
© Lionel Briand 2010
1

Testing Object-Oriented
Software
Class Testing

© Lionel Briand 2010
2

Class Testing
•  Introduction
•  Accounting for Inheritance
•  Testing Method Sequences

–  Data slices

–  Methods’ preconditions and postconditions
•  State-based Testing
•  Testability for State-based Testing
•  Test Drivers, Oracles, and Stubs

© Lionel Briand 2010
3

Motivations & Issues
•  Using Inheritance context coverage, control- and data-flow

techniques can be used to test methods - what about
classes?

•  It is argued that testing a class aims at finding the sequence
of operations for which a class will be in a state that is
contradictory to its invariant or what output is expected

•  Testing classes for all possible sequences is not usually
possible

•  The resources required to test a class increase exponentially
with the increase in the number of its methods

•  It is necessary to devise a way to reduce the number of
sequences and still provide sufficient confidence

© Lionel Briand 2010
4

Example
•  Coin box of a vending machine implemented in C++
•  The coin box has a simple functionality and the

code to control the physical device is omitted
•  It accepts only quarters and allows vending when

two quarters are received
•  It keeps track of total quarters received

(totalQrts) , the current quarters received
(curQrts), and whether vending is enabled
(allowVend)

•  Functions: adding a quarter, returning current
quarters, resetting the coin box to its initial
state, and vending

© Lionel Briand 2010
5

CCoinBox Code
class CCoinBox
{
 unsigned totalQtrs;
 unsigned curQtrs;
 unsigned allowVend;

public:
 Ccoinbox(){Reset();}
 void AddQtrs();
 void ReturnQtrs()
{curQtrs=0;}

 unsigned isAllowedVend()
{return allowVend;}

 void Reset() {
 totalQtrs = 0;
 allowVend = 0;
 curQtrs = 0;
 }
 void Vend();

};

void CCoinBox ::AddQtr()
{
 curQtrs = curQtrs + 1;
 if (curQtrs > 1)
 allowVend = 1;

}

void CCoinBox::Vend()
{
 if(isAllowedVend())
 {
 totalQtrs = totalQtrs + 2;
 curQtrs = curQtrs - 2;
 if (curQtrs < 2) allowVend=0;
 }

}

© Lionel Briand 2010
6

Statechart

Reset()

Functioning

AddQtr
ReturnQtr()

AddQtr()

ReturnQtr()

Vend()

Vend() CCoinBox()

Vend() [self.curQrts >= 4]

Vend()
[self.curQrts = 3]

ReturnQtr()

Vend() [self.curQrts = 2]

allowVend = 1 curQrts = 0

allowVend = 0 curQrts = 0 allowVend = 0 curQrts = 1

Vend()

allowVend = 1 curQrts:[2,M]

Statechart corresponding to the code, not fully specified
•  One corrupt state missing: allowVend =1 curQrts =1
•  One transition missing on state allowVend =1 curQrts=0 : AddQrts()
•  allowVend=0 curQrts=0: ReturnQrt() allowVend=1 curQrts:[2,M]: AddQrt

()

© Lionel Briand 2010
7

UML Statechart Transitions
– state transitions caused by events, enabled by

guard conditions

  have the following general form (all elements are
 optional)

event(arguments)!
[condition]!
^target.sendEvent(arguments)!
 /operation(arguments)!

event
name

guard

executed operation

trigger }
event dispatch

Engine Off
start [transmission= neutral]

Engine On

Reminder

© Lionel Briand 2010
8

Object-Oriented Class
Testing

•  Introduction
•  Accounting for Inheritance
•  Testing Method Sequences

–  Data slices

–  Methods’ preconditions and postconditions
•  State-based Testing
•  Testability for State-based Testing
•  Test Drivers, Oracles, and Stubs

© Lionel Briand 2010
9

Data Slices: Basic Principles
•  Goal: Reduce the number of method sequences to

test
•  The (concrete) state of an object at a single

instance of time is equivalent to the aggregated
state of each of its data members at that
instance

•  The correctness of a class depends on
–  Whether the data members are correctly

representing the intended state of an object
–  Whether the member functions are correctly

manipulating the representation of the object

© Lionel Briand 2010
10

Slice
•  A class can be viewed as a composition of slices
•  A slice is a quantum of a class with only a single

data member and a set of member functions such
that each member function can manipulate the
values associated with this data member

•  Bashir and Goel’s class testing strategy is to test
one slice at a time

•  For each slice, test possible sequences of the
methods belonging to that slice – equivalent to
testing a specific data member, i.e., class partial
correctness

•  Repeat for all slices to demonstrate class
correctness

© Lionel Briand 2010
11

Slice Formalism
–  A class K encapsulates a set of data elements and provides a

set of operations
•  K = <D(K), M(K)>
•  D(K) = {di | di @ K}
•  M(K) = {mi | mi @K}
(where @ denotes the relationship between a class and its

elements)
–  A Data Slice

•  Slicedi (K) =< di, Mdi(K) >
–  di ∈ D(K)
–  Mdi(K) = {mi | mi @@ di}
(where @@ denotes the usage relationship)

© Lionel Briand 2010
12

Issues
•  This is a code-based approach: Many

potential problems.
•  What if the code is faulty and a methods

that should access a data member does
not? Then sequences of methods that
interact through that data member won’t
be tested and the fault may remain
undetected

•  How to identify legal sequences of
methods?

•  What strategy to use when there is a
large, possibly infinite, number of legal
sequences?

© Lionel Briand 2010
13

Example C++ (I)

class SampleStatistic {
friend TestSS;

protected :
int n;
double x;
double x2;
double minValue, maxValue;

public :
sampleStatistic();
virtual ~SampleStatistic();
virtual void reset();

virtual void operator += (double);
int samples();
double mean();
double stdDev();
double var();
double min();
double max();
double confidence(int p_percentage);
double confidence (double p_value);
void error(cont char * msg);

};

•  Part of the GNU C++ library

© Lionel Briand 2010
14

SampleStatistic::mean() {
if (n>0)
return (x/n);

else
return (0.0);

}

SampleStatistic::operator+=(double
value){
n += 1;
x += value;
x2 += (value * value);
if(minValue > value)
minValue = value;

if(maxValue < value)
maxValue = value;

}

Example C++ (II)
double SampleStatistics::stdDev()
{
if (n<=0 || this->var()<=0)
return(0);

else
return (double)sqrt(var());

}

double SampleStatistics::var() {
if (n>1)
return ((x2 - ((x*x)/2)) / ()
n-1);

}

© Lionel Briand 2010
15

Generate MaDUM
•  MaDUM: Minimal Data Member Usage

Matrix
•  n*m matrix where n is the number of data

members and m represents the number of
member methods – it reports on the usage
of data members by methods

•  Different usages: reads, reports,
transforms

•  Account for indirect use of data members,
through intermediate member functions

© Lionel Briand 2010
16

Categorize Member
Functions

•  Categories: Constructors, Reporters, Transformers,
Others

•  Mdi(K) = {Rdi, C, Tdi, Odi},
–  Rdi = {rdi | rdi is a reporter method for data member

di}
–  C = {ci | ci is a constructor of class K}
–  Tdi = {mdi | mdi ∉ Rdi and mdi ∉ C and mdi → di}
–  Odi = {odi | odi @@ di and odi ∉ Rdi and odi ∉ C and odi ∉

Tdi}
•  Account for indirect use of data members, through

intermediate member functions

© Lionel Briand 2010
17

MaDUM for SampleStatistic
Sample
Statistic reset + = samples stdDev var min max

confi -
dence
(int)

confi -
dence
(dbl)

errormean

n

x

x2

min -
Value
max-
Value

t

t

t

t

t

t

t

t

t

t

r o

o

o o

o

o

r

r

o o

o

o

o

o

o

o

t

t

t

t

t

Matrix account for indirect use, through called methods
•  stdDev() does not directly access x and x2, but calls var() that does
•  All SampleStatistic() does is call reset()

© Lionel Briand 2010
18

Test Procedure

•  Classification of methods is used to
decide the test steps to be taken:

1.  Test reporters
2.  Test constructors
3.  Test transformers
4.  Test others

•  We would like to automate that
procedure to the extent possible

© Lionel Briand 2010
19

Test the Reporters

•  I would simply make sure that all
classes have get and set methods for
all their data members (standard
class interface)

•  Then I would systematically set and
get values of data members and
compare the input of the former with
the output of the latter.

© Lionel Briand 2010
20

Test the Constructors
•  Constructors initialize data members
•  You may have several per class
•  We test that

–  All data members are correctly initialized
–  All data members are initialized in correct

order
•  Run the constructor and append the reporter

method(s) for each data member
•  Verify if in correct initial state (state invariant)
•  Only one simple constructor in SampleStatistic

© Lionel Briand 2010
21

Test the Transformers
•  Rationale: Test interactions between methods
•  For each slice di

1.  Instantiate object under test with constructor (already
tested)

2.  Create sequences, e.g., all legal permutations of
methods in Tdi
•  Maximum # sequences: |C| * | Tdi|!
•  For example, if 7 member functions in Tdi , with one

constructor, this leads to 5040 possible
permutations!

•  Question: are permutations sufficient to test
interactions between methods ?

3.  Append the reporter method(s) (already tested)
•  If several control flow paths in member function:

All the paths where the slice di is being
manipulated must be executed

© Lionel Briand 2010
22

Test Others
•  They do not change the data member di
•  They do not report on the data member di
•  They may not even use the data member di
•  They may not use and change ANY data member
•  They should be tested as a stand-alone entity
•  Any standard test technique can be used (WB, BB,

Mutation)

© Lionel Briand 2010
23

CCoinBox Slices
•  Slice allowVend:

–  TallowVend(CCoinBox) = {Reset, AddQrt,
ReturnQrts,Vend}

•  Slice curQrts:
–  TcurQrts(CCoinBox) = {Reset, AddQrt,

ReturnQrts,Vend}
•  As a result of the fault, possibly important,

sequences would not have been tested
•  When the code is correct, both slices show

the same set of methods!

© Lionel Briand 2010
24

Discussions
•  Slicing may not be helpful for many classes (see

CCoinBox example)
•  # sequences may still be large
•  Many sequences may be impossible (illegal)
•  Automation? , e.g., oracle, impossible sequences
•  Are we missing many faults by testing slices

independently?, e.g., if faults lead to incorrectly
defined slices

•  Implicitly aimed at classes with no state-
dependent behavior? (transformers may need to
be executed several times to reach certain states
and reveal state faults)

© Lionel Briand 2010
25

Testing Derived Classes
•  When two classes are related through inheritance,

a class is derived from another class
•  The derived class may add facilities or modify the

ones provided by the base class – it inherits data
members and methods from its base class

•  Two extreme options for testing a derived class:
–  Flatten the derived class and retest all slices

of the base class in the new context
–  Only test the new/redefined slices of derived

class

© Lionel Briand 2010
26

Bashir and Goel’s Strategy
•  Assuming the base class has been

adequately tested, what needs to be tested
in the derived class?

•  Extend the MaDUM of the base class to
generate MaDUMderived
–  Take the MaDUM of the base class
–  Add a row for each newly defined or re-defined

data member of the derived class
–  Add a column for each newly defined or re-

defined member function of the derived class

© Lionel Briand 2010
27

Example: SampleHistogram
Class SampleHistogram : public SampleStatistic {
protected:

short howmanybuckets;
int *bucketCount;
double *bucketLimit;

public:
SampleHistogram(double low, double hi, double bucketWidth

= -1.0);
~SampleHistogram();
virtual void reset();
virtual void operator+=(double);
int similarSamples(double);
int buckets();
double bucketThreshold(int i);
int inBucket(int i);
void printBuckets(ostream&);

}

© Lionel Briand 2010
28

Filling the MaDUMDerived

•  C(method) = column corresponding to “method” in MaDUM
•  If a newly defined member function mderived calls an inherited

member function mbase of the base class, then the column of
the two methods are unioned and the result is stored in the
column of the mderived
 C(mderived) = C(mderived) ∪ C(mbase)

•  Even though the base class has no a priori knowledge about
the data members defined in its derived classes, it may still
act on them through dynamic binding and polymorphism. Such
a scenario would arise if a member function m1base calls
another member function m2base and the method m2 is
redefined (m2derived) in one of the derived classes
 C(m1base) = C(m1base) ∪ C(m2derived)

© Lionel Briand 2010
29

MaDUM SampleHistogram
resetSam p -

Stat
sam -
ples

m ean stdDev var m in m ax conf .
(int)

conf .
(dbl)

error Sam p -
Histo

reset + = similar -
samples

buckets
bucket -
Thres -
hold

inBucket print -
buckets

n

x

x2

m inValue

m axValue

howM any -
Buckets

bucket
Count

bucket
Lim it

+ =

tt

t

t

t

t

t

t

t

t

r o

o

o o

o

o

r

r

o o

t

t

t

t t

o o o

r r

r o o o

o o r

o

o

C T T R O O O R R O O O C T T O R O O O

tt

t

t

t

t

t

t

t

t

•  The MaDUM of SampleHistogram has eight rows, three of them for local data
members, and twenty columns, eight for local member functions (2 of them
re-defined)

•  Both reset and += are re-defined/overridden in SampleHistogram and invoke
their counterpart in SampleStatistics – they therefore indirectly access all
the data members of SampleStatistics

© Lionel Briand 2010
30

Test Procedure for Derived
Class

•  Local attributes: Similar to base class testing
•  Retest inherited attributes (I.e., their slices):

–  If they are directly or indirectly accessed by a
new or re-defined method of the derived class.

–  Check upper right quadrant of MaDUMderived
–  We have to ascertain which inherited

attributes mandate re-testing – MaDUMderived
can be used for automation

–  Once these inherited attributes are identified,
the test procedure is similar to slice testing in
the base class, but using inherited and new/
redefined methods => more testing …

© Lionel Briand 2010
31

Identify Inherited
Attributes to be Re-tested

•  An inherited data member needs to be re-tested
if the number of entries in its MaDUM row has
increased between MaDUMbase and MaDUMderived .

•  For SampleHistogram, the set of inherited data
members that needs re-testing includes all
inherited data members {n, x, x2, minValue,
maxValue}

© Lionel Briand 2010
32

Object-Oriented Class
Testing

•  Introduction
•  Accounting for Inheritance
•  Testing Method Sequences

–  Data slices

–  Methods’ preconditions and postconditions
•  State-based Testing
•  Testability for State-based Testing
•  Test Drivers, Oracles, and Stubs

© Lionel Briand 2010
33

Method’s pre- and post-
conditions

•  Method pre-condition:
–  A predicate that must be true before an operation is invoked.
–  Specifies constraints that a caller must meet before calling an

operation.
•  Method post-condition:

–  A predicate that must be true after an operation is invoked.
–  Specifies constraints that the object must ensure after the

invocation of the operation.
•  Possible notations:

–  Natural language
–  Object Constraint Language (OCL) in the context of UML
–  Extensions to programming languages

•  Eiffel
•  JML

© Lionel Briand 2010
34

Example – Queue
Class Queue (unbounded queue)

Attribute: Number of elements
in the queue, count

Init(q:Queue)
pre: Queue q does not exist
post: Queue q exists and is
empty

Empty(q:Queue)
pre: Queue q exists
post: Returns 1 if q is empty
(count=0), 0 otherwise
(count>0)

Eque(q:Queue, e:Element)
pre: Queue q exists
post: Element e has been added
to the tail of queue q, and q is
not empty (count=old(count)+1)

Dque(q:Queue, e:Element)
pre: Queue q exists and is
not empty (count>0)
post: Element e has been
removed from q (count=old
(count)-1)

Top(q:Queue, e:Element)
pre: Queue q exists and is
not empty (count>0)
post: The first element is
returned (e)

© Lionel Briand 2010
35

Approach
Source: F. J. Daniels, K.C. Tai, “Measuring the Effectiveness of

Method Test Sequences Derived from Sequencing Constraints”,
IEEE Trans. Software Engineering, 1999.

1.  Get pre- and post-conditions
–  e.g., from UML analysis and design documents
–  or devise them

2.  Derive method sequence constraints from pre- and post-conditions
–  They indicate which method sequences (pairs) are allowed or not

and under which conditions
–  Automation?

3.  Choose a criterion
–  We will define 7 criteria

4.  Derive method sequences satisfying the criterion from the method
sequence constraints
–  Automation?

© Lionel Briand 2010
36

Sequencing Constraints
•  Pre- and post-conditions imply method sequencing constraints

for pairs of methods.
•  Assuming m1 and m2 are two methods of a class, a sequencing

constraints between m1 and m2 is defined as a triplet:
 (m1, m2, C)

–  Such a triplet indicates that m2 can be executed after m1
under condition C.

• C is a Boolean expression or a Boolean literal (True, False).
– C=True ⇒ m2 can always be executed after m1.

• m1’s post-condition implies m2’s pre-condition
– C=False ⇒ m2 can never be executed after m1.

• m1’s post-condition implies the negation of m2’s pre-
condition

– C=BoolExp ⇒ m2 can be executed after m1 under some
conditions.
• BoolExp lists the conditions under which the sequence

is possible (disjunctive normal form): C=C1∨C2∨…

© Lionel Briand 2010
37

Criteria (I)
•  Always Valid Coverage (T)

–  Each always-valid constraint must be covered at least
once

–  i.e., each (m1,m2,T).
•  Always/Possibly True Coverage (T/pT)

–  Each always-valid constraint and each possibly-true
constraint must be covered at least once.

–  i.e., each (m1,m2,T) and each (m1,m2,C) using one of
the disjunction in C (C1 or C2 or …)

•  Always/Possibly True Coverage Plus (T/pT+)
–  Each always-valid constraint and each possibly-true

constraint (using in turn each of the disjunctions) must
be covered at least once.

–  i.e., each (m1,m2,T) and each (m1,m2,Ci) using each of
the disjunction in C (C1, C2 and …)

© Lionel Briand 2010
38

Criteria (II)
•  Never Valid Coverage (F)

–  Each never-valid constraint must be covered at least once.
–  i.e., each (m1,m2,F)

•  Never Valid/Possibly False (F/pF)
–  Each never-valid constraint and each possibly false constraint

must be covered at least once.
–  i.e., each (m1,m2,F) and each (m1,m2,not(C))

•  Never Valid/Possibly False Plus (F/pF+)
–  Each never-Valid constraint and each possibly false constraint

must be covered at least once.
– not C = C’1 ∨ C’2 ∨ …
–  i.e., each (m1,m2,F) and each (m1,m2,not(C’1)), (m1,m2,not
(C’2)) …

•  Always/Possibly True Plus/Never/Possibly False Plus (T/pT+/F/pF+)

© Lionel Briand 2010
39

Subsumption
T/pT+/F/pF+

T/pT+

T/pT

T

F/pF+

F/pF

F

© Lionel Briand 2010
40

Example – Queue
Sequencing constraints:
C1. (#,Init,T) C6. (#,Eque,F) C11. (#,Dque,F) C16. (#,Top,F)
C2. (Init,Eque,T) C7. (Eque,Dque,T) C12. (Dque,Eque,T) C17. (Top,Dque,T)
C3. (Init,Dque,F) C8. (Eque,Top,T) C13. (Dque,Init,F) C18. (Top,Eque,T)
C4. (Init,Init,F) C9. (Eque,Eque,T) C14. (Dque,Dque,C) C19. (Top,Init,F)
C5. (Init,Top,F) C10. (Eque,Init,F) C15. (Dque,Top,C) C20. (Top,Top,T)
Where: C = count>0

Criterion T requires the use of:
C1. (#,Init,T) C2. (Init,Eque,T) C7. (Eque,Dque,T) C12. (Dque,Eque,T)
C17. (Top,Dque,T) C8. (Eque,Top,T) C18. (Top,Eque,T) C9. (Eque,Eque,T)
C20. (Top,Top,T)

© Lionel Briand 2010
41

Example – Queue
Partial tree based on
 sequencing constraints Criterion T C1. (#,Init,T)

C7.(Eque,Dque,T)

C8.(Eque,Top,T)

C12.(Dque,Eque,T)

C18.(Top,Eque,T)

C20.(Top,Top,T)

C2. (Init,Eque,T)

C9.(Eque,Eque,T)

C8.(Eque,Top,T)

C20.(Top,Top,T)

C17.(Top,Dque,T)

C12.(Dque,Eque,T)

C7.(Eque,Dque,T)

C12.(Dque,Eque,T)

C8.(Eque,Top,T)

C18.(Top,Eque,T)

C8.(Eque,Top,T)

C17.(Top,Dque,T)

C18.(Top,Eque,T)

C7.(Eque,Dque,T)

C12.(Dque,Eque,T)

C8.(Eque,Top,T)

C17.(Top,Dque,T)

C18.(Top,Eque,T)

C17.(Top,Dque,T)

C12.(Dque,Eque,T)

C8.(Eque,Top,T)

© Lionel Briand 2010
42

Discussion
•  Automation?

–  From pre- and post-conditions to sequencing constraints
–  From sequencing constraints to ‘complete’ sequences

•  Several sequences can be adequate for a particular criterion
–  Which branch in the tree do we choose?
–  Are they equivalent in terms of fault detection?

•  E.g., the set of statements executed in methods may be
different

–  May need to cover some pT constraints to cover certain T ones
•  Selecting another criterion than T

–  Criterion F
•  Another representation than the tree we used before may be

necessary
–  Criterion pT+

•  The execution of sequence ab, constrained by (a,b,C_Bool),
may require specific calls before the call to a (because of
pre- and post-conditions of a).

•  Empirical comparison of the different criteria

© Lionel Briand 2010
43

Empirical Study
•  From Daniels and Tai
•  3 C++ programs
•  Mutation tool Proteum for C
•  71 mutation operators, 155 mutants
•  Criteria (and their names) are not exactly the ones defined

here for T/pT+ and F/pF+
•  Different oracles: simple self-checks, checking return values

(oracles), checking postconditions
•  When using appropriate oracles (e.g., check post-conditions

and return values), most or all mutants were killed with T/
pT-type criteria

•  The thoroughness of the oracle has a very significant impact
on results.

© Lionel Briand 2010
44

Object-Oriented Class
Testing

•  Introduction
•  Accounting for Inheritance
•  Testing Method Sequences
•  State-Based Testing

–  Methodology
–  Case studies and simulations

•  Testability for State-based Testing
•  Test Drivers, Oracles, and Stubs

© Lionel Briand 2010
45

Motivations
•  Does not apply to class (cluster) testing only. Can be applied

to any component (e.g., subsystem) modeled by a state
machine – we will however refer to classes in the slides

•  Started with the testing of communication protocols
•  Finding which method sequences to execute to gain

confidence in the classes under test may not be easy
•  Bashir and Goel’s approach can be used for simpler classes.

But more complex, modal classes should have their behavior
modeled by a state-transition model (e.g., Finite State
Machine or FSM)

•  Such a model can be used as a basis to measure the coverage
of class testing and derive test cases to improve that
coverage

•  This is a natural information source for class testing in a
UML context where statecharts (a specific state model) are
defined for classes whose behavior is state dependent

•  The question is now, what does “coverage” mean in the
context of a state-transition model?

© Lionel Briand 2010
46

Simple
 State

 Machine
Elevator
Idle

Preparing
 to Move
 Up

Preparing to
Move
 Down

Moving
 to Floor

Checking
Next
 Destination

Up Request

Up Request

Down
 Request

Down
 Request

Elevator
Started

Elevator
Started

Afte
r(Timeout)

No Request

© Lionel Briand 2010
47

Finite State Machines (I)

•  A set of states
•  An initial state

•  Finite sets of input (X) and output (Y) events
•  Transfer function
•  Output function

x1

x2 x3

/y1

/y2 /y3

© Lionel Briand 2010
48

Finite State Machines (II)
S : finite set of states
S0 : initial state
∑ : finite input alphabet
Ω : finite output alphabet
δ : transfer function, δ:S×Σ→S
λ : output function, λ:S×Σ→Ω

1 2

α/s

β/r

α/r
Graphical
representation

state α β

1 2/r ?

2 1/s 2/r

Tabular
representation

First steps:
- Deterministic ? Fully specified? Minimal ? Strongly connected ?
- Verify completeness, e.g., add a transition ‘ β/- ’ which loops on

•  Choosing test coverage: All states, all transitions, …
•  Impact on test effort?
•  Controlability (reach state i): does a ‘reset’ function exist?
•  Observability (observe state i): does a ‘status’ function exist?

© Lionel Briand 2010
49

Properties of FSMs
•  Completely specified: An FSM is said to be completely
specified if from each state in M there exists a transition for
each input symbol.

•  Strongly connected: An FSM M is considered strongly
connected if for each pair of states (qi qj) there exists an input
sequence that takes M from state qi to qj.

• Minimal: A FSM M is considered minimal if the number of
states in M is less than or equal to any other FSM equivalent to
M.

© Lionel Briand 2010
50

Application Domains of
 FSMs

•  Modeling GUIs, network protocols, pacemakers, Teller
machines, WEB applications, safety software modeling in
nuclear plants, and many more.

•  While the FSM’s considered in examples are abstract
machines, they are abstractions of many real-life machines.

• Embedded systems can commonly be modeled with FSMs: Many
real-life devices have computers embedded in them. For
example, an automobile has several embedded computers to
perform various tasks, engine control being one example.
Another example is a computer inside a toy for processing
inputs and generating audible and visual responses.

© Lionel Briand 2010
51

Embedded Systems
•  An embedded computer often receives inputs from its
environment and responds with appropriate actions. While doing
so, it moves from one state to another.

•  The response of an embedded system to its inputs depends on
its current state. It is this behavior of an embedded system in
response to inputs that is often modeled by a finite state
machine (FSM).

• Fore example, the elevator control FSM

© Lionel Briand 2010
52

h Events such as “switch on” and “switch off” may cause the machine to change
 state, as in the state diagram below for a light with a rocker switch.

h Some events don’t cause a state transition at all, as in attempting to turn on a
 light that is already on.

h Behaviour of the system in each state has to be defined: State ON - light is
 emitted out of bulb, State OFF - no light emitted.

Rocker Switch Example

off"

on"

switch on/"
make click sound"

switch on/"
stay quiet"

switch off/"
make click sound"

switch off/"
stay quiet" input"

events"
outputs"current"

state"
next"
state"

on"
off"
on"
off"

-"
click"
click"

-"

on"Switch on"
Switch on"
Switch off"
Switch off"

on"
off"
off"

On" Off"

-"

click,"
off"

click,"
on"Switch on"

Switch off" -"

state"
event"

© Lionel Briand 2010
53

Equivalence
•  Two states are equivalent if

–  for every input sequence, the output sequences
from the two states are the same

•  A FSM with no two equivalent states is
reduced or minimized

s1

a / 1

s2

a / 0

s3

a / 1

s1 and s2 are equivalent?
s2 and s3 are equivalent?

© Lionel Briand 2010
54

Fault Taxonomy
1.  Missing or incorrect transition to a valid

state, based on a correct input (Transfer
fault)
•  Transition from 2 to 1 on input β is

missing
•  Transition from 1 to 2 (on input γ) is in

fact from 1 to 3
2.  Missing or incorrect output (action), based on

a correct input and transition
•  Transition from 1 to 2 (on input γ) outputs

r (instead of u)
3.  Corrupt state: Based on a correct input, the

implementation computes a state that is not
valid (additional state).

4.  Sneak path (extra transition): The
implementation accepts an input that is illegal
or unspecified for a state
•  Transition from 1 to 4 on input ϕ

5.  Illegal input failure: The implementation fails
to handle an illegal message correctly
(incorrect output, state corrupted)

1 2

3 4
γ/t

α/u ∨ β/u
β/u ∨ γ/u

γ/u
α/r

β/s ∨ γ/s

α/s

β/s α/s

© Lionel Briand 2010
55

Output faults

s1

b / 0

s2

b / 1

a / 1

s3

b / 0

a / 0

a / 1

s1

b / 0

s2

b / 0

a / 1

s3

b / 0

a / 1

a / 1

Specification Implementation

© Lionel Briand 2010
56

Transfer faults

s1

b / 0

s2

b / 1

a / 1

s3

b / 0

a / 0

a / 1

s1

s2

b / 1

a / 1

s3

b / 0

a / 0

a / 1

Specification Implementation

b / 0

© Lionel Briand 2010
57

Transfer faults with
additional (corrupt) states

s1

b / 0

s2

b / 1

a / 1

s3

b / 0

a / 0

a / 1

s1

b / 0

s2

b / 1

a / 1

s3

b / 0

a / 0

a / 1

s4

s5

a / 1

Specification Implementation

© Lionel Briand 2010
58

Transition Tour (TT) (1)
•  A transition tour of a FSM

–  A path starting at the initial state, traverses every transition
at least once, and returns to the initial state

s1

b / 0

s2

b / 1

a / 1

s3

b / 0

a / 0

a / 1

bababa

s1->s1 ->s2->s2->s3->s3->s1

0 1 1 1 0 0

© Lionel Briand 2010
59

TT-method (2)
•  From a transition tour, we identify a test

suite consisting of an input sequence and
its expected output sequence
–  The input sequence bababa and
–  Its expected output sequence 011100
–  Observed sequence is …. ?
–  Oracle: compare sequences

b / 0 b / 0

s1

b / 0

s2

a / 1

s3

a / 1

a / 1

© Lionel Briand 2010
60

TT-method (3)
•  Transition tours can find all output faults

s1

b / 0

s2

b / 1

a / 1

s3

b / 0

a / 0

a / 1

s1

b / 1

s2

b / 1

a / 1

s3

b / 0

a / 0

a / 1

Specification
Input sequence: bababa

Expected output sequence: 011100

Implementation
Input sequence: bababa

Observed output sequence: 111100

© Lionel Briand 2010
61

TT-method problem
•  Transition tours cannot always distinguish transfer faults

s1

b / 0

s2

b / 1

a / 1

s3

b / 0

a / 0

a / 1

s1
b / 0

s2

b / 1

a / 1

s3

b / 0

a / 0

a / 1

Specification
Input sequence: bababa

Expected output sequence: 011100

Implementation
Input sequence: bababa

Observed output sequence: 010001

© Lionel Briand 2010
62

Detecting Transfer Faults
•  The main idea

–  Generate a test suite such that, for every
transition (s, i, o, s’):

•  Step 1: Puts the implementation into state s (Setup)
•  Step 2: Applies input i and check whether the actual

output is o (Output fault)
•  Step 3: Determines whether the target state of the

implementation is s’ (Transfer fault)
•  Step 3: one possibility is that the implementation

makes the state observable (e.g., “status”
function) – but it is not always possible, so let’s put
it aside for now

© Lionel Briand 2010
63

Distinguishing sequence
•  An input sequence is a distinguishing sequence if

–  After applying the input sequence, we can
determine the source state by observing the
produced output sequence

© Lionel Briand 2010
64

Example 1
•  a is not a distinguishing sequence …

Initial
state

Input
seq

Output
seq

Final
state

S1 a 0 S1

S2 a 1 S2

S3 a 0 S3

s1

a / 0

s2

a / 1

b / 1

s3

a / 0

b / 0

b / 1

© Lionel Briand 2010
65

Example 2
•  ab is a distinguishing sequence

Initial
state

Input
seq

Output
seq

Final
state

S1 ab 01 S2

S2 ab 11 S3

S3 ab 00 S1

s1

a / 0

s2

a / 1

b / 1

s3

a / 0

b / 0

b / 1

© Lionel Briand 2010
66

DS-method

•  For every transition (s, i, o, s’)
–  Step 1: Put the implementation into state s (Setup)

–  Step 2: Apply input i and check whether the actual

output is o (Output fault)

–  Step 3: Determine whether the target state of the

implementation is s’ using a distinguishing sequence

(Transfer fault)

© Lionel Briand 2010
67

DS-method: A test suite

s1

t1: a / 0

s2

t3: a / 1

t2: b / 1

s3

t5: a / 0

t6: b / 0

t4: b / 1

t1: reset/null a/0 a/0 b/1
t2: reset/null b/1 a/1 b/1
t3: reset/null b/1 a/1 a/1 b/1
t4: reset/null b/1 b/1 a/0 b/0
t5: reset/null b/1 b/1 a/0 a/0 b/0
t6: reset/null b/1 b/1 b/0 a/0 b/1

Setup Output Transfer

© Lionel Briand 2010
68

DS-method pros and cons
–  Few FSMs possess a

distinguishing sequence

–  Even if an FSM has a

distinguishing sequence, the

sequence may be too long
–  Example: there is no DS

•  A DS cannot start with a (s1, s2)
•  A DS cannot start with b (s2, s3)

s1

t1: a / 0

s2

t3: b / 1

t2: a / 0

s3

t5: a / 1

t6: b / 0

t4: b / 1

© Lionel Briand 2010
69

W-method

•  A set of input sequences is a
characterizing set if
–  After applying all input sequences in the

set, we can determine the source state
by observing the output sequences

© Lionel Briand 2010
70

Example
•  {a,b} is a characterizing set ….?

Initial
state

Input
seq

Output
seq

Final
state

S1 a 0 S1

S2 a 1 S2

S3 a 0 S3

Initial
state

Input
seq

Output
seq

Final
state

S1 b 1 S3

S2 b 1 S2

S3 b 0 S2

s1

t1: a / 0

s2

t3: a / 1

t2: b / 1

s3

t5: a / 0

t6: b / 0

t4: b / 1

© Lionel Briand 2010
71

W-method: A test suite

s1

t1: a / 0

s2

t3: a / 1

t2: b / 1

s3

t5: a / 0

t6: b / 0

t4: b / 1

t1: reset/null a/0 a/0
t1: reset/null a/0 b/1

t2: reset/null b/1 a/1
t2: reset/null b/1 b/1

t3: reset/null b/1 a/1 a/1
t3: reset/null b/1 a/1 b/1

t4: reset/null b/1 b/1 a/0
t4: reset/null b/1 b/1 b/0

t5: reset/null b/1 b/1 a/0 a/0
t5: reset/null b/1 b/1 a/0 b/0

t6: reset/null b/1 b/1 b/0 a/0
t6: reset/null b/1 b/1 b/0 b/1

© Lionel Briand 2010
72

W-method pros and cons

•  Although every FSM has a characterizing set, the

set may have too many elements (expensive)

•  Both distinguishing sequences and characterizing

sets impose too strong requirements

•  We are just interested in determining whether the
target state is a specific state or not

–  State identification versus state verification

© Lionel Briand 2010
73

Another Example of W

W={baaa,aa,aaa}

O(baaa,q1)=1101

O(baaa,q2)=1100

Thus baaa distinguishes state q1 from q2
as O(baaa,q1) ≠ O(baaa,q2)

© Lionel Briand 2010
74

Unique-input-output (UIO) -
method

•  Let s be a state.
•  An input sequence is a UIO sequence

for s if
–  After applying the input sequence, we
can determine the source state is s or
not by observing the output sequence

© Lionel Briand 2010
75

UIO-method & states s2, s3
•  a is a UIO sequence for s2
•  b is a UIO sequence for s3 Initial

state
Input
seq

Output
seq

Final
state

S1 a 0 S1

S2 a 1 S2

S3 a 0 S3

Initial
state

Input
seq

Output
seq

Final
state

S1 b 1 S3

S2 b 1 S2

S3 b 0 S2

s1

t1: a / 0

s2

t3: a / 1

t2: b / 1

s3

t5: a / 0

t6: b / 0

t4: b / 1

© Lionel Briand 2010
76

UIO-method and state s1

•  ab is a UIO sequence for s1

Initial
state

Input
seq

Output
seq

Final
state

S1 ab 01 S2

S2 ab 11 S3

S3 ab 00 S1

s1

a / 0

s2

a / 1

b / 1

s3

a / 0

b / 0

b / 1

© Lionel Briand 2010
77

UIO-method – Test suite

s1

t1: a / 0

s2

t3: a / 1

t2: b / 1

s3

t5: a / 0

t6: b / 0

t4: b / 1

t1: reset/null a/0 a/0 b/1
t2: reset/null b/1 a/1
t3: reset/null b/1 a/1 a/1
t4: reset/null b/1 b/1 b/0
t5: reset/null b/1 b/1 a/0 b/0
t6: reset/null b/1 b/1 b/0 a/0 b/1

© Lionel Briand 2010
78

UIO-method pros and cons

•  Many states in FSMs have UIO
sequences

•  UIO sequences are usually short
•  However, fault detection capability is

not powerful (See Mathur’s book)

© Lionel Briand 2010
79

Extended FSMs
•  A set of states
•  An initial state
•  Finite sets of input (X) and output (Y) events

•  Transition relation
•  A finite set of variables (V)

–  Guards
b1 →

b2 →

b3 →

x1

x2

x3

{output y1}

{update v2}

{output y3} –  Update blocks

© Lionel Briand 2010
80

Tests for EFSM models
•  EFSM executions depend on input

signals and data
•  A test consists of:

–  test sequence
–  test data

•  Executability problem:
–  Find data to execute the test sequence

•  Undecidable, in general 

© Lionel Briand 2010
81

EFSM control and data flow
testing

•  EFSM executions are data-dependent
•  Control flow FSM testing methods

(e.g., cover all transitions) are not
adequate for EFSM models

•  Data flow testing methods account
for data dependencies

© Lionel Briand 2010
82

Data flow: definitions and
uses

•  Data variables are
–  defined by inputs and updates (def)
–  used in

•  updates (c-use)
•  guards (p-use)

•  Data-flow graph captures data
dependencies

© Lionel Briand 2010
83

Data flow graph

•  Directed graph with nodes labeled
with definitions and uses of variables

v=0→{input u}

u<0→{v:=u+1}

p-use v
def u

p-use u
c-use u
def v

© Lionel Briand 2010
84

Data-flow coverage criteria
•  all-def

–  test suite covers each definition at least
once

•  all-use
–  cover each def-use association at least

once
•  all-du-paths

–  exercise all paths from each definition
of a variable to every one of its uses.

© Lionel Briand 2010
85

all-use coverage
•  Find at least one definition-free path

for every def-use association

def v

use v

no definitons
 of v

