
© Lionel Briand 2010
1

Testing Object-Oriented
Software
Class Testing

© Lionel Briand 2010
2

Class Testing

•  Introduction
•  Accounting for Inheritance
•  Testing Method Sequences
•  State-Based Testing
•  Testability for State-based Testing
•  Test Drivers, Oracles, and Stubs

© Lionel Briand 2010
3

Motivations
•  Object-orientation helps analysis and

design of large systems
•  But, based on existing data, it seems that

more, not less, testing is needed for OO
software

•  OO software has specific constructs that
we need to account for during testing

•  Unit/Component and Integration testing
are especially affected as they are more
driven by the structure of the software
under test

© Lionel Briand 2010
4

Class vs. Procedure Testing
•  Procedural programming

– basic component: function (procedure)
– testing method: based on input/output relation

•  Object-oriented programming
– basic component: class = data members (state) +

set of operations
– objects (instances of classes) are tested
– correctness cannot simply be defined as an

input/output relation, but must also include the
object state.

•  The state may not be directly accessible, but can
normally be accessed using public class operations

© Lionel Briand 2010
5

Example
class Watcher {
private:
…
int status;
…

public:
void checkPressure() {
…
if (status == 1)
…

else if (status …)
…

}
…

}

•  Testing method checkPressure()
in isolation is Meaningless.
–  Generating test data
–  Measuring coverage

•  Creating oracles is more
difficult
–  the value produced by

method check_pressure
depends on the state of class
Watcher’s instances
(variable Status)

–  failures due to incorrect
values of variable Status can
be revealed only with tests
that have control and
visibility on that variable

© Lionel Briand 2010
6

New Abstraction Levels
•  Functions (subroutines) are the basic units in

procedural software
•  Classes introduce a new abstraction level:

– Basic unit testing: the testing of a single
operation (method) of a class (intra-method
testing)

– Unit testing: the testing of a class (intra-class
testing)

•  Integration testing: the testing of interactions
among classes (inter-class testing), related
through dependencies, i.e., associations,
aggregations, specialization

© Lionel Briand 2010
7

New Faults Models
•  Wrong instance of method inherited in the

presence of multiple inheritance
•  Wrong redefinition of an attribute / data member
•  Wrong instance of the operation called due to

dynamic binding and type errors
•  We lack statistical information on frequency of

errors and costs of detection and removal.
•  New fault models are vital for defining testing

methods and techniques targeting OO specific
faults

© Lionel Briand 2010
8

Structural Testing in OO
Context

•  In OO systems, most methods contain a
few LOCs – complexity lies in method
interactions

•  Method behavior is meaningless unless
analyzed in relation to other operations and
their joint effect on a shared state (data
member values)

•  It is claimed that any significant unit to be
tested cannot be smaller than the
instantiation of one class

© Lionel Briand 2010
9

Testing and Inheritance
•  Modifying a superclass

– We have to retest its subclasses (expected)
•  Add a subclass (or modify an existing subclass)

– We may have to retest the methods inherited from each if
its ancestor superclasses

•  Reason: Subclasses provide new context for the inherited
methods

•  No problems if the new subclass is a pure extension of the
superclass

 Pure Extension of superclasses:
–  It adds new instance variables and methods and there are

no interactions in either directions between the new
instance variables and methods and any inherited instance
variables and methods

– Example of interaction: a superclass and one of its
subclass initialize a variable to different values in two
distinct methods, one in the superclass and one in the
subclass

© Lionel Briand 2010
10

Inheritance: Example I (1)
class refrigerator {
public:

void set_desired_temperature(int temp);
int get_temperature();
void calibrate();

private:
int temperature;

};

• set_desired_temperature allows the temperature to be
between 5 C and 20 C centigrade.

• calibrate puts the actual refrigerator through cooling
cycles and uses sensor readings to calibrate the cooling unit.

© Lionel Briand 2010
11

Inheritance: Example I (2)
•  A new more capable model of refrigerator

is created and can cool to – 5 C centigrade
•  Class better_refrigerator and a new

version of set_desired_temperature
•  Method calibrate is unchanged
•  Should
better_refrigerator::calibrate be
re-tested? It has the exact same code!

© Lionel Briand 2010
12

Inheritance: Example I (3)
•  Yes, it has to be re-tested
•  Suppose that calibrate works by dividing sensor

readings by temperature
•  What if temperature = 0?
•  That’s possible in better_refrigerator
•  Will cause a divide by 0 failure which cannot

happen in refrigerator

© Lionel Briand 2010
13

Overriding of Methods
•  OO languages allow a subclass to replace an

inherited method with a method of the same name
•  The overriding subclass method has to be tested
•  But different test sets are needed! (though the

intersection may be large)
•  Reason 1: If test cases are derived from program

structure (data and control flow), the structure of
the overriding method may be different

•  Reason 2: The overriding method behavior is also
likely to be different

© Lionel Briand 2010
14

Integration and Polymorphism
A	
 D	

message	

1 test set

A	

C	
B	

D	

message	

3 test sets

A	

C	
B	

D	

F	
E	

message	

9 test sets

X	

Z	
Y	

A	

C	
B	

D	

F	
E	

message(X)	

27 test sets

© Lionel Briand 2010
15

Class Testing

•  Introduction
•  Accounting for Inheritance
•  Testing Method Sequences
•  State-Based Testing
•  Testability for State-based Testing
•  Test Drivers, Oracles, and Stubs

© Lionel Briand 2010
16

Example II: Code
class Base {
 public:
 void foo() { … helper(); …}
 void bar() { … helper(); …}
 private:
 virtual void helper() {…}

};
class Derived : public Base {
 private:
 virtual void helper() {…}

};
void test_driver() {
 Base base;
 Derived derived;
 base.foo(); // Test case 1
 derived.bar(); // Test case 2

}

Base

foo()
bar()
helper()

Derived

helper()

© Lionel Briand 2010
17

Example II: Discussion
•  Test case 1: Invokes Base::foo() which in turns

call Base::helper()
•  Test case 2: The inherited method Base::bar()

is invoked on the derived object, which in turns
calls helper() on the derived object, invoking
Derived::helper()

•  Assuming all methods contain linear control flow
only, do the test cases fully exercise the code of
both Base and Derived?

•  Traditional coverage measures (e.g., statements,
control flow) would answer yes

© Lionel Briand 2010
18

Example II: Missed
anything?

•  We have not fully tested interactions between
Base and Derived
–  Base::bar() and Base::helper()
–  Base::foo() and Derived::helper()

•  It is not because Base::foo() works with
Base::helper() that it will automatically with
Derived::helper()

•  We need to exercise foo() and bar() for both
the base and derived class

© Lionel Briand 2010
19

Example II: New Test
Driver

void better_test_driver() {

 Base base;

 Derived derived;

 base.foo();
 derived.foo();

 base.bar();

 derived.bar();

}

You can see why inheritance has to be used with care – it leads
to more testing!

© Lionel Briand 2010
20

Hierarchical Incremental
Testing

•  Aims at testing inheritance hierarchies (Harrold,
McGreggor, IEEE ICSE proceedings,1992)

•  Step 1: Test all methods fully in the context of a particular
class (base class or a derived class for abstract base
classes)

•  Step 2, Interaction coverage: Any methods which are
inherited by a derived class and which interact with any re-
defined methods (or new methods through inherited
attributes) should be re-tested in the context of the
derived class

•  Re-run all the base class test cases (e.g., based on 100%
edge coverage requirements) in the context of the derived
class by which it is inherited

•  This reduces the cost of testing inherited methods in
several contexts and help check the conformance of
inheritance hierarchies to the Liskov substitution principle

© Lionel Briand 2010
21

Liskov Substitution Principle
•  This principle defines the notions of generalization /

specialization in a formal manner
•  Class S is correctly defined as a specialization of class T if

the following is true:
for each object s of class S there is an object t of
 class T such that the behavior of any program P
 defined in terms of T is unchanged if s is
 substituted for t.

T

S

P

•  S is a said to be a subtype of T
•  All instances of a subclass can stand for instances of a

 superclass without any effect on client classes
•  Any future extension (new subclasses) will not affect existing

 clients.

© Lionel Briand 2010
22

Lack of Substitutability
class Rectangle : public Shape {
private: int w, h;
public:

virtual void set_width(int wi) {
w=wi;

}
virtual void set_height(int he) {

h=he;
}

}

class Square : public Rectangle {
public:

void set_width(int w) {
Rectangle::set_height(w);
Rectangle::set_width(w);

}
void set_height(int h) {

set_width(h);
}

}

void foo(Rectangle *r) { // This is the client
r->set_width(5);
r->set_height(4);
assert((r->get_width()*r->get_height()) == 20); // Oracle

}

•  If r is instantiated at run time with instance of square, behavior observed by
 client is different (width*height == 16)

•  May lead to problems
•  Square should be defined as subclass of Shape, not Rectangle

© Lionel Briand 2010
23

Rules
•  Signature Rule: The subtypes must have all the methods of

the supertype, and the signatures of the subtypes methods
must be compatible with the signatures of the corresponding
supertypes methods

•  In Java, this is enforced as the subtype must have all the
supertype methods, with identical signatures except that a
subtype method can have fewer exceptions (compatibility
stricter than necessary here)

•  Method Rule: Calls on these subtype methods must “behave
like” calls to the corresponding supertype methods.

•  Properties Rule: The subtype must preserve the properties
(invariant) of the supertype.

© Lionel Briand 2010
24

Contracts - Definitions
•  Goals: Specify operations so that caller/client and callee/

server operations share the same assumptions
•  A contract specifies constraints that the caller must meet

before using the class as well as the constraints that are
ensured by the callee when used.

•  Three types of constraints involved in contracts: Invariant
(class), Precondition, postcondition (operations)

•  Contracts should be specified, for known operations, at the
Analysis & design stages

•  In UML, a language has been defined for that purpose: The
Object Constraint Language (OCL)

•  JML is available to define contracts within Java programs
that can be checked at run time (http://en.wikipedia.org/
wiki/Java_Modeling_Language)

© Lionel Briand 2010
25

Class Invariant
•  Condition that must always be met by all instances of a class
•  Described using that an expression that evaluates to true if

the invariant is met
•  Invariants must be true all the time, except during the

execution of an operation where the invariant can be
temporarily violated.

•  A violated invariant suggests an illegal system state

SavingsAccount

balance
{balance>0 and
balance<250000}

Context SavingsAccount inv:
self.balance > 0 and self.balance < 25000

© Lionel Briand 2010
26

Operation Pre and Post
Conditions

•  Pre-condition: What must be true before executing an
operation

•  Post-condition: Assuming the pre-condition is true, what should
be true about the system state and the changes that occurred
after the execution of the operation

•  These conditions have to be written as logical (Boolean)
expressions

•  Thus, operations are treated as black boxes. Nothing is said
about operations’ intermediate states and algorithmic details

•  If the pre- and post-conditions are satisfied, then the class
invariant must be preserved

Before

Postcondition
(change that has occurred)

Precondition
(what must be true before)

After

© Lionel Briand 2010
27

Design by Contract
Contractor :: put (element: T, key: STRING)

-- insert element x with given key

Obligations Benefits

Client

Contractor

Call put only on a
non-full table

Get modified table
in which x is
associated with key

Insert x so that it
may be retrieved
through key

No need to deal with
the case in which the
table is full before
insertion

© Lionel Briand 2010
28

Specifying Contracts
•  Specify the requirements of system operation in terms of
 inputs and system state (Pre-condition)

•  Specify the effects of system operations in terms of state
 changes and output (Post-condition)

•  The state of the system is represented by the state of objects
 and the relationships (links) between them

•  A system operation may
• create a new instance of a class or delete an existing one
• change an attribute value of an existing object
• add or delete links between objects
• send an event/message to an object

© Lionel Briand 2010
29

Method Rule
Rule can be expressed in pre- and post-conditions
•  The precondition is weakened

–  Weakening the precondition implies that the subtype method
requires less from the caller

–  If methods T::m() and S::m() (overriding) have preconditions
PrC1 and PrC2, respectively, PrC1 ⇒ PrC2

•  The postcondition is strengthened
–  Strengthening means the subtype method returns more

than the supertype method
–  If methods T::m() and S::m() (overriding) have

postconditions PoC1 and PoC2, respectively, (PrC1 ^ PoC2)
⇒ PoC1

  The calling code depends on the postcondition of the
supertype method, but only if the precondition is satisfied

© Lionel Briand 2010
30

IntSet
public class IntSet {
private Vector els; /// the elements
public IntSet() {…}

 // Post: Initializes this to be empty
public void insert (int x) {…}

 // Post: Adds x to the elements of this
public void remove (int x) {…}

 // Post: Remove x from the elements of this
public boolean isIn (int x) {…}

 //Post: If x is in this returns true else returns false
public int size () {…}

 //Post: Returns the cardinality of this
public boolean subset (IntSet s) {…}

 //Post: Returns true if this is a subset of s else returns false
}

© Lionel Briand 2010
31

Postconditions: MaxIntSet
public class MaxIntSet extends IntSet {

private int biggest; // biggest element if set not empty

public maxIntSet () {…} // call super()
public max () throws EmptyException {…} // new method

public void insert (int x) {…}

 // overrides InSet::insert()

 //Additional Post: update biggest with x if x > biggest

public void remove (int x) {…}

 // overrides InSet::remove()

 //Additional Post: update biggest with next biggest
element in this if x = biggest

}

© Lionel Briand 2010
32

Preconditions: LinkedList &
Set

public class LinkedList {
...
/** Adds an element to the end of the list
* PRE: element != null
* POST: this.getLength() == old.getLength() + 1
* && this.contains(element) == true
*/
public void addElement(Object element) { ... }
...

}

public class Set extends LinkedList {
...
/** Adds element, provided element is not already in the set
* PRE: element != null && this.contains(element) == false
* POST: this.getLength() == old.getLength() + 1
* && this.contains(element) == true
*/
public void addElement(Object element) { ... }
...

}

© Lionel Briand 2010
33

Properties Rule
•  All methods of the subtype must preserve

the invariant of the supertype
•  The invariant of the subtype must imply

the invariant of the supertype
•  Assume FatSet is a set of integers whose

size is always at least 1. The constructor
and remove methods ensure this.

•  ThinSet is also a set of integers but can
be empty and therefore cannot be a legal
subtype of FatSet

© Lionel Briand 2010
34

InSet, MaxInSet
•  Invariant of IntSet, for any instance i :

i.els != null and
all elements of i.els are Integers and
there are no duplicates in i.els

•  Invariant of MaxIntSet, for any instance i :
invariant of InSet and
i.size > 0 and
for all integers x in els, x <= i.biggest

•  The invariant of MaxInSet includes the invariant
of InSet and therefore implies it.

•  We comply with the property rule.

© Lionel Briand 2010
35

Hierarchical Incremental
Testing (II)

•  Assuming C is the base class and D a subclass of C
•  Override in D a method in C but no change in specification

–  Reuse all the inherited specification-based test cases
–  But will need to review implementation-based test cases to meet the

test criterion for coverage
•  Change in D the specification of an operation in C:

–  Additional test cases to exercise new input conditions (weakened
precondition) and check new expected results (strengthened
postcondition)

–  Test cases for C still apply
–  Refine oracle (strengthened postcondition)

•  New operations introduce new functionality and code to test
•  New attributes are added in connection with new or overridden operations –

this may lead to re-testing inherited methods
•  New class invariant: All test cases need to be rerun to verify the new

invariant holds

C

D

© Lionel Briand 2010
36

Inheritance Context
Coverage

•  Extend the interpretation of traditional structural
coverage measures

•  Consider the level of coverage in the context of
each class as separate measurements

•  100% inheritance context coverage requires the
code must be fully exercised (for any selected
criteria, e.g., all edges) in each appropriate
context

•  Appropriate contexts can be determined using the
HIT principles seen before

