

- ^L SAT is the problem of determining if ^a propositional formula (on conjunctive normal form) is satisfiable.
- ▶ The DPLL (Davis-Putnam-Logemann-Loveland) procedure from 1962 $[2]$ is an algorithm solving SAT.
- DPLL is a refinement of the DP (Davis-Putnam) procedure from 1960 $[3]$
- ▶ We present (a version of) DPLL as a calculus.
- DPLL is interesting because it works well in practice, ie. the best SAT solvers are based on DPLL.

A literal is ^a propositional variable or its negation.

We will use the following notation.

- propositional variables: P, Q, R, S (possibly subscripted)
- \rightarrow literals: x, y, z (possibly subscripted)
- \blacktriangleright general formulae: X, Y, Z

The complement of a literal is defined as follows.

 $\overline{P} = -P$ and $\overline{P} = P$.

NNF

A formula is on negation normal form (NNF) if negations occur only in front of propositional variables and implications does not occur at all

Any formula can be put on NNF using the following rewrite rules.

$$
\neg\neg X \rightarrow X
$$

\n
$$
X \supset Y \rightarrow \neg X \vee Y
$$

\n
$$
\neg(X \wedge Y) \rightarrow \neg X \vee \neg Y
$$

\n
$$
\neg(X \vee Y) \rightarrow \neg X \wedge \neg Y
$$

Some additional rewrite rules are needed for formula containing \top and \bot .

We will assume that a formula X on NNF does not contain \top or \top unless $X = T$ or $X = L$.


```
DPLL February 4, 2008 5 / 59
```

```
Normal forms Normal forms
```
Example

The following formula expresses " $P \wedge Q$ or $R \wedge S$ but not both."

$$
((P \land Q) \lor (R \land S)) \land (\neg (P \land Q) \lor \neg (R \land S))
$$

NNF:
$$
((P \land Q) \lor (R \land S)) \land ((\neg P \lor \neg Q) \lor (\neg R \lor \neg S))
$$

CNF:
$$
(P \lor R) \land (P \lor S) \land (Q \lor R) \land (Q \lor S) \land (\neg P \lor \neg Q \lor \neg R \lor \neg S)
$$

The NNF to CNF part is performed as follows.

$$
(P \land Q) \lor (R \land S)
$$

\n
$$
\rightarrow (P \lor (R \land S)) \land (Q \lor (R \land S))
$$

\n
$$
\rightarrow (P \lor R) \land (P \lor S) \land (Q \lor (R \land S))
$$

\n
$$
\rightarrow (P \lor R) \land (P \lor S) \land (Q \lor R) \land (Q \lor S)
$$

CNF and DNF

A formula is on conjunctive normal form (CNF) if it is a conjunction of disiunctions of literals.

Example 1

 $(P \vee Q) \wedge (P \vee \neg Q \vee R) \wedge (Q \vee S) \wedge (P \vee \neg R)$

A formula on NNF can be put on CNF using the following rewrite rules.

$$
(X \wedge Y) \vee Z \rightarrow (X \vee Z) \wedge (Y \vee Z)
$$

$$
Z \vee (X \wedge Y) \rightarrow (Z \vee X) \wedge (Z \vee Y)
$$

A formula is on disjunctive normal form (DNF) if it is a disjunction of conjunctions of literals.

DNF is like CNF, only with \wedge and \vee exchanged.

```
DPLL February 4, 2008 6/59
```
Normal forms Normal forms

Size increase

Rewriting a formula from DNF to CNF (or vice versa) may cause an exponential increase in size.

$$
(P_1 \wedge P_2) \vee (P_3 \wedge P_4) \vee (P_5 \wedge P_6)
$$

On CNF:

$$
(P_1 \vee P_3 \vee P_5) \wedge (P_1 \vee P_3 \vee P_6) \wedge
$$

\n
$$
(P_1 \vee P_4 \vee P_5) \wedge (P_1 \vee P_4 \vee P_6) \wedge
$$

\n
$$
(P_2 \vee P_3 \vee P_5) \wedge (P_2 \vee P_3 \vee P_6) \wedge
$$

\n
$$
(P_2 \vee P_4 \vee P_5) \wedge (P_2 \vee P_4 \vee P_6)
$$

Clauses and clause sets

For the sake of notational simplicity, instead of using formula on CNF, we will use *clause sets*.

A clause is a disjunction of literals

A unit clause is a singleton clause.

A clause set is a finite set of clauses (interpreted conjunctively).

We will represent non-empty clauses by the set of its literals using a Prolog-like notation.

- An empty clause is the empty disjunction \perp .
- $x_1 \vee \cdots \vee x_n$ is represented by the set $[x_1 \ldots x_n]$, for $n > 0$ (*n* is the length).
- \triangleright We will sometimes write $[]$ for \bot .
- Observe that $| \cdot | \neq \emptyset$ (see next foil).

Espen H. Lian (Ifi, UiO) SAT and [DPLL](#page-0-0) February 4, 2008 9/59

Normal forms Clauses and lause sets

Valuation

Let Γ be a clause set and C a clause.

As clauses are disjunctions, it follows that they are valuated as follows.

 $v(C) = 1$ iff $v(x) = 1$ for some $x \in C$.

We will interpret clause sets conjunctively, ie.

$$
v(\Gamma) = 1 \text{ iff } v(C) = 1 \text{ for every } C \in \Gamma.
$$

Observe that

- Fig. if C is empty, then $v(C) = 0$, while
- \triangleright if Γ is empty, then $v(\Gamma) = 1$.

Thus we may use clause sets to represent formula on CNF.

Example:

$$
v(\{[P \neg Q \ R], [\neg P \neg R]\}) = v((P \lor \neg Q \lor R) \land (\neg P \lor \neg R))
$$

Example

Some lauses:

1. $[P - Q R]$

2. $[P - P]$

3. [], the empty clause

Some lause sets:

- 1. $\{ [P Q R] \}$
- 2. $\{[P P], [],[P Q, R]\}$
- 3. g, the empty lause set

 $4.$ {[]}, the clause set containing exactly the empty clause

Normal forms Clauses and lause sets

Subsumption

Let C_1 and C_2 be clauses. If $C_1 \subseteq C_2$, we say that C_1 subsumes C_2 .

Lemma ² (Subsumption)

If C_1 subsumes C_2 , then $v(C_1) = 1$, then $v(C_2) = 1$.

Proof.

- If $v(C_1) = 1$, then $v(x) = 1$ for some $x \in C_1$. If $C_1 \subseteq C_2$, then $x \in C_2$.
- \triangleright Thus $v(C_2) = 1$.

Example: $\models P \supset (P \vee Q)$ as $[P]$ subsumes $[P \ Q]$.

Subsumption

Define $\Gamma_x = \{ C \cup [x] | C \in \Gamma \}$, ie. x is added to every clause.

Example

- 1. $\{ [P \ Q], [-Q], [-P-Q] \}_x = \{ [P \ Q \ x], [-Q \ x], [-P-Q \ x] \}$ 2. $\{[P \ Q], [-Q], [-P - Q]\}$ = $\{[P \ Q], [P - Q], [P - P - Q]\}$. 3. $\{\perp\}_x = \{\parallel\}\]_x = \{\parallel x \parallel \}.$
- 4. \varnothing _x = \varnothing .

Corollary ³ (of the Subsumption Lemma)

```
If v(\Gamma) = 1, then v(\Gamma_v) = 1.
```
Proof.

Every clause in Γ subsumes one in $\Gamma_{\mathbf{x}}$.

Espen H. Lian (Ifi, UiO) SAT and [DPLL](#page-0-0) February 4, 2008 13 / 59

Normal forms Clauses and lause sets

Some lemmata

Let Γ and ∆ be lause sets and C ^a lause.

- \vdash Γ, Δ means $\Gamma \cup \Delta$.
- \cdot Γ, C means Γ \cup {C}.
- \triangleright We say that x occurs in Γ if $x \in C$ for some $C \in \Gamma$.

Lemma 5

Let Γ be a non-empty clause set without any occurence of x or \overline{x} . If Γ is satisfiable, there is some valuation v such that $v(\Gamma, [x]) = 1$.

Subsumption

A similar lemma for clause sets, only the other way as clause sets are interpreted conjunctively and clauses disjunctively.

Lemma 4

Let Γ and Δ be clause sets. If $\Delta \subseteq \Gamma$ and $v(\Gamma) = 1$, then $v(\Delta) = 1$.

Proof.

- If $v(\Gamma) = 1$, then $v(\Gamma) = 1$ for every $C \in \Gamma$.
- \cdot If $\Delta \subseteq \Gamma$, then $v(C) = 1$ for every $C \in \Delta$.
- \triangleright Thus $v(\Delta) = 1$.

 \Box

The core of DPLL

This lemma comes close to the core of DPLL.

If we make x true, we can

- 1. remove every clause containing x , and
- 2. remove \bar{x} from every clause containing it.

Example 7

Let $\Gamma = \{ [P \ Q], [\neg P \neg Q], [Q \neg R] \}.$ If $v(P) = 1$, then we can 1. remove $[P,Q]$, and 2. remove $\neg P$ from $\neg P \neg Q$. In other words, $v(\Gamma) = v(\{[-Q], [Q, -R]\})$.

Espen H. Lian (Ifi, UiO) SAT and [DPLL](#page-0-0) February 4, 2008 17 / 59 DPLL Preliminaries

Preliminaries

The DPLL calculus operates not on general formulae but on a clause set Γ.

We start by removing from ^Γ

any clause C such that $\{x,\overline{x}\}\subseteq C$ for some x.

This obviously does not affect satisfiability.

• If
$$
\{x,\overline{x}\}\subseteq C
$$
, then $v(C) = 1$, thus $v(\Gamma) = v(\Gamma \setminus \{C\})$.

[Normal](#page-0-0) forms [DPLL](#page-4-0) **[Complexity](#page-8-0)** DPLL [Implementation](#page-11-0) [Bibliography](#page-13-0) Espen H. Lian (Ifi, UiO) SAT and [DPLL](#page-0-0) February 4, 2008 18 / 59

DPLL The rules

The rules

Let Γ , Λ and Δ be clause sets without any occurence of x or \overline{x} such that Γ and Λ are non-empty.

Definition 8

An axiom is any clause set where the empty clause occurs, ie. of the form \perp, Δ

Why are the axioms unsatisfiable?

- In terms of sequent calculus, that Γ is satisfiable may be expressed as $\Gamma \not\models \bot$ or $\Gamma \not\models \varnothing$.
- DPLL can be viewed as a left-calculus, ie. the right hand side of the sequent is empty.
- ► Thus in sequent calculus terms, \perp, Δ means $\perp, \Delta \vdash \perp$, which is valid.

Monotone literal fixing

If it's the case that some x occurs in some clauses and \bar{x} does not, we say that x is monotone, and we make x true, because this makes the clauses x occurs in true and does not affect the other clauses.

$$
\frac{\Delta}{\Gamma_x, \Delta}
$$
 Mon

This rule is sometimes called the Affirmative-Negative Rule.

Example: $\neg Q$ is monotone.

$$
\frac{[P \neg Q \ R], [-P \neg R], [P \neg R]}{[P \neg Q \ R], [-P \neg R], [P \neg R]}
$$
 Mon

DPLL The rules

Espen H. Lian (Ifi, UiO) SAT and [DPLL](#page-0-0) February 4, 2008 21 / 59

Unit resolution

If it's the ase that

- \triangleright the unit clause [x] occurs,
- \rightarrow x does not occur anywhere else but
- \overline{x} does,

make ^x true.

$$
\frac{\Lambda,\Delta}{\bigl[x\bigr],\Lambda_{\overline{x}},\Delta}
$$
 Res

Example:

$$
\frac{[Q], [P \neg Q], [-P \neg Q], [R]}{[Q], [P \neg Q], [-P \neg Q], [R]}
$$
 Res

Unit subsumption

If it's the ase that

- \triangleright the unit clause $[x]$ occurs,
- \times x occur in some other clauses, and
- \overline{x} occurs in yet others,

 $[x]$ subsumes the others where x occurs.

$$
\frac{[x], \Lambda_{\overline{x}}, \Delta}{[x], \Gamma_x, \Lambda_{\overline{x}}, \Delta} \text{Sub}
$$

Example: $[Q]$ subsumes $[-P Q]$.

$$
\frac{[Q], [\neg P \ Q], [\neg P \neg Q], [R]}{[Q], [\neg P \ Q], [\neg P \neg Q], [R]}
$$
Sub

Espen H. Lian (I, UiO) SAT and [DPLL](#page-0-0) February 4, 2008 ²² / 59 DPLL The rules Split If it's the ase that

- \triangleright some x occurs in some clauses, and
- \overline{x} occurs in others.

we can make two branches: one where x is true and one where x is false.

$$
\frac{\Gamma, \Delta \qquad \Lambda, \Delta}{\Gamma_x, \Lambda_{\overline{x}}, \Delta} \text{ Split}
$$

Example: Split on P.

$$
\frac{\left[P\rightarrow Q\right],\left[\neg P\ Q\right] \qquad \left[P\rightarrow Q\right],\left[\neg P\ Q\right]}{\left[P\rightarrow Q\right],\left[\neg P\ Q\right]}\text{Split}
$$

DPLL Examples

Example 1

The following formula is valid.

 $(P \supset (Q \supset R)) \supset ((P \supset Q) \supset (P \supset R))$

Its negation is equivalent to the following clause set.

$$
\{[P],[\neg R],[\neg P\ Q],[\neg P\ \neg Q\ R]\}
$$

We prove unsatisfiability using only Res.

Espen H. Lian (Ifi, UiO) SAT and [DPLL](#page-0-0) February 4, 2008 25 / 59

DPLL Derived rules

Derivable rules

Res is, in fact superfluous, and can be derived from Split:

$$
\frac{\Delta}{\lfloor x \rfloor, \Lambda_{\overline{x}}, \Delta} \text{Split}
$$

If we allow Γ and Λ to be empty, the following rule is called Unit propagation (on x).

$$
\frac{\Lambda, \Delta}{[x], \Gamma_x, \Lambda_{\overline{x}}, \Delta}
$$
 Prop

It can be derived from the other rules.

Example 2

DPLL Derived rules

Unit propagation

We an derive Prop as follows.

If Γ and Λ are non-empty:

$$
\frac{\Lambda, \Delta}{[x], \Lambda_{\overline{x}}, \Delta}
$$
 Res

$$
[x], \Gamma_x, \Lambda_{\overline{x}}, \Delta
$$
 Sub

If $\Lambda = \emptyset$, then $\Lambda_{\overline{x}} = \emptyset$:

 $\frac{\Delta}{[x], \Gamma_x, \Delta}$ Mon

If $\Gamma = \emptyset$, then $\Gamma_x = \emptyset$:

$$
\frac{\Lambda, \Delta}{[x], \Lambda_{\overline{x}}, \Delta}
$$
 Res

DPLL Termination

Termination

Lemma 9

A maximal derivation ends in an axiom or \varnothing .

Proof.

Assume the opposite: that there is ^a maximal derivation whose leaf node ^Γ is neither an axiom nor \varnothing .

- \triangleright Thus there is some x occurring in Γ .
- If \overline{x} does not occur in Γ . Mon is applicable.
- If \overline{x} does occur in Γ , Split (or in some cases Sub) is applicable

In either case we get a contradiction, as the derivation is not maximal. \square

Espen H. Lian (Ifi, UiO) SAT and [DPLL](#page-0-0) February 4, 2008 29 / 59

DPLL Soundness and completeness

Soundness and completeness

Lemma ¹¹ (Mon)

 Γ_{x} , Δ is satisfiable iff Δ is satisfiable.

Proof.

Only if: Follows directly from Lemma [4](#page-3-2).

If: Assume that Δ is satisfiable.

- ► By Lemma [5,](#page-3-3) there is a v such that $v(\Delta) = v(x) = 1$.
- By Lemma [6\(](#page-3-4)[1\)](#page-3-0), $v(\Gamma_x) = 1$.
- \triangleright Thus $v(\Gamma_x, \Delta) = 1$.

 \Box

Termination

Theorem ¹⁰ (Termination)

Any proof attempt terminates.

Proof.

- Sub and Mon both reduce the number of clauses.
- \triangleright Split reduces the number of distinct variables.
- \rightarrow Both are finite, thus we have termination.

Soundness and completeness

Theorem ¹⁴ (Soundness)

If there exists a proof of Γ , then Γ is unsatisfiable.

Proof.

We show this contrapositively: if Γ is satisfiable, then Γ is not provable.

- \triangleright Assume that Γ is satisfiable.
- \triangleright Rules preserve satisfiability upwards.
- Thus any derivation π has at least one satisfiable leaf node Λ .
- As axioms are unsatisfiable, Λ is not an axiom, thus π is not a proof.

Soundness and completeness

Theorem ¹⁵ (Completeness)

If Γ is unsatisfiable, there exists a proof of Γ .

Proof

We show this contrapositively: if there exists no proof of Γ , then Γ is satisfiable.

- Assume that there exists no proof of Γ .
- \triangleright Then any maximal derivation has at least one open leaf node.
- \triangleright Termination lets us assume that a derivation is maximal, hence with an open leaf node \varnothing , which is satisfiable
- \triangleright Rules preserve satisfiability downwards.

Complexity NP-completeness

NPompleteness

The first problem to be proven NP-complete was SAT.

Theorem ¹⁶ (Cook's Theorem)

SAT is NP-complete.

Proof.

Non-trivial. See $[1]$ or $[8]$.

 \Box

We know from the previous lecture that propositional satisfiablity is NPomplete.

- ▶ NP-hardness: follows directly from Cook's Theorem.
- NP-membership: a non-deterministic machine can guess a satisfying valuation and verify it in polynomial time.

A problem is an instance of SAT, ie, a clause set. If

- \cdot the number of clauses is n.
- \rightarrow there occurs m distinct propositional variables, and
- every clause is of length $\leq c$.

the problem size is represented by the triple

 $n \times m \times c$.

Example. The following problem has size $2 \times 4 \times 3$.

$$
\{[P \neg Q \ R], [Q \ R \neg S]\}
$$

Espen H. Lian (Ifi, UiO) SAT and [DPLL](#page-0-0) February 4, 2008 37 / 59

Complexity Equivalen
e

Equivalence

Two formulae X and Y are equivalent if

 $v(X) = v(Y)$ for every valuation v.

- Equivalence can be expressed in our logical language.
	- \rightarrow Let $(X \equiv Y)$ denote $(X \supset Y) \wedge (Y \supset X)$.
- So far we have reduced a formula to an equivalent one on CNF:
	- $X \rightarrow Y$, where
	- \rightarrow X and Y are equivalent, and
	- Y is on CNF.
- In This, in fact, is not strictly necessary.

Reduction to CNF

As mentioned, reducing a propositional formula to CNF can cause exponential in
rease in size.

A formula of the form $(x_1 \wedge y_1) \vee \cdots \vee (x_n \wedge y_n)$ reduced to CNF has size

 $2^n \times 2n \times n$.

that is 2^n clauses of length n.

Example 17

If $n = 3$, we get a $8 \times 6 \times 3$ problem:

 $(x_1 \vee x_2 \vee x_3) \wedge (x_1 \vee x_2 \vee y_3) \wedge (x_1 \vee x_3 \vee y_2) \wedge (x_1 \vee y_2 \vee y_3)$ $(x_2 \vee x_3 \vee y_1) \wedge (x_2 \vee y_1 \vee y_3) \wedge (x_3 \vee y_1 \vee y_2) \wedge (y_1 \vee y_2 \vee y_3)$

But the reason for using DPLL in the first place is effectivity!

Espen H. Lian (Ifi, UiO) SAT and [DPLL](#page-0-0) February 4, 2008 38 / 59

Complexity Equisatisfiability

Equisatisfiability

For our purposes, it suffices that X and Y are equisatisfiable:

 X is satisfiable iff Y is satisfiable.

- Until now, the procedure for generating input to DPLL has been
	- $X \xrightarrow{\text{NNF}} Y \xrightarrow{\text{CNF}} Z \xrightarrow{\text{Clause}} \Gamma$, where
	- \rightarrow X, Y, Z and Γ are equivalent, and
	- \rightarrow Z may be exponentially larger than Y.
- ▶ Our next approach is as follows.
	- $\rightarrow X \xrightarrow{\text{NNF}} Y \xrightarrow{\text{Teitin}} \Gamma$, where
	- Y and Γ are *not* equivalent, and
	- \cdot Γ is no more than polynomially larger than X.

Tseitin encoding

- Problem given an arbitrary formula on NNF, find an equisatisfiable formula on CNF (or the corresponding clause set).
- Solution Represent each subformulae (except for literals) with a propositional variable, recursively.

Usually attributed to Tseitin [9].

Example 18

 $((P \land \neg Q) \lor R)$ has two non-literal subformulae, one of which is itself.

$$
\underbrace{\overbrace{\left(\left(P \wedge \neg Q\right)}^{P_1} \vee R\right)}^{P_1}
$$

Espen H. Lian (Ifi, UiO) SAT and [DPLL](#page-0-0) February 4, 2008 41 / 59

Complexity Tseitin encoding

Tseitin encoding

- In fact $\models \varphi \supset ((P \wedge \neg Q) \vee R)$.
- If $v(\varphi) = 1$, then v makes the three conjuncts true:
	- 1. $v(P_1) = 1$
	- 2. $v(P_1 \equiv (P_2 \vee R)) = 1$
		- If Thus $v(P_1) = v(P_2 \vee R) = 1$.
		- If Thus $v(P_2) = 1$ or $v(R) = 1$.

$$
3. \quad v(P_2 \equiv (P \land \neg Q)) = 1
$$

- \triangleright Thus $v(P_2) = v(P \wedge \neg Q)$.
- If $v(P_2) = 1$, then $v(P \wedge \neg Q) = 1$.
- Hence $v((P \land \neg Q) \lor R) = 1$.

 \rightarrow Obviously $\neq ((P \land \neg Q) \lor R) \supset \varphi$, as that would make them equivalent.

For each new variable P_k , we generate a formula expressing that P_k is equivalent to the formula it represents:

▶
$$
(P_1 \equiv (P_2 \vee R))
$$
 [not $(P_1 \equiv ((P \wedge \neg Q) \vee R))]$
▶ $(P_2 \equiv (P \wedge \neg Q))$

- In addition we want the variable expressing the entire formula, in our case P_1 to be true.
- Let φ denote the following conjunction.

$$
P_1 \wedge
$$

\n
$$
(P_1 \equiv (P_2 \vee R)) \wedge
$$

\n
$$
(P_2 \equiv (P \wedge \neg Q))
$$

Fig. Then φ is equisatisfiable to $((P \land \neg Q) \lor R)$.

Espen H. Lian (Ifi, UiO) SAT and [DPLL](#page-0-0) February 4, 2008 42 / 59

Complexity Tseitin encoding

Tseitin encoding

In order to convert φ to CNF, we use the following functions.

 $[x \wedge y]^P = \{ [-P x], [-P y], [P \overline{x} \overline{y}] \}$ $[x \vee y]^P = \{ [P \overline{x}], [P \overline{y}], [-P \times y] \}$ $[x \supset y]^P = \{ [P x], [P \overline{y}], [-P \overline{x} y] \}$

Lemma ¹⁹ (Clause representation)

 $[X]^{P}$ is equivalent to $(P \equiv X)$.

Proof.

Left as exer
ise.

Complexity Tseitin encoding

Tseitin encoding

Using the lemma, φ is equivalent to

 $[P_1], [P_2 \vee R]^{P_1}, [P \wedge \neg Q]^{P_2}$

which again equals the clause set

$$
\{ [P_1], [P_1 \neg P_2], [P_1 \neg R], [-P_1 P_2 R], [-P_2 P], [-P_2 \neg Q], [P_2 \neg P Q] \}.
$$

Tseitin encoding

Is this any better than the original CNF translation?

- \triangleright We will use the number of binary connectives (n) as a measure of the size of our original formula on NNF.
- \triangleright We let m denote the number of distinct propositional variables.
- \triangleright Then the size of the equisatisfiable clause set generated is $(3n + 1) \times (m + n) \times 3$.
- • This, of course, gives just an estimate of the actual size of a problem when represented on a Turing machine but this will in any case be polynomial.

Jeroslow Wang heuristi

- \triangleright The only non-deterministic part is which literal is chosen.
- ▶ Picking the optimal literal is in general NP-hard and coNP-hard [7].
- Thus it is *harder* than deciding satisfiability of the formula!
- \triangleright But there exists heuristics.
- Expect $\Gamma(x)$ denote the subset of Γ where x occurs.
- Pick the x that maximizes $w(\Gamma(x))$, where w is the weight function

$$
w(\Gamma)=\sum_{k\geq 1}\frac{n(\Gamma,k)}{2^k},
$$

and $n(\Gamma, k)$ is the number of clauses in Γ of length k.

 \triangleright "Pick an x that occurs in many short clauses."

Expendix February 4, 2008 49 / 59

DPLL Implementation Jeroslow Wang heuristi

Example 2

 \triangleright Unit propagation is performed on Γ , $\lceil \neg Q \rceil$:

$$
\frac{[P \ R], [P \neg R]}{\Gamma, [Q]}
$$
 Prop

Let $\Gamma' = \{ [P \ R], [P - R] \}.$

 $x = \mathbb{I} \neg P \mid P \mid \neg R \mid R$ $w(\Gamma'(x))$ $\begin{array}{|c|c|c|c|}\n\hline\n\frac{0}{4} & \frac{2}{4} & \frac{1}{4} & \frac{1}{4}\n\end{array}$

P has the highest weight in Γ' .

Example 2

Let
$$
\Gamma = \{ [-P \ Q], [P \neg Q \ R], [Q \ S], [P \neg R] \}.
$$

What is DPLL(Γ)?

- \triangleright Γ contains no unit clause.
- \triangleright We calculate $w(\Gamma(x))$ for each x occurring in Γ .

- \triangleright Q has the highest weight in Γ.
- \rightarrow DPLL(Γ) is true if DPLL(Γ , $[Q]$) or DPLL(Γ , $[\neg Q]$) are.

DPLL Implementation Jeroslow Wang heuristi

Example 2

- \rightarrow DPLL(Γ) is true if
	- \rightarrow DPLL $(\Gamma', [P])$ or
	- \rightarrow DPLL $(\Gamma', [\neg P])$ or
	- \rightarrow DPLL $(\Gamma, \lceil \neg Q \rceil)$ are.
- \triangleright Unit propagation is performed on Γ , $[P]$:

$$
\frac{\frac{\varnothing}{[-R]}}{\Gamma, [P]} \text{Prop}
$$

- \rightarrow DPLL($\Gamma', [P]$) returns true, thus
- \rightarrow DPLL(Γ) returns true, which means
- \blacktriangleright Γ is satisfiable.

MiniSAT

- ► Industrial SAT+UNSAT
- **Industrial UNSAT**
- \blacktriangleright Industrial SAT
- ► Crafted UNSAT

It didn't do that well at SAT Competition 2007 though.

We can try it on an $3358 \times 1015 \times 3$ problem.

Bibliography II

M. Davis and H. Putnam.

A Computing Procedure for Quantification Theory.

J. ACM, 7(3):201-215, 1960.

E. N. Eén and N. Sörensson.

An Extensible SAT-solver.

In E. Giunchiglia and A. Tacchella, editors, SAT, volume 2919 of Lecture Notes in Computer Science, pages 502-518. Springer, 2003.

M. Fitting.

First-Order Logic and Automated Theorem Proving.

Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2. edition, 1996.

Expendix February 4, 2008 57 / 59

Bibliography

Bibliography IV

G. S. Tseitin.

On the Complexity of Derivation in Propositional Calculus.

In J. Siekmann and G. Wrightson, editors, Automation of Reasoning 2: Classical Papers on Computational Logic 1967-1970, pages 466-483. Springer, Berlin, Heidelberg, 1983.

Bibliography III

R. G. Jeroslow and J. Wang.

Solving Propositional Satisfiability Problems.

Annals of Mathematics and Artificial Intelligence, 1(1):167-187, 1990.

\blacksquare P. Liberatore.

On the complexity of choosing the branching literal in DPLL.

Artificial Intelligence, 116(1-2):315-326, 2000

C. H. Papadimitriou. \blacksquare

Computational Complexity.

Addison Wesley, Reading, Massa
husetts, 1994.

Espen H. Lian (Ifi, UiO) SAT and [DPLL](#page-0-0) February 4, 2008 58 / 59