continuity are:
$-\left(C^{0}\right) \quad \mathbf{p}_{d}=\mathbf{q}_{0}$,

- $\left(C^{1}\right) \quad C^{0}$ and $\mathbf{p}_{d}-\mathbf{p}_{d-1}=\mathbf{q}_{1}-\mathbf{q}_{0}$.
- ($\left.C^{2}\right) \quad C^{1}$ and $\mathbf{p}_{d}-2 \mathbf{p}_{d-1}+\mathbf{p}_{d-2}=\mathbf{q}_{2}-2 \mathbf{q}_{1}+\mathbf{q}_{0}$.

Geometric continuity

For visual smoothness it is sufficient that a curve defined piecewise has G^{k} continuity, instead of C^{k}. A curve is said to have G^{k} continuity if it can be reparameterized so that it has C^{k} continuity. Equivalently, the curve should be C^{k} continuous with respect to arc length. The first two arc length derivatives of \mathbf{r} are

$$
\dot{\mathbf{r}}(t)=\frac{\mathbf{r}^{\prime}(t)}{\left\|\mathbf{r}^{\prime}(t)\right\|}, \quad \ddot{\mathbf{r}}(t)=\frac{\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime}(t)}{\left\|\mathbf{r}^{\prime}(t)\right\|^{3}}
$$

Thus \mathbf{r} is G^{1} continuous at $t=1$ if and only if $\mathbf{p}(1)=\mathbf{q}(0)$ and

$$
\frac{\mathbf{p}^{\prime}(1)}{\left\|\mathbf{p}^{\prime}(1)\right\|}=\frac{\mathbf{q}^{\prime}(0)}{\left\|\mathbf{q}^{\prime}(0)\right\|}
$$

or equivalently $\mathbf{p}_{d}=\mathbf{q}_{0}$ and

$$
\frac{\mathbf{p}_{d}-\mathbf{p}_{d-1}}{\left\|\mathbf{p}_{d}-\mathbf{p}_{d-1}\right\|}=\frac{\mathbf{q}_{1}-\mathbf{q}_{0}}{\left\|\mathbf{q}_{1}-\mathbf{q}_{0}\right\|}
$$

The curve \mathbf{r} is G^{2} continuous at $t=1$ if it is G^{1} at $t=1$ and

$$
\frac{\mathbf{p}^{\prime}(1) \times \mathbf{p}^{\prime \prime}(1)}{\left\|\mathbf{p}^{\prime}(1)\right\|^{3}}=\frac{\mathbf{q}^{\prime}(0) \times \mathbf{q}^{\prime \prime}(0)}{\left\|\mathbf{q}^{\prime}(0)\right\|^{3}}
$$

The latter equation is equivalent to

$$
\frac{\Delta \mathbf{p}_{d-1} \times \Delta^{2} \mathbf{p}_{d-2}}{\left\|\Delta \mathbf{p}_{d-1}\right\|^{3}}=\frac{\Delta \mathbf{q}_{0} \times \Delta^{2} \mathbf{q}_{0}}{\left\|\Delta \mathbf{q}_{0}\right\|^{3}}
$$

or

$$
\frac{\Delta \mathbf{p}_{d-2} \times \Delta \mathbf{p}_{d-1}}{\left\|\Delta \mathbf{p}_{d-1}\right\|^{3}}=\frac{\Delta \mathbf{q}_{0} \times \Delta \mathbf{q}_{1}}{\left\|\Delta \mathbf{q}_{0}\right\|^{3}}
$$

If the curve is C^{1} at $t=1$ then $\Delta \mathbf{p}_{d-1}=\Delta \mathbf{q}_{0}$ and the G^{2} condition becomes

$$
\left(\mathbf{q}_{2}-\mathbf{p}_{d-2}\right) \times\left(\mathbf{q}_{1}-\mathbf{p}_{d-1}\right)=0
$$

Bezier curves on arbitrary intervals

A Bezier curve can be defined on any interval $[a, b]$ by again letting

$$
\mathbf{p}(t)=\sum_{i=0}^{d} \mathbf{p}_{i} B_{i, d}(t)
$$

but now using the more general Bernstein basis functions

$$
B_{i, d}(t)=\binom{d}{i}\left(\frac{t-a}{b-a}\right)^{i}\left(\frac{b-t}{b-a}\right)^{d-i}
$$

This ensures the end conditions $\mathbf{p}(a)=\mathbf{p}_{0}, \mathbf{p}(b)=\mathbf{p}_{d}$. Letting $\lambda=(t-a) /(b-a)$, the i-th basis function can also be written as

$$
B_{i, d}(t)=\binom{d}{i} \lambda^{i}(1-\lambda)^{d-i}
$$

The curve $\mathbf{p}:[a, b] \rightarrow \mathbb{R}^{n}$ is the same geometrically as the standard Bezier curve with control points $\mathbf{p}_{0}, \mathbf{p}_{1}, \ldots, \mathbf{p}_{d}$ but the 'speed' of the curve is different and affects derivatives.

Since by the chain rule,

$$
\frac{d}{d t}=\frac{d \lambda}{d t} \frac{d}{d \lambda}=\frac{1}{b-a} \frac{d}{d \lambda}
$$

we find that

$$
B_{i, d}^{\prime}(t)=\frac{d}{b-a}\left(B_{i-1, d-1}(t)-B_{i, d-1}(t)\right)
$$

and so

$$
\mathbf{p}^{\prime}(t)=\frac{d}{b-a} \sum_{i=0}^{d-1}\left(\mathbf{p}_{i+1}-\mathbf{p}_{i}\right) B_{i, d-1}(t)
$$

and similarly,

$$
\mathbf{p}^{(r)}(t)=\frac{1}{(b-a)^{r}} \frac{d!}{(d-r)!} \sum_{i=0}^{d-r} \Delta^{r} \mathbf{p}_{i} B_{i, d-r}(t)
$$

Suppose we now piece together two degree d Bezier curves

$$
\mathbf{p}(t)=\sum_{i=0}^{d} \mathbf{p}_{i} B_{i, d}(t), \quad \mathbf{q}(t)=\sum_{i=0}^{d} \mathbf{q}_{i} \tilde{B}_{i, d}(t)
$$

where

$$
B_{i, d}(t)=\binom{d}{i} \lambda^{i}(1-\lambda)^{d-i}, \quad \tilde{B}_{i, d}(t)=\binom{d}{i} \tilde{\lambda}^{i}(1-\tilde{\lambda})^{d-i}
$$

and

$$
\lambda=\frac{t-a}{b-a}, \quad \tilde{\lambda}=\frac{t-b}{c-b},
$$

giving the spline curve $\mathbf{r}:[a, c] \rightarrow \mathbb{R}^{n}$, defined as

$$
\mathbf{r}(t)= \begin{cases}\mathbf{p}(t) & a \leq t \leq b \\ \mathbf{q}(t) & b<t \leq c\end{cases}
$$

The curve \mathbf{r} has continuity of order k at $t=b$ if

$$
\left.\frac{d^{j}}{d t^{j}} \mathbf{p}(t)\right|_{t=b}=\left.\frac{d^{j}}{d t^{j}} \mathbf{q}(t)\right|_{t=b}, \quad j=0,1, \ldots, k
$$

and this condition now becomes

$$
\frac{1}{(b-a)^{j}} \Delta^{j} \mathbf{p}_{d-j}=\frac{1}{(c-b)^{j}} \Delta^{j} \mathbf{q}_{0}, \quad j=0,1, \ldots, k
$$

The conditions for C^{0}, C^{1}, and C^{2} continuity are:

- ($\left.C^{0}\right) \quad \mathbf{p}_{d}=\mathbf{q}_{0}$,
- $\left(C^{1}\right) \quad C^{0}$ and $\frac{\mathbf{p}_{d}-\mathbf{p}_{d-1}}{b-a}=\frac{\mathbf{q}_{1}-\mathbf{q}_{0}}{c-b}$.
- $\left(C^{2}\right) \quad C^{1}$ and $\frac{\mathbf{p}_{d}-2 \mathbf{p}_{d-1}+\mathbf{p}_{d-2}}{(b-a)^{2}}=\frac{\mathbf{q}_{2}-2 \mathbf{q}_{1}+\mathbf{q}_{0}}{(c-b)^{2}}$.

