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1 One way to triangulate a polygon

Let P be a simple planar polygon with n vertices v0, v1, . . . , vn−1, as for
example in Figure 1.

P

Figure 1: A planar polygon P .

One way to triangulate P is to check first if n = 3 in which case P is
a triangle and is trivial to triangulate. Otherwise n ≥ 4 and we look for
an ‘ear’. An ear is a triangle E = [vi−1, vi, vi+1] that lies entirely inside
the polygon P . Equivalently, E is an ear if the line segment [vi−1, vi+1] lies
entirely inside P ; see Figure 2. Once we have located an ear, we can form a
reduced polygon P ′ with n−1 vertices by removing the vertex vi from P , i.e.,
we replace the two edges [vi−1, vi] and [vi, vi+1] by the new edge [vi−1, vi+1]
to form P ′. We triangulate P ′ and add to it the triangle E.

This triangulation method is simple and in fact always works although it
is not very fast. However, it relies on the fact that there is always at least
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Figure 2: An ear E.

one ear in a planar polygon (with at least four vertices). We will prove this
and at the same time prove a stronger statement: the Two Ears Theorem:

Theorem 1 Every polygon P with n ≥ 4 vertices has at least two non-

overlapping ears.

Proof. We can prove this by induction on n. If n = 4, P is a quadrilateral
which is either convex or concave. In either case, we can easily locate two
non-overlapping ears; see Figure 3.

E 1 2E
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Figure 3: Convex and concave quads.

Otherwise, n ≥ 5. Let vi be a vertex whose interior angle is less than
π/2. Consider two cases.
Case 1. The triangle E = [vi−1, vi, vi+1] is an ear of P ; see Figure 4. Then if
vi is removed from P the reduced polygon P ′ has n−1 vertices and therefore
at least four vertices. Therefore, by the induction step we can assume that
P ′ has at least two non-overlapping ears E1 and E2. Since they are non-
overlapping, at least one of them, say E1, does not contain the edge [vi−1, vi+1]
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of P ′. Then E1 is also an ear of P and E and E1 are two non-overlapping
ears of P .
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Figure 4: Case 1.

Case 2. The triangle E = [vi−1, vi, vi+1] is not an ear of P ; see Figure 5.
Then E contains at least one other vertex of P . Let w be a vertex of P
such that the line through w, parallel to the line through vi−1 and vi+1, is
as close as possible to vi. Then the line segment [w, vi] lies entirely inside
P and therefore divides P into two polygons: P1 containing the vertices
vi, vi+1, . . . , w and P2 containing the vertices vi, vi−1, . . . , w. Now we consider
two subcases.
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Figure 5: Case 2.

Case 2a. One of P1 and P2, say P1, is a triangle. Then P2 is not a triangle
because n ≥ 5 and so by induction P2 has two non-overlapping ears E1 and
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E2. Since they are non-overlapping, at least one of them, say E1, does not
contain the edge [w, vi] of P2. Then E1 is also an ear of P and so E1 and the
triangle P1 are two non-overlapping ears of P .
Case 2b. Neither P1 nor P2 is a triangle. Then by induction, P1 has two
non-overlapping ears E11 and E12, and at least one of them, say E11, does
not contain the edge [w, vi] of P1. Similarly, by induction, P2 has two non-
overlapping ears E21 and E22, and at least one of them, say E21, does not
contain the edge [w, vi] of P2. Then E11 and E21 are two non-overlapping
ears of P . 2

This theorem is very nice, especially when we notice that for any number
of vertices n there are polygons which have only two ears, as Figure 6 shows.
So we cannot hope to find three or more ears in general.

Figure 6: Polygon with only two ears.

2 Another way to triangulate a polygon

After going through the proof of the two ears theorem, we notice that there
is another way of triangulating a polygon. Instead of locating an ear, it is
enough to find a vertex vi whose interior angle is less than π/2. Now if
E = [vi−1, vi, vi+1] is an ear then as in the previous method, we remove vi

from P to form P ′, triangulate P ′ and add the triangle E. But if E is not
an ear then we locate a vertex w as in Case 2 of the proof and we split P
into P1 and P2 by the edge [w, vi]. We then triangulate both P1 and P2 and
combine them.
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3 Another proof of the two ears theorem

Another way of proving the two ears theorem is shorter but relies on other
known facts. It is known that any polygon P can be triangulated, for example
by the algorithm in the last section. Figure 7 shows a possible triangulation
of the polygon P of Figure 1. So let T be some triangulation of P and

Figure 7: One possible triangulation T .

consider its dual graph G; see Figure 8. Each node in G corresponds to a

Figure 8: The dual graph G.

triangle in T and each edge in G corresponds to a pair of triangles in T that
share a common edge in T . Then G has no cycles: no closed paths of edges
because the triangulation T has no interior vertices. So the dual graph G
is a so-called tree. The nodes of G that have only one incident edge (the
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black ones in the figure) are called leaves. Notice that any triangle in T that
corresponds to a leaf of G is an ear of P . Hence the number of ears of P is
greater or equal to the number of leaves of G. So it remains to show that G
has at least two leaves. Well if n ≥ 4, G has at least two nodes and therefore,
being a tree, must have at least two leaves.

4 Triangulations of a convex polygon

Most polygons can be triangulated in many different ways. To get an idea of
how many ways, consider convex polygons. There is only one possible trian-
gulation of a triangle, there are two triangulations of a convex quadrilateral,
and five triangulations of a convex pentagon; see Figure 9.

Figure 9: All possible triangulations of first three convex polygons.

It can be shown that if Cn denotes the number of ways of triangulating a
convex polygon with n+2 vertices then Cn is the so-called Catalan number,

Cn =
1

n+ 1

(

2n

n

)

.

The first few numbers in the sequence are C1 = 1, C2 = 2, C3 = 5, C4 = 14,
C5 = 42. The sequence was first studied by Euler but is named after Eugene
Charles Catalan, who discovered a connection to parenthesized expressions.
The number Cn grows exponentially with n. More precisely,

Cn ≈
4n

n3/2
√
π
.
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