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Testing Object-Oriented 
Software 
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Class Testing 
•  Introduction 
•  Accounting for Inheritance 
•  Testing Method Sequences 

–  Data slices 

–  Methods’ preconditions and postconditions 
•  State-based Testing 
•  Testability for State-based Testing 
•  Test Drivers, Oracles, and Stubs 
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Motivations & Issues 
•  Using Inheritance context coverage, control- and data-flow 

techniques can be used to test methods - what about 
classes?  

•  It is argued that testing a class aims at finding the sequence 
of operations for which a class will be in a state that is 
contradictory to its invariant or what output is expected 

•  Testing classes for all possible sequences is not usually 
possible 

•  The resources required to test a class increase exponentially 
with the increase in the number of its methods 

•  It is necessary to devise a way to reduce the number of 
sequences and still provide sufficient confidence 
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Example 
•  Coin box of a vending machine implemented in C++ 
•  The coin box has a simple functionality and the 

code to control the physical device is omitted 
•  It accepts only quarters and allows vending when 

two quarters are received 
•  It keeps  track of total quarters received 

(totalQrts) , the current quarters received 
(curQrts), and whether vending is enabled 
(allowVend) 

•  Functions: adding a quarter, returning current 
quarters, resetting the coin box to its initial 
state, and vending 
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CCoinBox Code 
class CCoinBox 
{ 
 unsigned totalQtrs;  
 unsigned curQtrs; 
 unsigned allowVend; 

public: 
 Ccoinbox(){Reset();} 
 void AddQtrs(); 
 void ReturnQtrs() 
{curQtrs=0;} 

 unsigned isAllowedVend() 
{return allowVend;} 

 void Reset() { 
  totalQtrs = 0;  
  allowVend = 0;   
  curQtrs = 0; 
 } 
 void Vend(); 

}; 

void CCoinBox ::AddQtr() 
{ 
 curQtrs = curQtrs + 1;  
 if (curQtrs > 1) 
  allowVend = 1; 

} 

void CCoinBox::Vend() 
{ 
 if(isAllowedVend()) 
 { 
  totalQtrs = totalQtrs + 2; 
  curQtrs = curQtrs - 2;  
  if (curQtrs < 2) allowVend=0; 
 } 

} 
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Statechart 

Reset() 

Functioning 

AddQtr 
ReturnQtr() 

AddQtr() 

ReturnQtr() 

Vend() 

Vend() CCoinBox() 

Vend() [self.curQrts >= 4] 

Vend()  
[self.curQrts = 3] 

ReturnQtr() 

Vend() [self.curQrts  = 2] 

allowVend = 1 curQrts = 0 

allowVend = 0 curQrts = 0 allowVend = 0 curQrts = 1 

Vend() 

allowVend = 1 curQrts:[2,M] 

Statechart corresponding to the code, not fully specified 
•  One corrupt state missing: allowVend =1 curQrts =1 
•  One transition missing on state allowVend =1 curQrts=0 :  AddQrts() 
•  allowVend=0 curQrts=0: ReturnQrt()  allowVend=1 curQrts:[2,M]: AddQrt

() 
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UML Statechart Transitions 
– state transitions caused by events, enabled by 

guard conditions 

  have the following general form (all elements are
 optional) 

event(arguments)!
[condition]!
^target.sendEvent(arguments)!
 /operation(arguments)!

event  
name 

guard 

executed operation 

trigger } 
event dispatch 

Engine Off 
start [transmission= neutral] 

Engine On 

Reminder 
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Object-Oriented Class 
Testing 

•  Introduction 
•  Accounting for Inheritance 
•  Testing Method Sequences 

–  Data slices 

–  Methods’ preconditions and postconditions 
•  State-based Testing 
•  Testability for State-based Testing 
•  Test Drivers, Oracles, and Stubs 
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Data Slices: Basic Principles 
•  Goal: Reduce the number of method sequences to 

test 
•  The (concrete) state of an object at a single 

instance of time is equivalent to the aggregated 
state of each of its data members at that 
instance 

•  The correctness of a class depends on  
–  Whether the data members are correctly 

representing the intended state of an object 
–  Whether the member functions are correctly 

manipulating the representation of the object 
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Slice 
•  A class can be viewed as a composition of slices 
•  A slice is a quantum of a class with only a single 

data member and a set of member functions such 
that each member function can manipulate the 
values associated with this data member 

•  Bashir and Goel’s class testing strategy is to test 
one slice at a time 

•  For each slice, test possible sequences of the 
methods belonging to that slice – equivalent to 
testing a specific data member, i.e., class partial 
correctness 

•  Repeat for all slices to demonstrate class 
correctness 
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Slice Formalism 
–  A class K encapsulates a set of data elements and provides a 

set of operations 
•  K = <D(K), M(K)> 
•  D(K) = {di | di @ K} 
•  M(K) = {mi | mi @K} 
(where @ denotes the relationship between a class and its 

elements) 
–  A Data Slice 

•  Slicedi (K) =< di, Mdi(K) > 
–  di ∈ D(K) 
–  Mdi(K) = {mi | mi @@ di} 
(where @@ denotes the usage relationship) 
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Issues 
•  This is a code-based approach: Many 

potential problems. 
•  What if the code is faulty and a methods 

that should access a data member does 
not? Then sequences of methods that 
interact through that data member won’t 
be tested and the fault may remain 
undetected 

•  How to identify legal sequences of 
methods? 

•  What strategy to use when there is a 
large, possibly infinite, number of legal 
sequences? 
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Example C++ (I) 

class SampleStatistic { 
friend TestSS; 

protected : 
int n; 
double x; 
double x2; 
double minValue, maxValue; 

public : 
sampleStatistic(); 
virtual ~SampleStatistic(); 
virtual void reset(); 

virtual void operator += (double); 
int samples(); 
double mean(); 
double stdDev(); 
double var(); 
double min(); 
double max(); 
double confidence(int p_percentage); 
double confidence (double p_value); 
void error(cont char * msg); 

}; 

•  Part of the GNU C++ library 
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SampleStatistic::mean() { 
if (n>0) 
return (x/n); 

else 
return (0.0); 

} 

SampleStatistic::operator+=(double 
value){ 
n += 1; 
x += value; 
x2 += (value * value); 
if(minValue > value) 
minValue = value; 

if(maxValue < value) 
maxValue = value; 

} 

Example C++ (II) 
double SampleStatistics::stdDev() 
{ 
if (n<=0 || this->var()<=0) 
return(0); 

else 
return (double)sqrt(var()); 

} 

double SampleStatistics::var() { 
if (n>1) 
return ((x2 - ((x*x)/2)) / ()
n-1); 

} 
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Generate MaDUM 
•  MaDUM: Minimal Data Member Usage 

Matrix 
•  n*m matrix where n is the number of data 

members and m represents the number of 
member methods – it reports on the usage 
of data members by methods 

•  Different usages: reads, reports, 
transforms 

•  Account for indirect use of data members, 
through intermediate member functions 



© Lionel Briand 2010 
16 

Categorize Member 
Functions 

•  Categories: Constructors, Reporters, Transformers, 
Others 

•  Mdi(K) = {Rdi, C, Tdi, Odi}, 
–  Rdi = {rdi | rdi is a reporter method for data member 

di} 
–  C = {ci | ci is a constructor of class K} 
–  Tdi = {mdi | mdi ∉ Rdi and mdi ∉ C and mdi → di} 
–  Odi = {odi | odi @@ di and odi ∉ Rdi and odi ∉ C and odi ∉ 

Tdi} 
•  Account for indirect use of data members, through 

intermediate member functions 
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MaDUM for SampleStatistic 
Sample
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Matrix account for indirect use, through called methods 
•  stdDev() does not directly access x and x2, but calls var() that does 
•  All SampleStatistic() does is call reset() 
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Test Procedure 

•  Classification of methods is used to 
decide the test steps to be taken: 

1.  Test reporters 
2.  Test constructors 
3.  Test transformers  
4.  Test others 

•  We would like to automate that 
procedure to the extent possible 
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Test the Reporters 

•  I would simply make sure that all 
classes have get and set methods for 
all their data members (standard 
class interface) 

•  Then I would systematically set and 
get values of data members and 
compare the input of the former with 
the output of the latter.  
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Test the Constructors 
•  Constructors initialize data members 
•  You may have several per class 
•  We test that 

–  All data members are correctly initialized 
–  All data members are initialized in correct 

order 
•  Run the constructor and append the reporter 

method(s) for each data member 
•  Verify if in correct initial state (state invariant) 
•  Only one simple constructor in SampleStatistic 
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Test the Transformers 
•  Rationale: Test interactions between methods 
•  For each slice di 

1.  Instantiate object under test with constructor (already 
tested) 

2.  Create sequences, e.g., all legal permutations of 
methods in Tdi  
•  Maximum # sequences: |C| * | Tdi|! 
•  For example, if 7 member functions in Tdi , with one 

constructor, this leads to 5040 possible 
permutations! 

•  Question: are permutations sufficient to test 
interactions between methods ? 

3.  Append the reporter method(s) (already tested) 
•  If several control flow paths in member function: 

All the paths where the slice di is being 
manipulated must be executed 
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Test Others 
•  They do not change the data member di 
•  They do not report on the data member di 
•  They may not even use the data member di 
•  They may not use and change ANY data member 
•  They should be tested as a stand-alone entity 
•  Any standard test technique can be used (WB, BB, 

Mutation) 
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CCoinBox Slices 
•  Slice allowVend: 

–   TallowVend(CCoinBox) = {Reset, AddQrt, 
ReturnQrts,Vend} 

•  Slice curQrts: 
–   TcurQrts(CCoinBox) = {Reset, AddQrt, 

ReturnQrts,Vend} 
•  As a result of the fault, possibly important, 

sequences would not have been tested 
•  When the code is correct, both slices show 

the same set of methods! 
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Discussions 
•  Slicing may not be helpful for many classes (see 

CCoinBox example) 
•  # sequences may still be large 
•  Many sequences may be impossible (illegal) 
•  Automation? , e.g., oracle, impossible sequences 
•  Are we missing many faults by testing slices 

independently?, e.g., if faults lead to incorrectly 
defined slices 

•  Implicitly aimed at classes with no state-
dependent behavior? (transformers may need to 
be executed several times to reach certain states 
and reveal state faults) 
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Testing Derived Classes 
•  When two classes are related through inheritance, 

a class is derived from another class 
•  The derived class may add facilities or modify the 

ones provided by the base class – it inherits data 
members and methods from its base class 

•  Two extreme options for testing a derived class: 
–  Flatten the derived class and retest all slices 

of the base class in the new context 
–  Only test the new/redefined slices of derived 

class 
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Bashir and Goel’s  Strategy 
•  Assuming the base class has been 

adequately tested, what needs to be tested 
in the derived class? 

•  Extend the MaDUM of the base class to 
generate MaDUMderived 
–  Take the MaDUM of the base class 
–  Add a row for each newly defined or re-defined 

data member of the derived class 
–  Add a column for each newly defined or re-

defined member function of the derived class 



© Lionel Briand 2010 
27 

Example: SampleHistogram  
Class SampleHistogram : public SampleStatistic { 
protected: 

short howmanybuckets; 
int *bucketCount; 
double *bucketLimit; 

public: 
SampleHistogram(double low, double hi, double bucketWidth 

= -1.0); 
~SampleHistogram(); 
virtual void reset(); 
virtual void operator+=(double); 
int similarSamples(double); 
int buckets(); 
double bucketThreshold(int i); 
int inBucket(int i); 
void printBuckets(ostream&); 

} 
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Filling the MaDUMDerived 

•  C(method) = column corresponding to “method” in MaDUM 
•  If a newly defined member function mderived calls an inherited 

member function mbase of the base class, then the column of 
the two methods are unioned and the result is stored in the 
column of the mderived  
  C(mderived) = C(mderived ) ∪ C(mbase) 

•  Even though the base class has no a priori knowledge about 
the data members defined in its derived classes, it may still 
act on them through dynamic binding and polymorphism. Such 
a scenario would arise if a member function m1base calls 
another member function m2base and the method m2 is 
redefined (m2derived ) in one of the derived classes  
  C(m1base) = C(m1base ) ∪ C(m2derived) 
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•  The MaDUM of SampleHistogram has eight rows, three of them for local data 
members, and twenty columns, eight for local member functions (2 of them 
re-defined) 

•  Both reset and += are re-defined/overridden in SampleHistogram and invoke 
their counterpart in SampleStatistics – they therefore indirectly access all 
the data members of SampleStatistics 
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Test Procedure for Derived 
Class 

•  Local attributes: Similar to base class testing 
•  Retest inherited attributes (I.e., their slices):  

–  If they are directly or indirectly accessed by a 
new or re-defined method of the derived class.  

–  Check upper right quadrant of MaDUMderived 
–  We have to ascertain which inherited 

attributes mandate re-testing – MaDUMderived 
can be used for automation 

–  Once these inherited attributes are identified, 
the test procedure is similar to slice testing in 
the base class, but using inherited and new/
redefined methods => more testing … 
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Identify Inherited 
Attributes to be Re-tested 

•  An inherited data member needs to be re-tested 
if the number of entries in its MaDUM row has 
increased between MaDUMbase and MaDUMderived . 

•  For SampleHistogram, the set of inherited data 
members that needs re-testing includes all 
inherited data members {n, x, x2, minValue, 
maxValue} 
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Object-Oriented Class 
Testing 

•  Introduction 
•  Accounting for Inheritance 
•  Testing Method Sequences 

–  Data slices 

–  Methods’ preconditions and postconditions 
•  State-based Testing 
•  Testability for State-based Testing 
•  Test Drivers, Oracles, and Stubs 
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Method’s pre- and post-
conditions 

•  Method pre-condition: 
–  A predicate that must be true before an operation is invoked.  
–  Specifies constraints that a caller must meet before calling an 

operation. 
•  Method post-condition: 

–  A predicate that must be true after an operation is invoked.  
–  Specifies constraints that the object must ensure after the 

invocation of the operation. 
•  Possible notations: 

–  Natural language 
–  Object Constraint Language (OCL) in the context of UML 
–  Extensions to programming languages 

•  Eiffel 
•  JML 
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Example – Queue 
Class Queue (unbounded queue) 

Attribute: Number of elements 
in the queue, count 

Init(q:Queue) 
pre: Queue q does not exist 
post: Queue q exists and is 
empty 

Empty(q:Queue) 
pre: Queue q exists 
post: Returns 1 if q is empty 
(count=0), 0 otherwise 
(count>0) 

Eque(q:Queue, e:Element) 
pre: Queue q exists 
post: Element e has been added 
to the tail of queue q, and q is 
not empty (count=old(count)+1) 

Dque(q:Queue, e:Element) 
pre: Queue q exists and is 
not empty (count>0) 
post: Element e has been 
removed from q (count=old
(count)-1) 

Top(q:Queue, e:Element) 
pre: Queue q exists and is 
not empty (count>0) 
post: The first element is 
returned (e) 
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Approach 
Source: F. J. Daniels, K.C. Tai, “Measuring the Effectiveness of 

Method Test Sequences Derived from Sequencing Constraints”, 
IEEE Trans. Software Engineering, 1999.  

1.  Get pre- and post-conditions  
–  e.g., from UML analysis and design documents 
–  or devise them 

2.  Derive method sequence constraints from pre- and post-conditions 
–  They indicate which method sequences (pairs) are allowed or not 

and under which conditions 
–  Automation? 

3.  Choose a criterion 
–  We will define 7 criteria 

4.  Derive method sequences satisfying the criterion from the method 
sequence constraints 
–  Automation? 
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Sequencing Constraints 
•  Pre- and post-conditions imply method sequencing constraints 

for pairs of methods. 
•  Assuming m1 and m2 are two methods of a class, a sequencing 

constraints between m1 and m2 is defined as a triplet: 
 (m1, m2, C) 

–  Such a triplet indicates that m2 can be executed after m1 
under condition C. 

• C is a Boolean expression or a Boolean literal (True, False). 
– C=True ⇒ m2 can always be executed after m1. 

• m1’s post-condition implies m2’s pre-condition 
– C=False ⇒ m2 can never be executed after m1. 

• m1’s post-condition implies the negation of m2’s pre-
condition 

– C=BoolExp ⇒ m2 can be executed after m1 under some 
conditions. 
• BoolExp lists the conditions under which the sequence 

is possible (disjunctive normal form): C=C1∨C2∨… 
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Criteria (I) 
•  Always Valid Coverage (T) 

–  Each always-valid constraint must be covered at least 
once 

–  i.e., each (m1,m2,T). 
•  Always/Possibly True Coverage (T/pT) 

–  Each always-valid constraint and each possibly-true 
constraint must be covered at least once. 

–  i.e., each (m1,m2,T) and each (m1,m2,C) using one of 
the disjunction in C (C1 or C2 or …) 

•  Always/Possibly True Coverage  Plus (T/pT+) 
–  Each always-valid constraint and each possibly-true 

constraint (using in turn each of the disjunctions) must 
be covered at least once. 

–  i.e., each (m1,m2,T) and each (m1,m2,Ci) using each of 
the disjunction in C (C1, C2 and …) 
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Criteria (II) 
•  Never Valid Coverage (F) 

–  Each never-valid constraint must be covered at least once. 
–  i.e., each (m1,m2,F) 

•  Never Valid/Possibly False (F/pF) 
–  Each never-valid constraint and each possibly false constraint 

must be covered at least once. 
–  i.e., each (m1,m2,F) and each (m1,m2,not(C)) 

•  Never Valid/Possibly False Plus (F/pF+) 
–  Each never-Valid constraint and each possibly false constraint 

must be covered at least once. 
– not C = C’1 ∨ C’2 ∨ … 
–  i.e., each (m1,m2,F) and each (m1,m2,not(C’1)), (m1,m2,not
(C’2)) … 

•  Always/Possibly True Plus/Never/Possibly False Plus (T/pT+/F/pF+) 
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Subsumption 
T/pT+/F/pF+ 

T/pT+ 

T/pT 

T 

F/pF+ 

F/pF 

F 
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Example – Queue 
Sequencing constraints: 
C1. (#,Init,T)  C6. (#,Eque,F)  C11. (#,Dque,F)  C16. (#,Top,F) 
C2. (Init,Eque,T)  C7. (Eque,Dque,T)  C12. (Dque,Eque,T)  C17. (Top,Dque,T) 
C3. (Init,Dque,F)  C8. (Eque,Top,T)  C13. (Dque,Init,F)  C18. (Top,Eque,T) 
C4. (Init,Init,F)  C9. (Eque,Eque,T)  C14. (Dque,Dque,C)  C19. (Top,Init,F) 
C5. (Init,Top,F)  C10. (Eque,Init,F)  C15. (Dque,Top,C)  C20. (Top,Top,T) 
Where: C = count>0 

Criterion T requires the use of: 
C1. (#,Init,T)  C2. (Init,Eque,T)  C7. (Eque,Dque,T)  C12. (Dque,Eque,T) 
C17. (Top,Dque,T) C8. (Eque,Top,T)  C18. (Top,Eque,T)  C9. (Eque,Eque,T) 
C20. (Top,Top,T) 
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Example – Queue 
Partial tree based on
 sequencing constraints Criterion T C1. (#,Init,T) 

C7.(Eque,Dque,T) 

C8.(Eque,Top,T) 

C12.(Dque,Eque,T) 

C18.(Top,Eque,T) 

C20.(Top,Top,T) 

C2. (Init,Eque,T) 

C9.(Eque,Eque,T) 

C8.(Eque,Top,T) 

C20.(Top,Top,T) 

C17.(Top,Dque,T) 

C12.(Dque,Eque,T) 

C7.(Eque,Dque,T) 

C12.(Dque,Eque,T) 

C8.(Eque,Top,T) 

C18.(Top,Eque,T) 

C8.(Eque,Top,T) 

C17.(Top,Dque,T) 

C18.(Top,Eque,T) 

C7.(Eque,Dque,T) 

C12.(Dque,Eque,T) 

C8.(Eque,Top,T) 

C17.(Top,Dque,T) 

C18.(Top,Eque,T) 

C17.(Top,Dque,T) 

C12.(Dque,Eque,T) 

C8.(Eque,Top,T) 
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Discussion 
•  Automation? 

–  From pre- and post-conditions to sequencing constraints 
–  From sequencing constraints to ‘complete’ sequences 

•  Several sequences can be adequate for a particular criterion 
–  Which branch in the tree do we choose? 
–  Are they equivalent in terms of fault detection? 

•  E.g., the set of statements executed in methods may be 
different 

–  May need to cover some pT constraints to cover certain T ones 
•  Selecting another criterion than T 

–  Criterion F 
•  Another representation than the tree we used before may be 

necessary 
–  Criterion pT+ 

•  The execution of sequence ab, constrained by (a,b,C_Bool), 
may require specific calls before the call to a (because of 
pre- and post-conditions of a). 

•  Empirical comparison of the different criteria 
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Empirical Study 
•  From Daniels and Tai 
•  3 C++ programs 
•  Mutation tool Proteum for C 
•  71 mutation operators, 155 mutants 
•  Criteria (and their names) are not exactly the ones defined 

here for T/pT+ and F/pF+ 
•  Different oracles: simple self-checks, checking return values 

(oracles), checking postconditions 
•  When using appropriate oracles (e.g., check post-conditions 

and return values), most or all mutants were killed with T/
pT-type criteria 

•  The thoroughness of the oracle has a very significant impact 
on results.  
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Object-Oriented Class 
Testing 

•  Introduction 
•  Accounting for Inheritance 
•  Testing Method Sequences 
•  State-Based Testing 

–  Methodology 
–  Case studies and simulations 

•  Testability for State-based Testing 
•  Test Drivers, Oracles, and Stubs 
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Motivations 
•  Does not apply to class (cluster) testing only. Can be applied 

to any component (e.g., subsystem) modeled by a state 
machine – we will however refer to classes in the slides 

•  Started with the testing of communication protocols  
•  Finding which method sequences to execute to gain 

confidence in the classes under test may not be easy 
•  Bashir and Goel’s approach can be used for simpler classes. 

But more complex, modal classes should have their behavior 
modeled by a state-transition model (e.g., Finite State 
Machine or FSM) 

•  Such a model can be used as a basis to measure the coverage 
of class testing and derive test cases to improve that 
coverage 

•  This is a natural information source for class testing in a 
UML context where statecharts (a specific state model) are 
defined for classes whose behavior is state dependent 

•  The question is now, what does “coverage” mean in the 
context of a state-transition model? 
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Simple
 State

 Machine 
Elevator 
Idle 

Preparing
 to  Move
 Up 

Preparing to 
Move
 Down 

Moving
 to Floor 

Checking 
Next
 Destination 

Up Request 

Up Request 

Down
 Request 

Down
 Request 

Elevator 
Started 

Elevator 
Started 

Afte
r(Timeout) 

No Request 
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Finite State Machines (I) 

•  A set of states 
•  An initial state 

•  Finite sets of input (X) and output (Y) events 
•  Transfer function 
•  Output function 

x1 

x2 x3 

/y1 

/y2 /y3 
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Finite State Machines (II) 
S :  finite set of states 
S0 : initial state 
∑ :  finite input alphabet 
Ω :  finite output alphabet 
δ :  transfer function, δ:S×Σ→S 
λ :  output function, λ:S×Σ→Ω 

1 2 

α/s 

β/r 

α/r 
Graphical 
representation 

state α β 

1 2/r ? 

2 1/s 2/r 

Tabular 
representation 

First steps:    
- Deterministic ? Fully specified? Minimal ? Strongly connected ? 
- Verify completeness, e.g., add a transition ‘ β/- ’ which loops on  

•  Choosing test coverage: All states, all transitions, … 
•  Impact on test effort? 
•  Controlability (reach state i): does a ‘reset’ function exist? 
•  Observability (observe state i): does a ‘status’ function exist? 
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Properties of FSMs 
•  Completely specified: An FSM is said to be completely 
specified if from each state in M there exists a transition for 
each input symbol.  

•  Strongly connected: An FSM M is considered strongly 
connected if for each pair of states (qi qj) there exists an input 
sequence that takes M from state qi to qj. 

• Minimal: A FSM M is considered minimal if the number of 
states in M is less than or equal to any other FSM equivalent to 
M. 
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Application Domains of
 FSMs 

•  Modeling GUIs, network protocols, pacemakers, Teller 
machines, WEB applications, safety software modeling in 
nuclear plants, and many more. 

•  While the FSM’s considered in examples are abstract 
machines, they are abstractions of many real-life machines. 

• Embedded systems can commonly be modeled with FSMs: Many 
real-life devices  have computers embedded in them. For 
example, an automobile has several embedded computers to 
perform various tasks, engine control being one example. 
Another example is a computer inside a toy for processing 
inputs and generating audible and visual responses.  
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Embedded Systems 
•  An embedded computer often receives inputs from its 
environment and responds with appropriate actions. While doing 
so, it moves from one state to another.  

•  The response of an embedded system to its inputs depends on 
its current state.  It is this behavior of an embedded system in 
response to inputs  that is often modeled by a finite state 
machine (FSM). 

• Fore example, the elevator control FSM 
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h Events such as “switch on” and “switch off” may cause the machine to change
 state, as in the state diagram below for a light with a rocker switch. 

h Some events don’t cause a state transition at all, as in attempting to turn on a
 light that is already on. 

h Behaviour of the system in each state has to be defined: State ON - light is
 emitted out of bulb, State OFF - no light emitted. 

Rocker Switch Example 

off"

on"

switch on/"
make click sound"

switch on/"
stay quiet"

switch off/"
make click sound"

switch off/"
stay quiet" input"

events"
outputs"current"

state"
next"
state"

on"
off"
on"
off"

-"
click"
click"

-"

on"Switch on"
Switch on"
Switch off"
Switch off"

on"
off"
off"

On" Off"

-"

click,"
off"

click,"
on"Switch on"

Switch off" -"

state"
event"
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Equivalence 
•  Two states are equivalent if  

–  for every input sequence, the output sequences 
from the two states are the same 

•  A FSM with no two equivalent states is 
reduced or minimized 

s1 

a / 1 

s2 

a / 0 

s3 

a / 1 

s1 and s2 are equivalent? 
s2 and s3 are equivalent? 
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Fault Taxonomy 
1.  Missing or incorrect transition to a valid 

state, based on a correct input (Transfer 
fault)  
•  Transition from 2 to 1 on input β is 

missing 
•  Transition from 1 to 2 (on input γ) is in 

fact from 1 to 3 
2.  Missing or incorrect output (action), based on 

a correct input and transition 
•  Transition from 1 to 2 (on input γ) outputs 

r (instead of u) 
3.  Corrupt state: Based on a correct input, the 

implementation computes a state that is not 
valid (additional state).  

4.  Sneak path (extra transition): The 
implementation accepts an input that is illegal 
or unspecified for a state 
•  Transition from 1 to 4 on input ϕ 

5.  Illegal input failure: The implementation fails 
to handle an illegal message correctly 
(incorrect output, state corrupted) 

1 2 

3 4 
γ/t 

α/u ∨ β/u 
β/u ∨ γ/u 

γ/u 
α/r 

β/s ∨ γ/s 

α/s 

β/s α/s 



© Lionel Briand 2010 
55 

Output faults 

s1 

b / 0 

s2 

b / 1 

a / 1 

s3 

b / 0 

a / 0 

a / 1 

s1 

b / 0 

s2 

b / 0 

a / 1 

s3 

b / 0 

a / 1 

a / 1 

Specification Implementation 
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Transfer faults 

s1 

b / 0 

s2 

b / 1 

a / 1 

s3 

b / 0 

a / 0 

a / 1 

s1 

s2 

b / 1 

a / 1 

s3 

b / 0 

a / 0 

a / 1 

Specification Implementation 

b / 0 
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Transfer faults with 
additional (corrupt) states 

s1 

b / 0 

s2 

b / 1 

a / 1 

s3 

b / 0 

a / 0 

a / 1 

s1 

b / 0 

s2 

b / 1 

a / 1 

s3 

b / 0 

a / 0 

a / 1 

s4 

s5 

a / 1 

Specification Implementation 
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Transition Tour (TT) (1) 
•  A transition tour of a FSM 

–  A path starting at the initial state, traverses every transition 
at least once, and returns to the initial state 

s1 

b / 0 

s2 

b / 1 

a / 1 

s3 

b / 0 

a / 0 

a / 1 

bababa  

s1->s1 ->s2->s2->s3->s3->s1 

0 1 1 1 0 0  
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TT-method (2) 
•  From a transition tour, we identify a test 

suite consisting of an input sequence and 
its expected output sequence 
–  The input sequence bababa and  
–  Its expected output sequence 011100 
–  Observed sequence is …. ? 
–  Oracle: compare sequences  

b / 0 b / 0 

s1 

b / 0 

s2 

a / 1 

s3 

a / 1 

a / 1 
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TT-method (3) 
•  Transition tours can find all output faults 

s1 

b / 0 

s2 

b / 1 

a / 1 

s3 

b / 0 

a / 0 

a / 1 

s1 

b / 1 

s2 

b / 1 

a / 1 

s3 

b / 0 

a / 0 

a / 1 

Specification 
Input sequence: bababa 

Expected output sequence: 011100 

Implementation 
Input sequence: bababa 

Observed output sequence: 111100 
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TT-method problem 
•  Transition tours cannot always distinguish transfer faults 

s1 

b / 0 

s2 

b / 1 

a / 1 

s3 

b / 0 

a / 0 

a / 1 

s1 
b / 0 

s2 

b / 1 

a / 1 

s3 

b / 0 

a / 0 

a / 1 

Specification 
Input sequence: bababa 

Expected output sequence: 011100 

Implementation 
Input sequence: bababa 

Observed output sequence: 010001 
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Detecting Transfer Faults 
•  The main idea 

–  Generate a test suite such that, for every 
transition (s, i, o, s’): 

•  Step 1: Puts the implementation into state s (Setup) 
•  Step 2: Applies input i and check whether the actual 

output is o (Output fault) 
•  Step 3: Determines whether the target state of the 

implementation is s’ (Transfer fault) 
•  Step 3: one possibility is that the implementation 

makes the state observable (e.g., “status” 
function) – but it is not always possible, so let’s put 
it aside for now 
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Distinguishing sequence 
•  An input sequence is a distinguishing sequence if  

–  After applying the input sequence, we can 
determine the source state by observing the 
produced output sequence 
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Example 1  
•  a is not a distinguishing sequence … 

Initial 
state 

Input 
seq 

Output 
seq 

Final 
state 

S1 a 0 S1 

S2 a 1 S2 

S3 a 0 S3 

s1 

a / 0 

s2 

a / 1 

b / 1 

s3 

a / 0 

b / 0 

b / 1 
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Example 2  
•  ab is a distinguishing sequence 

Initial 
state 

Input 
seq 

Output 
seq 

Final 
state 

S1 ab 01 S2 

S2 ab 11 S3 

S3 ab 00 S1 

s1 

a / 0 

s2 

a / 1 

b / 1 

s3 

a / 0 

b / 0 

b / 1 
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DS-method 

•  For every transition (s, i, o, s’) 
–  Step 1: Put the implementation into state s (Setup) 

–  Step 2: Apply input i and check whether the actual 

output is o (Output fault) 

–  Step 3: Determine whether the target state of the 

implementation is s’ using a distinguishing sequence 

(Transfer fault) 
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DS-method: A test suite 

s1 

t1: a / 0 

s2 

t3: a / 1 

t2: b / 1 

s3 

t5: a / 0 

t6: b / 0 

t4: b / 1 

t1: reset/null a/0 a/0 b/1 
t2: reset/null b/1 a/1 b/1 
t3: reset/null b/1 a/1 a/1 b/1 
t4: reset/null b/1 b/1 a/0 b/0 
t5: reset/null b/1 b/1 a/0 a/0 b/0 
t6: reset/null b/1 b/1 b/0 a/0 b/1 

Setup Output Transfer 
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DS-method pros and cons 
–  Few FSMs possess a 

distinguishing sequence 

–  Even if an FSM has a 

distinguishing sequence, the 

sequence may be too long 
–  Example: there is no DS 

•  A DS cannot start with a (s1, s2) 
•  A DS cannot start with b (s2, s3) 

s1 

t1: a / 0 

s2 

t3: b / 1 

t2: a / 0 

s3 

t5: a / 1 

t6: b / 0 

t4: b / 1 
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W-method 

•  A set of input sequences is a 
characterizing set if  
–  After applying all input sequences in the 

set, we can determine the source state 
by observing the output sequences 



© Lionel Briand 2010 
70 

Example 
•  {a,b} is a characterizing set ….? 

Initial 
state 

Input 
seq 

Output 
seq 

Final 
state 

S1 a 0 S1 

S2 a 1 S2 

S3 a 0 S3 

Initial 
state 

Input 
seq 

Output 
seq 

Final 
state 

S1 b 1 S3 

S2 b 1 S2 

S3 b 0 S2 

s1 

t1: a / 0 

s2 

t3: a / 1 

t2: b / 1 

s3 

t5: a / 0 

t6: b / 0 

t4: b / 1 
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W-method: A test suite 

s1 

t1: a / 0 

s2 

t3: a / 1 

t2: b / 1 

s3 

t5: a / 0 

t6: b / 0 

t4: b / 1 

t1: reset/null a/0 a/0  
t1: reset/null a/0 b/1 

t2: reset/null b/1 a/1 
t2: reset/null b/1 b/1 

t3: reset/null b/1 a/1 a/1 
t3: reset/null b/1 a/1 b/1 

t4: reset/null b/1 b/1 a/0 
t4: reset/null b/1 b/1 b/0 

t5: reset/null b/1 b/1 a/0 a/0 
t5: reset/null b/1 b/1 a/0 b/0 

t6: reset/null b/1 b/1 b/0 a/0 
t6: reset/null b/1 b/1 b/0 b/1 
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W-method pros and cons 

•  Although every FSM has a characterizing set, the 

set may have too many elements (expensive) 

•  Both distinguishing sequences and characterizing 

sets impose too strong requirements 

•  We are just interested in determining whether the 
target state is a specific state or not 

–  State identification versus state verification 
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Another Example of W 

W={baaa,aa,aaa} 

O(baaa,q1)=1101 

O(baaa,q2)=1100 

Thus baaa distinguishes state q1 from q2 
as O(baaa,q1) ≠ O(baaa,q2)  
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Unique-input-output (UIO) - 
method 

•  Let s be a state. 
•  An input sequence is a UIO sequence 

for s if  
–  After applying the input sequence, we 
can determine the source state is s or 
not by observing the output sequence 
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UIO-method & states s2, s3 
•  a is a UIO sequence for s2  
•  b is a UIO sequence for s3 Initial 

state 
Input 
seq 

Output 
seq 

Final 
state 

S1 a 0 S1 

S2 a 1 S2 

S3 a 0 S3 

Initial 
state 

Input 
seq 

Output 
seq 

Final 
state 

S1 b 1 S3 

S2 b 1 S2 

S3 b 0 S2 

s1 

t1: a / 0 

s2 

t3: a / 1 

t2: b / 1 

s3 

t5: a / 0 

t6: b / 0 

t4: b / 1 
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UIO-method and state s1 

•  ab is a UIO sequence for s1 

Initial 
state 

Input 
seq 

Output 
seq 

Final 
state 

S1 ab 01 S2 

S2 ab 11 S3 

S3 ab 00 S1 

s1 

a / 0 

s2 

a / 1 

b / 1 

s3 

a / 0 

b / 0 

b / 1 



© Lionel Briand 2010 
77 

UIO-method – Test suite 

s1 

t1: a / 0 

s2 

t3: a / 1 

t2: b / 1 

s3 

t5: a / 0 

t6: b / 0 

t4: b / 1 

t1: reset/null a/0 a/0 b/1 
t2: reset/null b/1 a/1 
t3: reset/null b/1 a/1 a/1 
t4: reset/null b/1 b/1 b/0 
t5: reset/null b/1 b/1 a/0 b/0 
t6: reset/null b/1 b/1 b/0 a/0 b/1 
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UIO-method pros and  cons 

•  Many states in FSMs have UIO 
sequences  

•  UIO sequences are usually short 
•  However, fault detection capability is 

not powerful (See Mathur’s book) 
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Extended FSMs 
•  A set of states 
•  An initial state 
•  Finite sets of input (X) and output (Y) events 

•  Transition relation 
•  A finite set of variables (V) 

–  Guards 
b1 → 

b2 → 

b3 → 

x1 

x2 

x3 

{output y1} 

{update v2} 

{output y3} –  Update blocks 
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Tests for EFSM models 
•  EFSM executions depend on input 

signals and data 
•  A test consists of: 

–  test sequence 
–  test data 

•  Executability problem: 
–  Find data to execute the test sequence 

•  Undecidable, in general   
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EFSM control and data flow 
testing 

•  EFSM executions are data-dependent 
•  Control flow FSM testing methods 

(e.g., cover all transitions) are not 
adequate for EFSM models 

•  Data flow testing methods account 
for data dependencies  
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Data flow: definitions and 
uses 

•  Data variables are  
–  defined by inputs and updates (def) 
–  used in  

•  updates (c-use) 
•  guards (p-use) 

•  Data-flow graph captures data 
dependencies 
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Data flow graph 

•  Directed graph with nodes labeled 
with definitions and uses of variables 

v=0→{input u} 

u<0→{v:=u+1} 

p-use v 
def u 

p-use u 
c-use u 
def v 
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Data-flow coverage criteria 
•  all-def 

–  test suite covers each definition at least 
once 

•  all-use 
–  cover each def-use association at least 

once 
•  all-du-paths 

–  exercise all paths from each definition 
of a variable to every one of its uses. 
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all-use coverage 
•  Find at least one definition-free path 

for every def-use association 

def v 

use v 

no definitons
 of v 


