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Class Testing 

•  Introduction 
•  Accounting for Inheritance 
•  Testing Method Sequences 
•  State-Based Testing 
•  Testability for State-based Testing 
•  Test Drivers, Oracles, and Stubs 
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Motivations 
•  Object-orientation helps analysis and 

design of large systems 
•  But, based on existing data, it seems that 

more, not less,  testing is needed for OO 
software 

•  OO software has specific constructs that 
we need to account for during testing 

•  Unit/Component and Integration testing 
are especially affected as they are more 
driven by the structure of the software 
under test 
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Class vs. Procedure Testing 
•  Procedural programming 

– basic component: function (procedure) 
– testing method: based on input/output relation 

•  Object-oriented programming 
– basic component: class = data members (state) + 

set of operations 
– objects (instances of classes) are tested 
– correctness cannot simply be defined as an 

input/output relation, but must also include the 
object state. 

•  The state may not be directly accessible, but can 
normally be accessed using public class operations 



© Lionel Briand 2010 
5 

Example 
class Watcher { 
private: 
… 
int status; 
… 

public: 
void checkPressure() { 
… 
if (status == 1) 
… 

else if (status …) 
… 

} 
… 

} 

•  Testing method checkPressure() 
in isolation is Meaningless.  
–  Generating test data  
–  Measuring coverage 

•  Creating oracles is more 
difficult  
–  the value produced by 

method check_pressure 
depends on the state of class 
Watcher’s instances 
(variable Status)  

–  failures due to incorrect 
values of variable Status can 
be revealed only with tests 
that have control and 
visibility on that variable 
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New Abstraction Levels 
•  Functions (subroutines) are the basic units in 

procedural software 
•  Classes introduce a new abstraction level: 

– Basic unit testing: the testing of a single 
operation (method) of a class (intra-method 
testing) 

– Unit testing: the testing of a class (intra-class 
testing) 

•  Integration testing: the testing of interactions 
among classes (inter-class testing), related 
through dependencies, i.e., associations, 
aggregations, specialization 
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New Faults Models 
•  Wrong instance of method inherited in the 

presence of multiple inheritance 
•  Wrong redefinition of an attribute / data member 
•  Wrong instance of the operation called due to 

dynamic binding and type errors 
•  We lack statistical information on frequency of 

errors and costs of detection and removal. 
•  New fault models are vital for defining testing 

methods and techniques targeting OO specific 
faults 
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Structural Testing in OO 
Context 

•  In OO systems, most methods contain a 
few LOCs – complexity lies in method 
interactions 

•  Method behavior is meaningless unless 
analyzed in relation to other operations and 
their joint effect on a shared state (data 
member values) 

•  It is claimed that any significant unit to be 
tested cannot be smaller than the 
instantiation of one class 
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Testing and Inheritance 
•  Modifying a superclass  

– We have to retest its subclasses (expected) 
•  Add a subclass (or modify an existing subclass) 

– We may have to retest the methods inherited from each if 
its ancestor superclasses 

•  Reason: Subclasses provide new context for the inherited 
methods 

•  No problems if the new subclass is a pure extension of the 
superclass 

 Pure Extension of superclasses:  
–  It adds new instance variables and methods and there are 

no interactions in either directions between the new 
instance variables and methods and any inherited instance 
variables and methods 

– Example of interaction: a superclass and one of its 
subclass initialize a variable to different values in two 
distinct methods, one in the superclass and one in the 
subclass 
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Inheritance: Example I (1) 
class refrigerator { 
public: 

void set_desired_temperature(int temp); 
int get_temperature(); 
void calibrate(); 

private: 
int temperature; 

}; 

• set_desired_temperature allows the temperature to be 
between 5 C and 20 C centigrade.  

• calibrate puts the actual refrigerator through cooling 
cycles and uses sensor readings to calibrate the cooling unit. 
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Inheritance: Example I (2) 
•  A new more capable model of refrigerator 

is created and can cool to – 5 C centigrade 
•  Class better_refrigerator and a new 

version of set_desired_temperature 
•  Method calibrate is unchanged 
•  Should  
better_refrigerator::calibrate be 
re-tested? It has the exact same code! 



© Lionel Briand 2010 
12 

Inheritance: Example I (3) 
•  Yes, it has to be re-tested 
•  Suppose that calibrate works by dividing sensor 

readings by temperature 
•  What if temperature = 0? 
•  That’s possible in better_refrigerator 
•  Will cause a divide by 0 failure which cannot 

happen in refrigerator 
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Overriding of Methods 
•  OO languages allow a subclass to replace an 

inherited method with a method of the same name 
•  The overriding subclass method has to be tested 
•  But different test sets are needed! (though the 

intersection may be large) 
•  Reason 1: If test cases are derived from program 

structure (data and control flow), the structure of 
the overriding method may be different 

•  Reason 2: The overriding method behavior is also 
likely to be different 
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Integration and Polymorphism 
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Class Testing 

•  Introduction 
•  Accounting for Inheritance 
•  Testing Method Sequences 
•  State-Based Testing 
•  Testability for State-based Testing 
•  Test Drivers, Oracles, and Stubs 
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Example II: Code 
class Base  { 
 public: 
  void foo()  { … helper(); …} 
  void bar()  { … helper(); …} 
 private: 
  virtual void helper()  {…} 

}; 
class Derived : public Base { 
 private: 
  virtual void helper()  {…} 

}; 
void test_driver()  { 
  Base base; 
  Derived derived; 
  base.foo();  // Test case 1 
  derived.bar(); // Test case 2 

} 

Base 

foo() 
bar() 
helper() 

Derived 

helper() 
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Example II: Discussion 
•  Test case 1: Invokes Base::foo() which in turns 

call Base::helper()  
•  Test case 2: The inherited method Base::bar() 

is invoked on the derived object, which in turns 
calls helper() on the derived object, invoking 
Derived::helper() 

•  Assuming all methods contain linear control flow 
only, do the test cases fully exercise the code of 
both Base and Derived? 

•  Traditional coverage measures (e.g., statements, 
control flow) would answer yes 
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Example II: Missed 
anything? 

•  We have not fully tested interactions between 
Base and Derived 
–  Base::bar() and Base::helper() 
–  Base::foo() and Derived::helper() 

•  It is not because Base::foo() works with 
Base::helper() that it will automatically with 
Derived::helper() 

•  We need to exercise foo() and bar() for both 
the base and derived class 
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Example II: New Test 
Driver 

void better_test_driver()  { 

  Base base; 

  Derived derived; 

  base.foo();   
  derived.foo();   

  base.bar();    

  derived.bar(); 

} 

You can see why inheritance has to be used with care – it leads 
to more testing! 
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Hierarchical Incremental 
Testing 

•  Aims at testing inheritance hierarchies (Harrold, 
McGreggor, IEEE ICSE proceedings,1992) 

•  Step 1: Test all methods fully in the context of a particular 
class (base class or a derived class for abstract base 
classes) 

•  Step 2, Interaction coverage: Any methods which are 
inherited by a derived class and which interact with any re-
defined methods (or new methods through inherited 
attributes) should be re-tested in the context of the 
derived class 

•  Re-run all the base class test cases (e.g., based on 100% 
edge coverage requirements) in the context of the derived 
class by which it is inherited 

•  This reduces the cost of testing inherited methods in 
several contexts and help check the conformance of 
inheritance hierarchies to the Liskov substitution principle 
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Liskov Substitution Principle 
•  This principle defines the notions of generalization / 

specialization in a formal manner 
•  Class S is correctly defined as a specialization of class T if 

the following is true: 
for each object s of class S there is an object t of
 class T such that the behavior of any program P
 defined in terms of T is unchanged if s is
 substituted for t. 

T 

S 

P 

•  S is a said to be a subtype of T 
•  All instances of a subclass can stand for instances of a

 superclass without any effect on client classes 
•  Any future extension (new subclasses) will not affect existing

 clients.  
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Lack of Substitutability 
class Rectangle : public Shape {  
private: int w, h;  
public:  

virtual void set_width(int wi) { 
w=wi;  

}  
virtual void set_height(int he) { 

h=he;  
}  

}  

class Square : public Rectangle {  
public:  

void set_width(int w) { 
Rectangle::set_height(w);  
Rectangle::set_width(w);  

}  
void set_height(int h) { 

set_width(h);  
}  

} 

void foo(Rectangle *r) { // This is the client 
r->set_width(5);  
r->set_height(4);  
assert((r->get_width()*r->get_height()) == 20); // Oracle  

} 

•  If r is instantiated at run time with instance of square, behavior observed by
 client is different (width*height == 16) 

•  May lead to problems 
•  Square should be defined as subclass of Shape, not Rectangle 
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Rules 
•  Signature Rule: The subtypes must have all the methods of 

the supertype, and the signatures of the subtypes methods 
must be compatible with the signatures of the corresponding 
supertypes methods 

•  In Java, this is enforced as the subtype must have all the 
supertype methods, with identical signatures except that a 
subtype method can have fewer exceptions (compatibility 
stricter than necessary here) 

•  Method Rule: Calls on these subtype methods must “behave 
like” calls to the corresponding supertype methods. 

•  Properties Rule: The subtype must preserve the properties 
(invariant) of the supertype.  
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Contracts - Definitions 
•  Goals: Specify operations so that caller/client and callee/

server operations share the same assumptions 
•  A contract specifies constraints that the caller must meet 

before using the class as well as the constraints that are 
ensured by the callee when used.  

•  Three types of constraints involved in contracts: Invariant 
(class), Precondition, postcondition (operations) 

•  Contracts should be specified, for known operations, at the 
Analysis & design stages 

•  In UML, a language has been defined for that purpose: The 
Object Constraint Language (OCL) 

•  JML is available to define contracts within Java programs 
that can be checked at run time (http://en.wikipedia.org/
wiki/Java_Modeling_Language) 
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Class Invariant 
•  Condition that must always be met by all instances of a class 
•  Described using that an expression that evaluates to true if 

the invariant is met 
•  Invariants must be true all the time, except during the 

execution of an operation where the invariant can be 
temporarily violated. 

•  A violated invariant suggests an illegal system state 

SavingsAccount 

balance 
{balance>0 and  
balance<250000} 

Context SavingsAccount inv: 
self.balance > 0 and self.balance < 25000 



© Lionel Briand 2010 
26 

Operation Pre and Post 
Conditions 

•  Pre-condition: What must be true before executing an 
operation 

•  Post-condition: Assuming the pre-condition is true, what should 
be true about the system state and the changes that occurred 
after the execution of the operation 

•  These conditions have to be written as logical (Boolean) 
expressions 

•  Thus, operations are treated as black boxes. Nothing is said 
about operations’ intermediate states and algorithmic details 

•  If the pre- and post-conditions are satisfied, then the class 
invariant must be preserved 

Before 

Postcondition 
(change that has occurred) 

Precondition 
(what must be true before) 

After 
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Design by Contract 
Contractor :: put (element: T, key: STRING) 

-- insert element x with given key 

Obligations Benefits 

Client 

Contractor 

Call put only on a  
non-full table 

Get modified table  
in which x is  
associated with key 

Insert x so that it  
may be retrieved   
through key 

No need to deal with  
the case in which the  
table is full before  
insertion 
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Specifying Contracts 
•  Specify the requirements of system operation in terms of
 inputs and system state (Pre-condition) 

•  Specify the effects of system operations in terms of state
 changes and output  (Post-condition) 

•  The state of the system is represented by the state of objects
 and the relationships (links) between them 

•  A system operation may 
• create a new instance of a class or delete an existing one 
• change an attribute value of an existing object 
• add or delete links between objects  
• send an event/message to an object 
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Method Rule 
Rule can be expressed in pre- and post-conditions 
•  The precondition is weakened 

–  Weakening the precondition implies that the subtype method 
requires less from the caller 

–  If methods T::m() and S::m() (overriding) have preconditions 
PrC1 and PrC2, respectively, PrC1 ⇒ PrC2 

•  The postcondition is strengthened 
–  Strengthening means the subtype method returns more 

than the supertype method 
–  If methods T::m() and S::m() (overriding) have 

postconditions PoC1 and PoC2, respectively, (PrC1 ^ PoC2) 
⇒ PoC1 

  The calling code depends on the postcondition of the 
supertype method, but only if the precondition is satisfied 
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IntSet 
public class IntSet { 
private Vector els; /// the elements 
public IntSet() {…} 

 // Post: Initializes this to be empty 
public void insert (int x) {…} 

 // Post: Adds x to the elements of this 
public void remove (int x) {…} 

 // Post: Remove x from the elements of this 
public boolean isIn (int x) {…} 

 //Post: If x is in this returns true else returns false 
public int size () {…} 

 //Post: Returns the cardinality of this 
public boolean subset (IntSet s) {…} 

 //Post: Returns true if this is a subset of s else returns false 
} 
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Postconditions: MaxIntSet 
public class MaxIntSet extends IntSet { 

private int biggest; // biggest element if set not empty 

public maxIntSet () {…} // call super() 
public max () throws EmptyException {…} // new method 

public void insert (int x) {…} 

 // overrides InSet::insert() 

 //Additional Post: update biggest with x if x > biggest 

public void remove (int x) {…} 

 // overrides InSet::remove() 

 //Additional Post: update biggest with next biggest 
element in this if x = biggest 

} 
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Preconditions: LinkedList & 
Set 

public class LinkedList {  
...  
/** Adds an element to the end of the list 
* PRE:  element != null  
* POST: this.getLength() == old.getLength() + 1  
*       && this.contains(element) == true  
*/  
public void addElement(Object element) { ... }  
...  

}  

public class Set extends LinkedList {  
...  
/** Adds element, provided element is not already in the set  
* PRE:  element != null && this.contains(element) == false  
* POST: this.getLength() == old.getLength() + 1  
*       && this.contains(element) == true  
*/  
public void addElement(Object element) { ... }  
...  

} 
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Properties Rule 
•  All methods of the subtype must preserve 

the invariant of the supertype 
•  The invariant of the subtype must imply 

the invariant of the supertype 
•  Assume FatSet is a set of integers whose 

size is always at least 1. The constructor 
and remove methods ensure this.  

•  ThinSet is also a set of integers but can 
be empty and therefore cannot be a legal 
subtype of FatSet 
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InSet, MaxInSet 
•  Invariant of IntSet, for any instance i : 

i.els != null and 
all elements of i.els are Integers and 
there are no duplicates in i.els 

•  Invariant of MaxIntSet, for any instance i : 
invariant of InSet and 
i.size > 0 and 
for all integers x in els, x <= i.biggest 

•  The invariant of MaxInSet includes the invariant 
of InSet and therefore implies it.  

•  We comply with the property rule. 
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Hierarchical Incremental 
Testing (II) 

•  Assuming C is the base class and D a subclass of C 
•  Override in D a method in C but no change in specification 

–  Reuse all the inherited specification-based test cases 
–  But will need to review implementation-based test cases to meet the 

test criterion for coverage 
•  Change in D the specification of an operation in C:  

–  Additional test cases to exercise new input conditions (weakened 
precondition) and check new expected results (strengthened 
postcondition) 

–  Test cases for C still apply  
–  Refine oracle (strengthened postcondition) 

•  New operations introduce new functionality and code to test 
•  New attributes are added in connection with new or overridden operations – 

this may lead to re-testing inherited methods 
•  New class invariant: All test cases need to be rerun to verify the new 

invariant holds 

C 

D 
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Inheritance Context 
Coverage 

•  Extend the interpretation of traditional structural 
coverage measures 

•  Consider the level of coverage in the context of 
each class as separate measurements 

•  100% inheritance context coverage requires the 
code must be fully exercised (for any selected 
criteria, e.g., all edges) in each appropriate 
context 

•  Appropriate contexts can be determined using the 
HIT principles seen before 


