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Espen H. Lian (I�, UiO) SAT and DPLL February 4, 2008 2 / 59Normal forms IntrodutionIntrodutionL SAT is the problem of determining if a propositional formula (ononjuntive normal form) is satis�able.L The DPLL (Davis-Putnam-Logemann-Loveland) proedure from 1962[2℄ is an algorithm solving SAT.L DPLL is a re�nement of the DP (Davis-Putnam) proedure from 1960[3℄.L We present (a version of) DPLL as a alulus.L DPLL is interesting beause it works well in pratie, ie. the best SATsolvers are based on DPLL.Espen H. Lian (I�, UiO) SAT and DPLL February 4, 2008 3 / 59

Normal forms Normal formsPreliminariesA literal is a propositional variable or its negation.We will use the following notation.L propositional variables: P ,Q ,R ,S (possibly subsripted)L literals: x , y , z (possibly subsripted)L general formulae: X ,Y ,ZThe omplement of a literal is de�ned as follows.L P �  P , andL  P � P .Espen H. Lian (I�, UiO) SAT and DPLL February 4, 2008 4 / 59



Normal forms Normal formsNNFA formula is on negation normal form (NNF) if negations our only infront of propositional variables and impliations does not our at all.Any formula an be put on NNF using the following rewrite rules.  X � XX a Y �  X - Y �X , Y � �  X -  Y �X - Y � �  X ,  YSome additional rewrite rules are needed for formula ontaining � and �.We will assume that a formula X on NNF does not ontain � or � unlessX � � or X � �.Espen H. Lian (I�, UiO) SAT and DPLL February 4, 2008 5 / 59

Normal forms Normal formsCNF and DNFA formula is on onjuntive normal form (CNF) if it is a onjuntion ofdisjuntions of literals.Example 1� P -Q� , �P -  Q -R� , �Q - S� , �P -  R�A formula on NNF an be put on CNF using the following rewrite rules.�X ,Y � - Z � �X - Z� , �Y - Z�Z - �X , Y � � �Z -X � , �Z -Y �A formula is on disjuntive normal form (DNF) if it is a disjuntion ofonjuntions of literals.DNF is like CNF, only with , and - exhanged.Espen H. Lian (I�, UiO) SAT and DPLL February 4, 2008 6 / 59Normal forms Normal formsExampleThe following formula expresses �P ,Q or R , S but not both.���P ,Q� - �R , S�� , � �P ,Q� -  �R , S��NNF: ��P ,Q� - �R , S�� , �� P -  Q� - � R -  S��CNF: �P -R� , �P - S� , �Q - R� , �Q - S� , � P -  Q -  R -  S�The NNF to CNF part is performed as follows.�P ,Q� - �R , S�� �P - �R , S�� , �Q - �R , S��� �P -R� , �P - S� , �Q - �R , S��� �P -R� , �P - S� , �Q -R� , �Q - S�Espen H. Lian (I�, UiO) SAT and DPLL February 4, 2008 7 / 59

Normal forms Normal formsSize inreaseRewriting a formula from DNF to CNF (or vie versa) may ause anexponential inrease in size.�P1 ,P2� - �P3 , P4� - �P5 , P6�On CNF: �P1 -P3 - P5� , �P1 -P3 - P6� ,�P1 -P4 - P5� , �P1 -P4 - P6� ,�P2 -P3 - P5� , �P2 -P3 - P6� ,�P2 -P4 - P5� , �P2 -P4 - P6�
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Normal forms Clauses and lause setsClauses and lause setsFor the sake of notational simpliity, instead of using formula on CNF, wewill use lause sets.A lause is a disjuntion of literals.A unit lause is a singleton lause.A lause set is a �nite set of lauses (interpreted onjuntively).We will represent non-empty lauses by the set of its literals using aProlog-like notation.L An empty lause is the empty disjuntion �.L x1 -� - xn is represented by the set �x1 . . . xn�, for n A 0 (n is thelength).L We will sometimes write �� for �.Observe that �� x g (see next foil).Espen H. Lian (I�, UiO) SAT and DPLL February 4, 2008 9 / 59

Normal forms Clauses and lause setsExampleSome lauses:1. �P  Q R�2. �P  P�3. ��, the empty lauseSome lause sets:1. ��P  Q R��2. ��P  P�, ��, �P  Q R��3. g, the empty lause set4. ����, the lause set ontaining exatly the empty lauseEspen H. Lian (I�, UiO) SAT and DPLL February 4, 2008 10 / 59Normal forms Clauses and lause setsValuationLet Γ be a lause set and C a lause.As lauses are disjuntions, it follows that they are valuated as follows.v�C� � 1 i� v�x� � 1 for some x > C .We will interpret lause sets onjuntively, ie.v�Γ� � 1 i� v�C� � 1 for every C > Γ.Observe thatL if C is empty, then v�C� � 0, whileL if Γ is empty, then v�Γ� � 1.Thus we may use lause sets to represent formula on CNF.Example:v���P  Q R�, � P  R��� � v��P -  Q -R� , � P -  R��Espen H. Lian (I�, UiO) SAT and DPLL February 4, 2008 11 / 59

Normal forms Clauses and lause setsSubsumptionLet C1 and C2 be lauses. If C1 b C2, we say that C1 subsumes C2.Lemma 2 (Subsumption)If C1 subsumes C2, then v�C1� � 1, then v�C2� � 1.Proof.L If v�C1� � 1, then v�x� � 1 for some x > C1.L If C1 b C2, then x > C2.L Thus v�C2� � 1.Example: à P a �P -Q� as �P� subsumes �P Q�.Espen H. Lian (I�, UiO) SAT and DPLL February 4, 2008 12 / 59



Normal forms Clauses and lause setsSubsumptionDe�ne Γx � �C 8 �x� SC > Γ�, ie. x is added to every lause.Example1. ��P Q�, � Q�, � P  Q��x � ��P Q x�, � Q x�, � P  Q x��.2. ��P Q�, � Q�, � P  Q��P � ��P Q�, �P  Q�, �P  P  Q��.3. ���x � ����x � ��x��.4. gx � g.Corollary 3 (of the Subsumption Lemma)If v�Γ� � 1, then v�Γx� � 1.Proof.Every lause in Γ subsumes one in Γx .Espen H. Lian (I�, UiO) SAT and DPLL February 4, 2008 13 / 59

Normal forms Clauses and lause setsSubsumptionA similar lemma for lause sets, only the other way as lause sets areinterpreted onjuntively and lauses disjuntively.Lemma 4Let Γ and ∆ be lause sets. If ∆ b Γ and v�Γ� � 1, then v�∆� � 1.Proof.L If v�Γ� � 1, then v�C� � 1 for every C > Γ.L If ∆ b Γ, then v�C� � 1 for every C > ∆.L Thus v�∆� � 1.Espen H. Lian (I�, UiO) SAT and DPLL February 4, 2008 14 / 59Normal forms Clauses and lause setsSome lemmataLet Γ and ∆ be lause sets and C a lause.L Γ, ∆ means Γ 8 ∆.L Γ,C means Γ 8 �C�.L We say that x ours in Γ if x > C for some C > Γ.Lemma 5Let Γ be a non-empty lause set without any ourene of x or x. If Γ issatis�able, there is some valuation v suh that v�Γ, �x�� � 1.
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Normal forms Clauses and lause setsSome lemmataLemma 6If v�x� � 1, then1. v�Γx� � 1.2. v�Γx� � v�Γ�.Proof.1. If v�x� � 1, thenL v�C 8 �x�� � 1 for any lause C ,. . .L . . . in partiular every one in Γ.L Thus v�Γx� � 1.2. Left as exerise.Espen H. Lian (I�, UiO) SAT and DPLL February 4, 2008 16 / 59



Normal forms Clauses and lause setsThe ore of DPLLThis lemma omes lose to the ore of DPLL.If we make x true, we an1. remove every lause ontaining x , and2. remove x from every lause ontaining it.Example 7Let Γ � ��P Q�, � P  Q�, �Q  R��.If v�P� � 1, then we an1. remove �P Q�, and2. remove  P from � P  Q�.In other words, v�Γ� � v��� Q�, �Q  R���.Espen H. Lian (I�, UiO) SAT and DPLL February 4, 2008 17 / 59

DPLLNormal formsDPLLComplexityDPLL ImplementationBibliography
Espen H. Lian (I�, UiO) SAT and DPLL February 4, 2008 18 / 59DPLL PreliminariesPreliminaries

The DPLL alulus operates not on general formulae but on a lause set Γ.We start by removing from ΓL any lause C suh that �x , x� b C for some x .This obviously does not a�et satis�ability.L If �x , x� b C , then v�C� � 1, thus v�Γ� � v�Γ � �C��.

Espen H. Lian (I�, UiO) SAT and DPLL February 4, 2008 19 / 59

DPLL The rulesThe rulesLet Γ, Λ and ∆ be lause sets without any ourene of x or x suh that Γand Λ are non-empty.De�nition 8An axiom is any lause set where the empty lause ours, ie. of the form�, ∆.Why are the axioms unsatis�able?L In terms of sequent alulus, that Γ is satis�able may be expressed as

Γ ~Ø � or Γ ~Ø g.L DPLL an be viewed as a left-alulus, ie. the right hand side of thesequent is empty.L Thus in sequent alulus terms, �, ∆ means �, ∆ Ø �, whih is valid.Espen H. Lian (I�, UiO) SAT and DPLL February 4, 2008 20 / 59



DPLL The rulesMonotone literal �xingIf it's the ase that some x ours in some lauses and x does not, we saythat x is monotone, and we make x true, beause this makes the lauses xours in true and does not a�et the other lauses.
∆ Mon

Γx , ∆This rule is sometimes alled the A�rmative-Negative Rule.Example:  Q is monotone.�P  Q R�, � P  R�, �P  R� Mon�P  Q R�, � P  R�, �P  R�Espen H. Lian (I�, UiO) SAT and DPLL February 4, 2008 21 / 59

DPLL The rulesUnit subsumptionIf it's the ase thatL the unit lause �x� ours,L x our in some other lauses, andL x ours in yet others,�x� subsumes the others where x ours.�x�, Λx , ∆ Sub�x�, Γx , Λx , ∆Example: �Q� subsumes � P Q�.�Q�, � P Q�, � P  Q�, �R� Sub�Q�, � P Q�, � P  Q�, �R�Espen H. Lian (I�, UiO) SAT and DPLL February 4, 2008 22 / 59DPLL The rulesUnit resolutionIf it's the ase thatL the unit lause �x� ours,L x does not our anywhere else butL x does,make x true.

Λ, ∆ Res�x�, Λx , ∆Example: �Q�, �P  Q�, � P  Q�, �R� Res�Q�, �P  Q�, � P  Q�, �R�Espen H. Lian (I�, UiO) SAT and DPLL February 4, 2008 23 / 59

DPLL The rulesSplitIf it's the ase thatL some x ours in some lauses, andL x ours in others,we an make two branhes: one where x is true and one where x is false.

Γ, ∆ Λ, ∆ Split

Γx , Λx , ∆Example: Split on P .�P  Q�, � P Q� �P  Q�,� P Q� Split�P  Q�, � P Q�Espen H. Lian (I�, UiO) SAT and DPLL February 4, 2008 24 / 59



DPLL ExamplesExample 1The following formula is valid.�P a �Q a R�� a ��P a Q� a �P a R��Its negation is equivalent to the following lause set.��P�, � R�, � P Q�, � P  Q R��We prove unsatis�ability using only Res.��P�, � R�, � P Q�, � P  Q R� Res�P�, � R�, � P Q�, � P  Q R� Res�P�, � R�, � P Q�, � P  Q R� Res�P�, � R�, � P Q�, � P  Q R�Espen H. Lian (I�, UiO) SAT and DPLL February 4, 2008 25 / 59

DPLL ExamplesExample 2
g Mon�P R�, �P  R� g Mon� R� Res� P�, �P  R� Split� P Q�, �P  Q R�, �P  R� Mon� P Q�, �P  Q R�, �Q S�, �P  R�

Espen H. Lian (I�, UiO) SAT and DPLL February 4, 2008 26 / 59DPLL Derived rulesDerivable rulesRes is, in fat super�uous, and an be derived from Split:��, ∆ Λ, ∆ Split�x�, Λx , ∆If we allow Γ and Λ to be empty, the following rule is alled Unitpropagation (on x).

Λ, ∆ Prop�x�, Γx , Λx , ∆It an be derived from the other rules.Espen H. Lian (I�, UiO) SAT and DPLL February 4, 2008 27 / 59

DPLL Derived rulesUnit propagationWe an derive Prop as follows.If Γ and Λ are non-empty:

Λ, ∆ Res�x�, Λx , ∆ Sub�x�, Γx , Λx , ∆If Λ � g, then Λx � g:
∆ Mon�x�, Γx , ∆If Γ � g, then Γx � g:
Λ, ∆ Res�x�, Λx , ∆Espen H. Lian (I�, UiO) SAT and DPLL February 4, 2008 28 / 59



DPLL TerminationTerminationLemma 9A maximal derivation ends in an axiom or g.Proof.Assume the opposite: that there is a maximal derivation whose leaf node Γis neither an axiom nor g.L Thus there is some x ourring in Γ.L If x does not our in Γ, Mon is appliable.L If x does our in Γ, Split (or in some ases Sub) is appliable.In either ase we get a ontradition, as the derivation is not maximal.Espen H. Lian (I�, UiO) SAT and DPLL February 4, 2008 29 / 59

DPLL TerminationTerminationTheorem 10 (Termination)Any proof attempt terminates.Proof.L Sub and Mon both redue the number of lauses.L Split redues the number of distint variables.L Both are �nite, thus we have termination.

Espen H. Lian (I�, UiO) SAT and DPLL February 4, 2008 30 / 59DPLL Soundness and ompletenessSoundness and ompletenessLemma 11 (Mon)

Γx , ∆ is satis�able i� ∆ is satis�able.Proof.Only if: Follows diretly from Lemma 4.If: Assume that ∆ is satis�able.L By Lemma 5, there is a v suh that v�∆� � v�x� � 1.L By Lemma 6(1), v�Γx� � 1.L Thus v�Γx , ∆� � 1.Espen H. Lian (I�, UiO) SAT and DPLL February 4, 2008 31 / 59

DPLL Soundness and ompletenessSoundness and ompletenessLemma 12 (Sub)�x�, Γx , Λx , ∆ is satis�able i� �x�, Λx , ∆ is satis�able.Proof.Only if: Follows diretly from Lemma 4.If: Follows from Lemma 6(1).Lemma 13 (Split)
Γx , Λx , ∆ is satis�able i� Γ, ∆ or Λ, ∆ are satis�able.Proof.Left as exerise.Espen H. Lian (I�, UiO) SAT and DPLL February 4, 2008 32 / 59



DPLL Soundness and ompletenessSoundness and ompletenessTheorem 14 (Soundness)If there exists a proof of Γ, then Γ is unsatis�able.Proof.We show this ontrapositively: if Γ is satis�able, then Γ is not provable.L Assume that Γ is satis�able.L Rules preserve satis�ability upwards.L Thus any derivation π has at least one satis�able leaf node Λ.L As axioms are unsatis�able, Λ is not an axiom, thus π is not aproof.Espen H. Lian (I�, UiO) SAT and DPLL February 4, 2008 33 / 59

DPLL Soundness and ompletenessSoundness and ompletenessTheorem 15 (Completeness)If Γ is unsatis�able, there exists a proof of Γ.Proof.We show this ontrapositively: if there exists no proof of Γ, then Γ issatis�able.L Assume that there exists no proof of Γ.L Then any maximal derivation has at least one open leaf node.L Termination lets us assume that a derivation is maximal, hene withan open leaf node g, whih is satis�able.L Rules preserve satis�ability downwards.L Thus Γ is satis�able.Espen H. Lian (I�, UiO) SAT and DPLL February 4, 2008 34 / 59ComplexityNormal formsDPLLComplexityDPLL ImplementationBibliography
Espen H. Lian (I�, UiO) SAT and DPLL February 4, 2008 35 / 59

Complexity NP-ompletenessNP-ompletenessThe �rst problem to be proven NP-omplete was SAT.Theorem 16 (Cook's Theorem)SAT is NP-omplete.Proof.Non-trivial. See [1℄ or [8℄.We know from the previous leture that propositional satis�ablity isNP-omplete.L NP-hardness: follows diretly from Cook's Theorem.L NP-membership: a non-deterministi mahine an guess a satisfyingvaluation and verify it in polynomial time.Espen H. Lian (I�, UiO) SAT and DPLL February 4, 2008 36 / 59



Complexity SizeSizeA problem is an instane of SAT, ie. a lause set. IfL the number of lauses is n,L there ours m distint propositional variables, andL every lause is of length B  ,the problem size is represented by the triplen �m �  .Example. The following problem has size 2 � 4 � 3.��P  Q R�, �Q R  S��Espen H. Lian (I�, UiO) SAT and DPLL February 4, 2008 37 / 59

Complexity Redution to CNFRedution to CNFAs mentioned, reduing a propositional formula to CNF an auseexponential inrease in size.A formula of the form �x1 , y1� -� - �xn , yn� redued to CNF has size2n � 2n � n,that is 2n lauses of length n.Example 17If n � 3, we get a 8 � 6 � 3 problem:�x1 - x2 - x3� , �x1 - x2 - y3� , �x1 - x3 - y2� , �x1 - y2 - y3� ,�x2 - x3 - y1� , �x2 - y1 - y3� , �x3 - y1 - y2� , �y1 - y2 - y3�But the reason for using DPLL in the �rst plae is e�etivity!Espen H. Lian (I�, UiO) SAT and DPLL February 4, 2008 38 / 59Complexity EquivaleneEquivaleneL Two formulae X and Y are equivalent ifv�X � � v�Y � for every valuation v .L Equivalene an be expressed in our logial language.L Let �X � Y � denote �X a Y � , �Y a X�.L So far we have redued a formula to an equivalent one on CNF:L X � Y , whereL X and Y are equivalent, andL Y is on CNF.L This, in fat, is not stritly neessary.Espen H. Lian (I�, UiO) SAT and DPLL February 4, 2008 39 / 59

Complexity Equisatis�abilityEquisatis�abilityL For our purposes, it su�es that X and Y are equisatis�able:X is satis�able i� Y is satis�able.L Until now, the proedure for generating input to DPLL has beenL X NNF��� Y CNF��� Z Clause���� Γ, whereL X , Y , Z and Γ are equivalent, andL Z may be exponentially larger than Y .L Our next approah is as follows.L X NNF��� Y Tseitin���� Γ, whereL Y and Γ are not equivalent, andL Γ is no more than polynomially larger than X .Espen H. Lian (I�, UiO) SAT and DPLL February 4, 2008 40 / 59



Complexity Tseitin enodingTseitin enodingProblem given an arbitrary formula on NNF, �nd an equisatis�ableformula on CNF (or the orresponding lause set).Solution Represent eah subformulae (exept for literals) with apropositional variable, reursively.Usually attributed to Tseitin [9℄.Example 18��P ,  Q� - R� has two non-literal subformulae, one of whih is itself.P1³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ��P ,  Q�´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶P2 -R�Espen H. Lian (I�, UiO) SAT and DPLL February 4, 2008 41 / 59

Complexity Tseitin enodingTseitin enodingL For eah new variable Pk , we generate a formula expressing that Pk isequivalent to the formula it represents:L �P1 � �P2 -R�� [not �P1 � ��P ,  Q� -R��℄L �P2 � �P ,  Q��L In addition we want the variable expressing the entire formula, in ourase P1 to be true.L Let φ denote the following onjuntion.P1 ,�P1 � �P2 - R�� ,�P2 � �P ,  Q��L Then φ is equisatis�able to ��P ,  Q� - R�.Espen H. Lian (I�, UiO) SAT and DPLL February 4, 2008 42 / 59Complexity Tseitin enodingTseitin enodingL In fat à φ a ��P ,  Q� - R�.L If v�φ� � 1, then v makes the three onjunts true:1. v�P1� � 12. v�P1 � �P2 - R�� � 1L Thus v�P1� � v�P2 - R� � 1.L Thus v�P2� � 1 or v�R� � 1.3. v�P2 � �P ,  Q�� � 1L Thus v�P2� � v�P ,  Q�.L If v�P2� � 1, then v�P ,  Q� � 1.L Hene v��P ,  Q� -R� � 1.L Obviously ~à ��P , Q�-R� a φ, as that would make them equivalent.Espen H. Lian (I�, UiO) SAT and DPLL February 4, 2008 43 / 59

Complexity Tseitin enodingTseitin enodingIn order to onvert φ to CNF, we use the following funtions.�x , y�P � �� P x�, � P y�, �P x y���x - y�P � ��P x�, �P y�, � P x y���x a y�P � ��P x�, �P y�, � P x y��Lemma 19 (Clause representation)�X �P is equivalent to �P � X �.Proof.Left as exerise.Espen H. Lian (I�, UiO) SAT and DPLL February 4, 2008 44 / 59



Complexity Tseitin enodingTseitin enodingUsing the lemma, φ is equivalent to�P1�, �P2 - R�P1 , �P ,  Q�P2whih again equals the lause set��P1�,�P1  P2�, �P1  R�, � P1 P2 R�,� P2 P�, � P2  Q�, �P2  P Q��.
Espen H. Lian (I�, UiO) SAT and DPLL February 4, 2008 45 / 59

Complexity Tseitin enodingTseitin enodingIs this any better than the original CNF translation?L We will use the number of binary onnetives (n) as a measure of thesize of our original formula on NNF.L We let m denote the number of distint propositional variables.L Then the size of the equisatis�able lause set generated is�3n � 1� � �m � n� � 3.L This, of ourse, gives just an estimate of the atual size of a problemwhen represented on a Turing mahine but this will in any ase bepolynomial.Espen H. Lian (I�, UiO) SAT and DPLL February 4, 2008 46 / 59DPLL ImplementationNormal formsDPLLComplexityDPLL ImplementationBibliography
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DPLL Implementation Pseudoode algorithmPseudoode algorithmDPLL an be implemented as follows, where DPLL�Γ� � true i� Γ issatis�able. pro LookAhead�Γ�while Γ ontains unit lause �x�perform unit propagation on xpro DPLL�Γ�LookAhead�Γ�if Γ � g return trueif � > Γ return falsex �� ChooseLiteral�Γ�return DPLL�Γ, �x�� or DPLL�Γ, �x��Espen H. Lian (I�, UiO) SAT and DPLL February 4, 2008 48 / 59



DPLL Implementation Jeroslow Wang heuristiJeroslow Wang heuristiL The only non-deterministi part is whih literal is hosen.L Piking the optimal literal is in general NP-hard and oNP-hard [7℄.L Thus it is harder than deiding satis�ability of the formula!L But there exists heuristis.L Let Γ�x� denote the subset of Γ where x ours.L Pik the x that maximizes w�Γ�x��, where w is the weight funtionw�Γ� � QkC1 n�Γ, k�2k ,and n�Γ, k� is the number of lauses in Γ of length k .L �Pik an x that ours in many short lauses.�Espen H. Lian (I�, UiO) SAT and DPLL February 4, 2008 49 / 59

DPLL Implementation Jeroslow Wang heuristiExample 2Let Γ � �� P Q�, �P  Q R�, �Q S�, �P  R��.What is DPLL�Γ�?L Γ ontains no unit lause.L We alulate w�Γ�x�� for eah x ourring in Γ.x  P P  Q Q  R R  S Sw�Γ�x�� 28 38 18 48 28 18 08 28L Q has the highest weight in Γ.L DPLL�Γ� is true if DPLL�Γ, �Q�� or DPLL�Γ, � Q�� are.Espen H. Lian (I�, UiO) SAT and DPLL February 4, 2008 50 / 59DPLL Implementation Jeroslow Wang heuristiExample 2L Unit propagation is performed on Γ, � Q�:�P R�, �P  R� Prop

Γ, �Q�L Let Γ� � ��P R�, �P  R��.x  P P  R Rw�Γ��x�� 04 24 14 14L P has the highest weight in Γ�.Espen H. Lian (I�, UiO) SAT and DPLL February 4, 2008 51 / 59

DPLL Implementation Jeroslow Wang heuristiExample 2L DPLL�Γ� is true ifL DPLL�Γ� , �P�� orL DPLL�Γ� , � P�� orL DPLL�Γ, � Q�� are.L Unit propagation is performed on Γ, �P�:g Prop� R� Prop
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DPLL Implementation MiniSATMiniSATMiniSAT won the following ategories at SAT Competition 2005:L Industrial SAT+UNSATL Industrial UNSATL Industrial SATL Crafted UNSATIt didn't do that well at SAT Competition 2007 though.We an try it on an 3358 � 1015 � 3 problem.
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DPLL Implementation MiniSATMiniSATvillasayas: MiniSat_v1.14> ./minisat ../DIMACS/par16-5.nf==================================[MINISAT℄===================================| Conflits | ORIGINAL | LEARNT | Progress || | Clauses Literals | Limit Clauses Literals Lit/Cl | |==============================================================================| 0 | 2218 6602 | 739 0 0 nan | 0.000 % || 102 | 2218 6602 | 812 102 953 9.3 | 38.227 % || 252 | 2218 6602 | 894 252 3313 13.1 | 38.227 % || 477 | 2218 6602 | 983 477 5729 12.0 | 38.227 % || 814 | 2218 6602 | 1081 814 9112 11.2 | 38.227 % || 1321 | 2218 6602 | 1190 1321 13584 10.3 | 38.227 % || 2081 | 2218 6602 | 1309 1292 10791 8.4 | 38.227 % || 3220 | 2220 6602 | 1440 1576 12234 7.8 | 38.227 % |==============================================================================restarts : 8onflits : 4670 (11121 /se)deisions : 4911 (11695 /se)propagations : 1075868 (2561981 /se)onflit literals : 39668 (36.40 % deleted)Memory used : 2.97 MBCPU time : 0.419936 sSATISFIABLEvillasayas: MiniSat_v1.14>Espen H. Lian (I�, UiO) SAT and DPLL February 4, 2008 54 / 59BibliographyNormal formsDPLLComplexityDPLL ImplementationBibliography
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