. research laboratory |

Testing Object-Oriented
Software

Class Testing

© Lionel Briand 2010

| simula.research laboratory |

Class Testing

* Introduction

» Accounting for Inheritance

+ Testing Method Sequences

+ State-Based Testing

+ Testability for State-based Testing
+ Test Drivers, Oracles, and Stubs

© Lionel Briand 2010

. research laboratory |

Motivations

*+ Object-orientation helps analysis and
design of large systems

* But, based on existing data, it seems that
more, not less, testing is needed for OO
software

» OO0 software has specific constructs that
we heed to account for during testing

» Unit/Component and Integration testing
are especially affected as they are more
driven by the structure of the software
under test

© Lionel Briand 2010

. research laboratory |

Class vs. Procedure Testing

* Procedural programming

- basic component: function (procedure)

- testing method: based on input/output relation

+ Object-oriented programming

- basic component: class = data members (state) +
set of operations

- objects (instances of classes) are tested

- correctness cannot simply be defined as an
input/output relation, but must also include the
object state.

*+ The state may not be directly accessible, but can
normally be accessed using public class operations

4
© Lionel Briand 2010

. research laboratory |

Example

class Watcher { + Testing method checkPressure()
private: in isolation is Meaningless.

- Generating test data

int status; .
- Measuring coverage

public: » Creating oracles is more
void checkPressure () { dlfflCUH'
- the value produced by
if (status == 1) method check_pressure
depends on the state of class
else 1f (status ..) Watcher's instances

(variable Status)

- failures due to incorrect
values of variable Status can
be revealed only with tests
that have control and
visibility on that variable

5
© Lionel Briand 2010

. research laboratory |

New Abstraction Levels

Functions (subroutines) are the basic units in
procedural software

- Classes introduce a new abstraction level:

- Basic unit testing: the testing of a single
operation (method) of a class (intfra-method
testing)

- Unit testing: the testing of a class (intra-class
testing)

- Integration testing. the testing of interactions

among classes (inter-class testing), related

through dependencies, i.e., associations,
aggregations, specialization

© Lionel Briand 2010

. research laboratory |

New Faults Models

Wrong instance of method inherited in the
presence of multiple inheritance

Wrong redefinition of an attribute / data member

Wrong instance of the operation called due to
dynamic binding and type errors

We lack statistical information on frequency of
errors and costs of detection and removal.

* New fault models are vital for defining testing
methods and techniques targeting OO specific
faults

© Lionel Briand 2010

. research laboratory |

Structural Testing in OO

Context

* In OO systems, most methods contain a
few LOCs - complexity lies in method
interactions

* Method behavior is meaningless unless
analyzed in relation to other operations and
their joint effect on a shared state (data
member values)

» It is claimed that any significant unit to be
tested cannot be smaller than the
instantiation of one class

© Lionel Briand 2010

. research laboratory

Testing 'and Inheritance

* Modifying a superclass

- We have to retest its subclasses (expected)

» Add a subclass (or modify an existing subclass)

- We may have to retest the methods inherited from each if
its ancestor superclasses

* Reason: Subclasses provide new context for the inherited

methods

* No problems if the new subclass is a pure extension of the

superclass
Pure Extension of superclasses:

- Tt adds new instance variables and methods and there are
no interactions in either directions between the new
instance variables and methods and any inherited instance
variables and methods

- Example of interaction: a superclass and one of its
subclass initialize a variable to different values in two
distinct methods, one in the superclass and one in the

subclass 9
© Lionel Briand 2010

. research laboratory |

Inheritance: Example I (1)

class refrigerator {
public:
vold set desired temperature (int temp);
int get temperature();
vold calibrate () ;
private:
int temperature;

s

« set desired temperature allows the temperature to be
between 5 C and 20 C centigrade.

« calibrate puts the actual refrigerator through cooling

cycles and uses sensor readings to calibrate the cooling unit.

© Lionel Briand 2010

10

[. research laboratory |

Inheritance: Example I (2)

* A new more capable model of refrigerator
is created and can cool to - 5 C centigrade

* Class better refrigerator and a new
version of set desired temperature

* Method calibrate is unchanged
+ Should

better refrigerator::calibrate be
re-tested? It has the exact same codel

11
© Lionel Briand 2010

. research laboratory |

Inheritance: Example I (3)

* Yes, it has to be re-tested
+ Suppose that calibrate works by dividing sensor

readings by temperature

+ What if temperature = 0?
* That's possible in better refrigerator
» Will cause a divide by O failure which cannot

happen in refrigerator

12
© Lionel Briand 2010

. research laboratory |

Overriding of Methods

» OO languages allow a subclass to replace an
inherited method with a method of the same name

* The overriding subclass method has to be tested

+ But different test sets are needed! (though the
intersection may be large)

* Reason 1: If test cases are derived from program
structure (data and control flow), the structure of
the overriding method may be different

* Reason 2: The overriding method behavior is also
likely to be different

13
© Lionel Briand 2010

[. research laboratory |

Integration and Polymorphism

message

1 test set

message

£>f o

B C E

9 test sets

message
A =,
I /Al/v
B C
3 test sets
message(X
A = » D X
| A | | A | A |
B C E F Z
27 test sets
14

© Lionel Briand 2010

| simula.research laboratory]

Class Testing

* Introduction

» Accounting for Inheritance

+ Testing Method Sequences

+ State-Based Testing

+ Testability for State-based Testing
+ Test Drivers, Oracles, and Stubs

15
© Lionel Briand 2010

.research laboratory |

Example IT: Code

class Base {
. Base
public: fo0)
void foo () { .. helper(); ..} bar ()
. helper ()
volid bar () { .. helper(); ..} AN
private:
virtual void helper () {..} Derived
}; helper ()

class Derived : public Base {

private:
virtual void helper () {..}
i
volid test driver() {

Base base;

Derived derived;

base.foo () ; // Test case 1
derived.bar(); // Test case 2

© Lionel Briand 2010

. research laboratory |

Example IT: Discussion

- Test case 1. Invokes Base: : foo () which in turns

call Base: :helper ()

- Test case 2: The inherited method Base: :bar ()

is invoked on the derived object, which in turns
calls helper () on the derived object, invoking
Derived: :helper ()

Assuming all methods contain linear control flow
only, do the test cases fully exercise the code of
both Base and Derived?

- Traditional coverage measures (e.g., statements,

control flow) would answer yes

17
© Lionel Briand 2010

. research laboratory |

Example II: Missed
anything?

We have not fully tested interactions between
Base and Derived
— Base::bar () and Base::helper ()

— Base::foo () and Derived: :helper ()

- It is not because Base::foo () works with

Base::helper () that it will automatically with
Derived: :helper ()

- We need to exercise foo () and bar () for both

the base and derived class

18
© Lionel Briand 2010

. research laboratory |

Example IT: New Test
Driver

volid better test driver () {
Base base;
Derived derived;
base.foo ()
derived.foo ()
base.bar () ;

derived.bar () ;

You can see why inheritance has to be used with care - it leads
to more testing

19
© Lionel Briand 2010

. research laboratory |

Hierarchical Incremental
Testing

Aims at testing inheritance hierarchies (Harrold,
McGreggor, IEEE ICSE proceedings,1992)

Step I. Test all methods fully in the context of a particular
class (base class or a derived class for abstract base
classes)

Step 2, Interaction coverage: Any methods which are
inherited by a derived class and which interact with any re-
defined methods (or new methods through inherited
attributes) should be re-tested in the context of the
derived class

Re-run all the base class test cases (e.g., based on 100%
edge coverage requirements) in the context of the derived
class by which it is inherited

This reduces the cost of testing inherited methods in
several contexts and help check the conformance of

inheritance hierarchies to the Liskov substitution principle,,
© Lionel Briand 2010

. research laboratory |

Liskov Substitution Principle

» This principle defines the notions of generalization /

specialization in a formal manner

» Class S is correctly defined as a specialization of class T if

the following is true:

for each object s of class S there is an object t of T lk— P
class T such that the behavior of any program P zlx
defined in ferms of T is unchanged if s is

substituted for t. S

+ Sis asaid to be a subtype of T
- All instances of a subclass can stand for instances of a

superclass without any effect on client classes

» Any future extension (new subclasses) will not affect existing

clients.

21
© Lionel Briand 2010

.research laboratory |

Lack of Substitutability

class Rectangle : public Shape { class Square : public Rectangle {
private: int w, h; public:
public: void set width(int w) {
virtual void set width(int wi) { Rectan&le::set_height(w);
w=wi; Rectangle::set width (w);
} }
virtual void set height (int he) { void set height (int h) {
h=he; set width(h);
} }
} }

void foo (Rectangle *r) { // This is the client
r->set width(5);
r->set height (4);
assert ((r->get width () *r->get height()) == 20); // Oracle

If ris instantiated at run time with instance of square, behavior observed by
client is different (width*height == 16)

May lead to problems

* Square should be defined as subclass of Shape, not Rectangle

. : 22
© Lionel Briand 2010

. research laboratory |

Rules

Signature Rule: The subtypes must have all the methods of
the supertype, and the signatures of the subtypes methods
must be compatible with the signatures of the corresponding
supertypes methods

In Java, this is enforced as the subtype must have all the
supertype methods, with identical signatures except that a
subtype method can have fewer exceptions (compatibility
stricter than necessary here)

Method Rule: Calls on these subtype methods must "behave
like" calls o the corresponding supertype methods.

Properties Rule: The subtype must preserve the properties
(invariant) of the supertype.

. : 23
© Lionel Briand 2010

.research laboratory |
Contracts - Definitions

Goals: Specify operations so that caller/client and callee/
server operations share the same assumptions

A contract specifies constraints that the caller must meet
before using the class as well as the constraints that are
ensured by the callee when used.

Three types of constraints involved in contracts: Invariant
(class), Precondition, postcondition (operations)

Contracts should be specified, for known operations, at the
Analysis & design stages

In UML, a language has been defined for that purpose: The
Object Constraint Language (OCL)

JML is available to define contracts within Java programs
that can be checked at run time (http://en.wikipedia.org/
wiki/Java_Modeling_Language)

_ , 24
© Lionel Briand 2010

. research laboratory |

Class Invariant

Condition that must always be met by all instances of a class

Described using that an expression that evaluates to true if
the invariant is met

Invariants must be true all the time, except during the
execution of an operation where the invariant can be
temporarily violated.

A violated invariant suggests an illegal system state

SavingsAccount

Context SavingsAccount inv:

balance self.balance > 0 and self.balance < 25000
{balance>0 and
balance<250000}

25

© Lionel Briand 2010

. research laboratory |

Operation Pre and Post
Conditions

* Pre-condition: What must be true before executing an

operation

* Post-condition: Assuming the pre-condition is true, what should

be true about the system state and the changes that occurred
after the execution of the operation

» These conditions have to be written as logical (Boolean)

expressions

» Thus, operations are treated as black boxes. Nothing is said

about operations’ intfermediate states and algorithmic details

* If the pre- and post-conditions are satisfied, then the class

invariant must be preserved

Befo re> > After

Precondition Postcondition
(what must be true before) (change that has occurred)

. : 26
© Lionel Briand 2010

. research laboratory |

Design by Contract

put (element: T, key: STRING)

Contractor

—-— 1insert element x with given key

Obligations

Benefits

Call put only on a

Get modified table

Client i in which x is
non-full table associated with key
Insert x so that it Nho need to d‘:}?' with
Contractor| may be retrieved | th€ case in which the

through key

table is full before
insertion

© Lionel Briand 2010

27

| simula . research laboratory |
Specifying Contracts

. Specify the requirements of system operation in terms of
inputs and system state (Pre-condition)

. Specify the effects of system operations in terms of state
changes and output (Post-condition)

. The state of the system 1s represented by the state of objects
and the relationships (links) between them

. A system operation may
create a new instance of a class or delete an existing one
echange an attribute value of an existing object
*add or delete links between objects

*send an event/message to an object

. . 28
© Lionel Briand 2010

. research laboratory |

Method Rule

Rule can be expressed in pre- and post-conditions

The precondition is weakened

- Weakening the precondition implies that the subtype method
requires less from the caller

- If methods T::m() and S: :m () (overriding) have preconditions
PrCl and PrC2, respectively, PrCl = PrC2
The postcondition is strengthened

- Strengthening means the subtype method returns more
than the supertype method

- If methods T::m() and S::m() (overriding) have
postconditions PoC1 and PoC2, respectively, (PrCl ~ PoC2)
= PoCl

» The calling code depends on the postcondition of the
supertype method, but only if the precondition is satisfied

. : 29
© Lionel Briand 2010

. research laboratory |

IntSet

public class IntSet {
private Vector els; /// the elements
public IntSet () {..}

// Post: Initializes this to be empty
public void insert (int x) {..}

// Post: Adds x to the elements of this
public void remove (1nt x) {..}

// Post: Remove x from the elements of this
public boolean 1sIn (int x) {..}

//Post: If x is in this returns true else returns false
public int size () {..}

//Post: Returns the cardinality of this
public boolean subset (IntSet s) {..}

//Post: Returns true if this is a subset of s else returns false

© Lionel Briand 2010

30

.research laboratory |

Postconditions: MaxIntSet

public class MaxIntSet extends IntSet {
private int biggest; // biggest element if set not empty
public maxIntSet () {..} // call super ()
public max () throws EmptyException {..} // new method
public void insert (int x) {..}

// overrides InSet::insert ()

//Additional Post: update biggest with x if x > biggest
public void remove (int x) {..}

// overrides InSet::remove ()

//Additional Post: update biggest with next biggest
element in this i1f x = biggest

31
© Lionel Briand 2010

.research laboratory |

Preconditions: LinkedList &
Set

/** Adds an element to the end of the list

public class LinkedList {

* PRE: element != null

* POST: this.getLength() == old.getLength() + 1
* && this.contains (element) == true

*/

public void addElement (Object element) { ... }

public class Set extends LinkedList {

/** Adds element, provided element is not already in the set

* PRE: element != null && this.contains(element) == false
* POST: this.getLength() == old.getLength() + 1

* && this.contains (element) == true

*/

public void addElement (Object element) { ... }

. : 32
© Lionel Briand 2010

. research laboratory |

Properties Rule

* All methods of the subtype must preserve
the invariant of the supertype

* The invariant of the subtype must imply
the invariant of the supertype

»+ Assume FatsSet is a set of integers whose
size is always at least 1. The constructor
and remove methods ensure this.

ThinSet is also a set of integers but can
be empty and therefore cannot be a legal
subtype of FatSet

33
© Lionel Briand 2010

. research laboratory |

InSet, MaxInSet

Invariant of Intset, for any instance 1 :
i.els != null and
all elements of i.els are Integers and
there are no duplicates in i.els

Invariant of MaxIntSet, for any instance 1 :
invariant of InSet and
i.size > 0 and
for all integers x inels, x <= i.biggest

The invariant of MaxInSet includes the invariant
of InSet and therefore implies it.

We comply with the property rule.

_ , 34
© Lionel Briand 2010

. research laboratory |

Hierarchical Incremental
Testing (IT)

Assuming C is the base class and D a subclass of C
Override in D a method in C but no change in specification

- Reuse all the inherited specification-based test cases

O —D O

- But will need to review implementation-based test cases to meet the

test criterion for coverage
Change in D the specification of an operationin C:

- Additional test cases to exercise new input conditions (weakened
precondition) and check new expected results (strengthened
postcondition)

- Test cases for C still apply
- Refine oracle (strengthened postcondition)
New operations introduce new functionality and code to test

New attributes are added in connection with new or overridden operations -
this may lead to re-testing inherited methods

New class invariant: All test cases need to be rerun to verify the new
invariant holds

. : 35
© Lionel Briand 2010

. research laboratory |

Inheritance Context
Coverage

Extend the interpretation of traditional structural
coverage measures

+ Consider the level of coverage in the context of

each class as separate measurements

100% inheritance context coverage requires the
code must be fully exercised (for any selected
criteria, e.g., all edges) in each appropriate
context

Appropriate contexts can be determined using the
HIT principles seen before

. : 36
© Lionel Briand 2010

