
© Lionel Briand 2010
1

Testing Object-Oriented
Software
Class Testing

© Lionel Briand 2010
2

•  EFSMs (FSMs + variables) + concurrency +
hierarchy + communication + real-time

•  Plus special features, e.g., history states,
pseudo states

•  Widely used for specifying real-time
embedded HW/SW controllers

•  Also used in most of object-oriented
methodologies, e.g., UML

•  FSMs and EFSMs are in practice not often
used. Statecharts are.

Statecharts

© Lionel Briand 2010
3

A coffee vending machine

Statecharts =

 Hierarchy +
 EFSMs +

 Concurrency +

 Real-time
 Communication +

off

power-on/
light-on; m:=0

power-off/
light-off

not
empty

empty
inc/m:=1

dec[m=1]/m:=0

inc/m:=m+1

dec[m>1]/m:=m-1

money

busy idle

coffee

on

coffee[m>0]/start

after(5)/stop

coffee[m>0]/start;dec

© Lionel Briand 2010
4

State coverage
off

power-on/
light-on; m:=0

power-off/
light-off

not
empty

empty
inc/m:=1

dec[m=1]/m:=0

inc/m:=m+1

dec[m>1]/m:=m-1

money

busy idle

coffee

on

coffee[m>0]/start

after(5)/stop

coffee[m>0]/start;dec

© Lionel Briand 2010
5

Transition coverage
off

power-on/
light-on; m:=0

power-off/
light-off

not
empty

empty
inc/m:=1

dec[m=1]/m:=0

inc/m:=m+1

dec[m>1]/m:=m-1

money

busy idle

coffee

on

coffee[m>0]/start

After(5)stop

coffee[m>0]/start;dec

© Lionel Briand 2010
6

Guard Conditions and Transition
Pairs (Offutt et al., 1999)

•  Offut et al, Criteria for Generating Specifications-based Tests,
proceedings of UML’99, 1999, Springer

•  Transition Coverage: The test suite T causes every transition in the state
model to be taken at least once.

•  Full Predicate Coverage: It is trying to determine whether each clause in a
transition predicate (guard condition) is necessary and formulated
correctly. For each predicate P on each transition, T must include tests
that cause each clause c in P to result in a pair of outcomes (true, false)
where the value of P is directly correlated with the value of c.

•  Transition-Pair Coverage: For each pair of adjacent transitions Si:Sj and
Sj:Sk, T contains a test that traverses the pair of transitions in sequence.
It tries to exercise interactions between pairs of transitions.

•  Complete Sequence coverage: The test engineer must define meaningful
sequences of transitions on the state model diagram by choosing sequences
of states that should be entered. Usually impractical or impossible. We will
see how to select a subset of paths next.

© Lionel Briand 2010
7

Full Predicate Coverage
•  This is specific to EFSMs and statecharts, as in UML, not

FSMs
•  Testers should at minimum provide test cases to test each

clause in each guard condition (predicate)
•  Same as modified condition decision coverage criterion, but

for guard conditions in statecharts, not source code
•  Rationale: Check if each clause is necessary and is

formulated correctly
•  Clause: Boolean expression that contains no boolean

operators (e.g., AND, OR, NOT)
•  Predicate: Boolean expression that is composed of clauses

and zero or more Boolean operators. A clause may appear
more than once in a predicate.

© Lionel Briand 2010
8

Example
(A OR B) AND C

1 T F T

2 F F T

3 F T T

4 F F T

5 T T T

6 T T F

• Significantly increase the cost of transition coverage

• Example: 6 traversals of the transition

© Lionel Briand 2010
9

Transition-Pair Coverage
•  Previous criteria do not test sequences of transitions
•  Interactions between transitions (e.g., data flow) should be

exercised
•  Check for invalid transition sequence allowed or valid

sequence not allowed
•  Example:

–  Transitions are triggered based on predicates pi
–  Test inputs must satisfy predicate pairs associated with

transition pairs
•  to test S, 6 transition pairs are required
•  (p1:p3), (p1:p4), (p1:p5), (p2:p3), (p2:p4), (p2:p5)

assuming all pairs are possible …

S

p1

p2

p3

p4

p5

© Lionel Briand 2010
10

Complete Sequence Criterion

•  Experience and knowledge of the test
engineer required

•  Select “meaningful sequences” of
transitions

•  Sequence of state transitions that
form a complete practical use of the
system

•  In many cases, the number of possible
sequences is too large if not infinite

© Lionel Briand 2010
11

Empirical Study
•  Small cruise control system (400 C lines, 7

functions, 184 blocks, 174 decisions)
•  Evaluation Criteria

•  Structural coverage (decision and block
coverage)

•  Fault coverage
•  Four states: Off, Inactive, Cruise, and Override
•  A. J. Offutt and A. Abdurazik, “Generating Tests from UML specifications,”

Proc. 2nd International Conference on the Unified Modeling Language
(UML'99), Fort Collins, CO, pp. 416-429, October, 1999.

•  A. J. Offutt, Y. Xiong and S. Liu, "Criteria for Generating Specification-
based Tests," Proc. 5th International Conference on Engineering of Complex
Computer Systems (ICECCS'99), Las Vegas, NV, pp. 119-129, October, 1999.

© Lionel Briand 2010
12

Empirical Settings
• 25 faults were inserted in separate versions of the
program (aka mutation testing)

• Most were in the logic that implemented the state machine

• Compare All transition to Predicate Coverage

• Tests were created independently from the faults, by
different people (manually)

• Each test case was executed against each faulty version

• As a comparison, 54 test cases were generated randomly

© Lionel Briand 2010
13

Program and Fault Coverage

Random Transition Full Pred

TC 54 12 54

Faults found 15 15 20

Faults missed 9 9 4

Percent (mutation
score)

62.5% 62.5% 83.3%

• The FP criterion lead to 89% of blocks (stmt) and 95% of
decisions (branches) in the code being covered
• Fault detection:

© Lionel Briand 2010
14

Transition / Test Trees
•  Offutt defines coverage criteria but does not propose methods to

automate the determination of state sequences to test
•  One of the earliest papers for FSMs is Chow’s paper (1978)
•  Does not address guard conditions on transitions
•  Adapted for (flattened) statecharts by Binder (2000)
•  The first step is to generate a transition or test tree from the

statechart
•  The tree paths includes all round-trip state-transition paths:

transition sequences that begin and end with the same state (with
no repetitions of state other than the sequence start/end state)
and simple paths from the initial to the final state
–  A path here is a sequence of transitions: statep, eventi, stateq,

eventj, stater, …
–  A simple path contains no loop iteration

•  Append each sequence with the characterization set (W) or a call
to a ‘status’ / get_state method (assertion)

© Lionel Briand 2010
15

Procedure for Deriving Tree
•  Flatten statechart (remove concurrency and hierarchy)
•  Initial state as the root node of the tree
•  An edge is drawn for every transition out of the initial node,

with nodes being added as resultant states
•  A leaf node is marked as terminal if the state it represents

has already been drawn or is the final state
•  No more transition are traced out of a terminal node
•  This procedure is repeated until all leaf nodes are terminal
•  The tree structure depends on the order in which

transitions are traced (breadth or depth first)
•  A depth first search yield fewer, longer test sequences
•  The order in which states are investigated is supposed to be

irrelevant

© Lionel Briand 2010
16

CCoinBox Test Tree
•  Based on the (faulty)

statechart presented
earlier

•  Root node = initial state
•  S4 was not in the

statechart (missing
corrupt state) and is not
a terminal node

•  S0: allowVend = 0, curQtrs = 0
•  S1: allowVend = 0, curQtrs = 1
•  S2: allowVend = 1, curQtrs > 1
•  S3: allowVend = 1, curQtrs = 0

(corrupt state made possible by the fault
 in code)

•  S4: allowVend = 1, curQtrs = 1
(corrupt state made possible by the fault

 in code)

This corresponds to
 several edges in
 the tree S0

S0

S1

S1

S2

S2 S0 S3

S4 S0 S0

Reset(), Vend(), ReturnQtr() AddQtr()

Vend() AddQtr()

ReturnQtr() AddQtr() Reset(), Vend()

AddQtr()
Reset(), Vend() ReturnQtr()

Reset(), ReturnQtr()

S0

… …

© Lionel Briand 2010
17

CCoinBox Test Tree (correct)
S0

S0

S1

S1

S2

S2 S0 S0

Reset(), Vend(), ReturnQtr() AddQtr()

Vend() AddQtr()

ReturnQtr() AddQtr() Reset(), Vend()

Reset(), ReturnQtr()

S0

Based on the correct statechart,
modeling how the code should
behave
S0: allowVend = 0, curQtrs = 0
S1: allowVend = 0, curQtrs = 1
S2: allowVend = 1, curQtrs > 1

Using this transition tree, with the faulty CCoinBox program,
ReturnQtr() on S2 would not lead to S0 but to a corrupt
state – however it would not be observable unless we have a way
to directly access & check the state of CCoinBox or use
distinguishing/UIO sequences after each leaf (we attempt to
vend, then add a quarter and vend).

© Lionel Briand 2010
18

From Test Tree to Test
Cases

•  Each test sequence begins at the root node and ends at a
leaf node

•  The expected result (Oracle) is the sequence of states and
actions (outputs, other objects’ change of state) – assuming
states can be “observed”.

•  Test cases are completed by identifying method parameter
values and required conditions to traverse a path

•  We run the test cases by setting the object under test to
the initial state, applying the sequence, and then checking
the intermediary states, final state, and outputs (e.g.,
logged)

© Lionel Briand 2010
19

Guard Conditions
•  The guard is a simple Boolean expression or

contains only logical and operators: one true
combination

•  The guard is a compound Boolean expression
containing at least one logical or operator. One
transition is required for each true combination.

•  The guard specifies a relationship that occurs only
after repeating some event several times: single
arc annotated with * for the transition

•  At least one false combination in all cases (see
sneak paths)

•  Alternative: use Offutt’s predicate coverage,
which is more complex – difficult to say which one
is more cost-effective

© Lionel Briand 2010
20

BoundedStack Example

empty

create()

pop() destroy()

partially full

push()
pop()
[curIndex = minIndex+1]

destroy()
push()
[curIndex < maxIndex-1] pop()

[curIndex > minIndex+1]

full

pop()

push()
[curIndex = maxIndex-1]

push() destroy()

Assume that three data members are defined in the class:
•  curIndex: current index of last element introduced in the stack
•  minIndex: minimum index value (e.g.,

 0 minimum number of elements in
 stack)

•  maxIndex: maximum index
 (maximum size of the stack)

Assume, for example, that
 there is a bug in the way
 push() handles a full stack

© Lionel Briand 2010
21

BoundedStack Transition
Tree

empty

empty

empty

partially full

full

partially full full

pop() push()

pop() * [curIndex = maxIndex] push()

pop() push()

destroy()

destroy()

destroy()

final state

final state

final state

partially full

pop() If we do not do this, we do not cover the statechart
 transition from partially full to partially full and do not
 satisfy All Transition coverage!

© Lionel Briand 2010
22

BoundedStack Test Driver
int boundedStack_test_driver() {
 BoundedStack stack(2);
 stack.push(3); // push() when empty
 stack.push(1); // push() when partially-full
 try {Stack.push(9);} // push() when full
 catch (Overflow ex) {} // expected to throw
 stack.pop(); // pop() when full
 stack.pop(); // pop() when partially-full
 try {stack.pop();} // pop() when empty
 catch (Underflow ex) {} // expected to throw
 BoundedStack stack2(3);
 stack2.push(6); // stack2 is partially-full
 stack2.push(5); // stack2 is still partially-full
 BoundedStack stack3(1);
 stack3.push(6); // stack3 is full
 // destructors called implicitly at end of block for
 // stack (empty), stack2 (partially-full) and stack3 (full)

};

© Lionel Briand 2010
23

Types of Faults Detected
•  Incorrect or missing transitions
•  Incorrect or missing actions leading to

incorrect output or system state
•  Missing states and some corrupt states
•  Some extra transitions (sneak paths)

cannot be detected unless state model
completely specified (unlikely)

•  How to improve testability by improving
the observability of corrupt states: Class
invariant check.

© Lionel Briand 2010
24

Detecting Sneak Paths
•  Covering all round-trip paths shows conformance to the

explicitly modeled behavior
•  When state machines are incompletely specified (and they

usually are), we have to test for sneak paths
•  They are unexpected transitions
•  A sneak path is possible for each unspecified transition and

for guarded transitions that evaluate to false
•  We need to test all state’s illegal events (no need to check

for sneak paths traversing two or more states) – this
guarantees to reveal all sneak paths

•  Detecting sneak paths may be particularly important for
safety-critical systems

•  One has to check that the appropriate action is taken:
exception handling, error message …

© Lionel Briand 2010
25

Sneak Path Testing
Procedure

•  Place the object in the corresponding state
(possibly using a built-in set method)

•  Apply illegal event by sending message or forcing
the virtual machine to generate the desired event

•  Check that the actual response matches the
specified response (e.g., raise exception, error
message)

•  Check that the resultant state is unchanged

© Lionel Briand 2010
26

Subsumption Hierarchy
•  Piecewise: All states, all events, all actions
•  All (explicit) transitions: Every specified transition is

exercised
–  Maximum #test cases is #events*#states
–  Catch all operation errors, but may not catch all

transfer / transition errors
•  All (explicit) n-Transitions Sequences: Every specified

transition sequence of n events is exercised at least once
•  All Round-Trip Paths
•  Exhaustive
=> Overall, despite some theory, very little experience exists

with these coverage criteria

© Lionel Briand 2010
27

Problems with Binder’s
Approach

•  Covering certain transitions requires to traverse specific
paths to satisfy the guard condition. We cannot simply
follow the test tree algorithm when the statechart contains
guard conditions. How do we automate the generation of the
tree?
–  Potential solution: Dynamic test generation

•  Sometimes, as a result of the above problem, using the tree
algorithm does not lead to covering all transitions

•  The test tree covers round trip paths in a piecewise manner
- it does not execute the round trip paths per se. Therefore,
we cannot say that the round trip path technique subsumes
the n-transitions sequence criterion

© Lionel Briand 2010
28

Object-Oriented Class
Testing

•  Introduction
•  Accounting for Inheritance
•  Testing Method Sequences
•  State-Based Testing

–  Methodology
–  Case studies and simulations

•  Testability for State-based Testing
•  Test Drivers, Oracles, and Stubs

© Lionel Briand 2010
29

Motivations
•  How do we assess the cost-effectiveness of

various state-based coverage criteria?
•  This cannot be done in an analytical manner

(beyond subsumption).
•  Empirically, we have several options:

–  Controlled experiments
–  Case studies
–  Simulation

•  Simulation allows us to perform more
comprehensive studies, but is challenging: (1)
automation of the simulation process, (2) external
validity of results.

© Lionel Briand 2010
30

SUT Class
Diagram

Applet

Runnable

CarSimulator

ignition : Boolean = false
throttle : Double = 0.0
speed : Integer = 0
distance : Integer = 0
brakepedla : Integer = 0
engine : Thread = null

engineOn()
engineOff()
accelerate()
brake()
setThrottle()
getSpeed()

CarSpeed

setThrottle()
getSpeed()

Controller

controlState : Integer = INACTIVE
sc : SpeedControl

brake()
accelerator()
engineOff()
engineon()
on()
off()
resume()

CruiseControl

handleEvent()

car

control

SpeedControl

state : Integer = DISABLE
setSpeed : Integer = 0
speedController : Thread
cs : CarSpeed
disp : CruiseDisplay

enableControl()
disableControl()
recordSpeed()
clearSpeed()

cs sc

CruiseDisplay

recorded : Integer = 0
cruiseOn : Boolean = false

enable()
disable()
record()

disp

disp

car

sc

control

disp

disp

cs

© Lionel Briand 2010
31

Concurrent Statechart

Idle Running
Do/speed

engineOn/engineOn()

engineOff/engineOff()

INACTIVE ACTIVE

STANDBY

CRUISING

Do/
SpeedController
,setThrottle

engineOn/clearSpeed()

engineOff/speedControl.disableControl()

on/
speedControl.recordSpeed(),
speedControl.enableControl()

off/speedControl.disableControl()

accelerator/speedControl.disable()

brake/speedControl.disable()

resume/speedControl.enableControl()

accelerator/
accelerate()

brake/brake()

CarSimulator Controller

engineOff/speedControl.disableControl()

engineOff/speedControl.disableControl()

on/
speedControl.recordSpeed(),
speedControl.enableControl()

on/speedControl.recordSpeed(),
speedControl.enableControl()

© Lionel Briand 2010
32

Flattened Statechart

Inactive/Idle Active/Running

Standby/
Running

Cruising/
Running

engineOn/carSimulator.engineOn(),speedControl.clearSpeed

engineOff/carSimulator.engineOff(),speedControl.disableControl()

on/
speedControl.recordSpeed(),
speedControl.enableControl()

off/speedControl.disabelControl()

resume/speedControl.enableControl()

accelerator/
carSimplator.accelerate(),

speedControl.disableControl()

brake/
carSimulator.brake(),

speedControl.disable()

engineOff/
carSimulator.engineOff(),speedControl.disableControl()

engineOff/
carSimulator.engineOff(),speedControl.disableControl()

accelerator/
carSimulator.accelerate(),

speedControl.disableControl()

brake/
carSimulator.brake(),

speedControl.disable() brake/carSimulator.brake(),speedControl.disable()

accelerator/carSimulator.accelerate(), speedControl.disableControl()

on/speedControl.recordSpeed(), speedControl.enableControl()

on/
speedControl.recordSpeed(),
speedControl.enableControl()

© Lionel Briand 2010
33

Example
Transition

Tree

Idle Running

Running

Running

Idle

Cruising

Standby

Standby

Cruising

Standby

Cruising

Cruising

Standby

Standby

engineOn

Idle

Idle

ac
ce
le
ra
to
r

br
ak
e

on

engineOff

on

engineOff

engineOff

br
ak
e

brake

accelerator

accelerator

on

res
um
e

off

© Lionel Briand 2010
34

3
Transition

Trees
Idle Running

Running

Running

Idle

Cruising

Standby

Standby

Cruising

Standby

Cruising

Cruising

Standby

Standby

engineOn

Idle

Idle

ac
ce
le
ra
to
r

br
ak
e

on

engineO
ff

on

engineOff

engineO
ff

br
ak
e

brake

accelerator

accelerator

on

res
um
e

off

Idle Running

Running

Running

Idle

Cruising

Standby

Standby

Cruising

Standby

engineOn

Idle

ac
ce
le
ra
to
r

br
ak
e

on

engineO
ff

on

Cruising

Cruising

Standby

Standby

Idle

engineO
ff

engineO
ff

br
ak
e

brake

accelerator

accelerator

on

res
um
e

off

(c) Transition Tree
 3:

Idle Running

Running

Running

Idle

Cruising

Standby

Standby

Cruising

Standby

engineOn

Idle

ac
ce
le
ra
to
r

br
ak
e

on

engineO
ff

on

Cruising

Cruising

Standby

Standby

Idle

engineO
ff engineO

ff

br
ak
e

brake

accelerator accelerator

on

res
um
e

off

(b) Transition Tree
 2:

(a) Transition Tree
 1:

© Lionel Briand 2010
35

Mutation Operators I
Class mutation operator Description

LOR (Language Operator
Replacement)

Replace a language operator with other legal
alternatives.

LCO (Literal Change
Operator)

Increase/decrease numeric values or swap
boolean literals.

SSO (Swap Statement
Operator)

Swap case block statement in a switch
statement, swap first and second contained
statements in if-then-else statement, and so
on.

CFD (Control Flow
Disrupt operator)

Disrupt normal control flow: add/remove
break, continue, return.

VRO (Variable
Replacement Operator)

Replaces a variable name with other names
of the same type and of the compatible types.

© Lionel Briand 2010
36

Mutation Operators II
Class mutation operator Description

CRT (Compatible Reference
Type replacement)

Replace a class type with compatible
types.

ICE (Instance Creation
Expression changes)

Change an instance creation expression
with other instance creation expressions
of the same and/or compatible class
types.

POC (Parameter Order
Change)

Change method parameter order in
method declarations.

VMR (oVerloading Method
Removal)

Remove the declaration of an
overloading method.

AOC (Argument Order
Change)

Change method argument order in
method invocation expressions.

© Lionel Briand 2010
37

Mutation Operators III
Class mutation operator Description

AND (Argument Number Decrease) Decrease arguments one by one.

HFR (Hiding Field variable
Removal)

Remove a field variable declaration
when it hides the variable in
superclasses.

HFA (Hiding Field variable
Addition)

Add a field variable of the same
name as the inherited field variable.

OMR (Overriding Method
Removal)

The declaration of an overriding
method is removed

AMC (Access Modifier Change) Replace an access modifier with
other modifiers.

© Lionel Briand 2010
38

Mutation Operators IV
Class mutation operator Description

SMC (Static Modifier Change) Add or remove a static modifier.

HER (Exception Handler Removal) Remove exception handlers one by
one.

EHC (Exception Handling Change) Change an exception handling
statement to an exception program
statement, and vice versa.

© Lionel Briand 2010
39

Mutant Distribution
Distributions of Mutants

7

26

20
25

1

12

0
5
10
15

20
25
30

AOR CRP MNR ROR RSR SDL

Mutation Operator

N
um

be
r

of
 M

ut
an

ts

© Lionel Briand 2010
40

All Transitions

0.0
0.1
0.2
0.3

0.4
0.5
0.6
0.7
0.8
0.9
1.0

 M
ut

at
io

n
S

co
re

0 5 10 15 20 25
 Cumulative Length

All Transition

0.0
0.1
0.2
0.3

0.4
0.5
0.6
0.7
0.8
0.9
1.0

 M
ut

at
io

n
S

co
re

0 5 10 15 20 25
 Cumulative Length

Null Criterion

© Lionel Briand 2010
41

All Transition Pairs

0.0
0.1
0.2
0.3

0.4
0.5
0.6
0.7
0.8
0.9
1.0

 M
ut

at
io

n
S

co
re

0 10 20 30 40 50 60 70 80 90 100
 Cumulative Length

All Transition Pairs

0.0
0.1
0.2
0.3

0.4
0.5
0.6
0.7
0.8
0.9
1.0

 M
ut

at
io

n
S

co
re

0 10 20 30 40 50 60 70 80 90 100
 Cumulative Length

Null Criterion

© Lionel Briand 2010
42

Transition Tree

0.0
0.1
0.2
0.3

0.4
0.5
0.6
0.7
0.8
0.9
1.0

 M
ut

at
io

n
Sc

or
e

0 10 20 30 40
 Cumulative Length

Null Criterion

0.0
0.1
0.2
0.3

0.4
0.5
0.6
0.7
0.8
0.9
1.0

 M
ut

at
io

n
Sc

or
e

0 10 20 30 40
 Cumulative Length

Transition Tree 1

0.0
0.1
0.2
0.3

0.4
0.5
0.6
0.7
0.8
0.9
1.0

 M
ut

at
io

n
Sc

or
e

0 10 20 30 40
 Cumulative Length

Transition Tree 2

0.0
0.1
0.2
0.3

0.4
0.5
0.6
0.7
0.8
0.9
1.0

 M
ut

at
io

n
Sc

or
e

0 10 20 30 40
 Cumulative Length

Transition Tree 3

© Lionel Briand 2010
43

Comparing Criteria

0.0
0.1
0.2
0.3

0.4
0.5
0.6
0.7
0.8
0.9
1.0

 C
ov

er
ag

e
R

at
io

0 10 20 30 40 50 60 70 80 90 100
 Cumulative Length

 AT TT1, TT2, TT3

ATP

0.0
0.1
0.2
0.3

0.4
0.5
0.6
0.7
0.8
0.9
1.0

 M
ut

at
io

n
S

co
re

.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0
 Coverage Ratio

ATP

TT2

 AT

TT1

TT3

0.0
0.1

0.2
0.3

0.4
0.5

0.6
0.7
0.8

0.9
1.0

 M
u
ta

tio
n
 S

co
re

0 10 20 30 40 50 60 70 80 90 100
 Cumulative Length

 AT

ATPTT1

TT2

TT3

© Lionel Briand 2010
44

Adequate Test Sets

0.10

0.20

0.30

0.40

0.50

P
ro

ba
bi

lit
y

A
xi

s

.84 .86 .88 .90 .92 .94 .96 .98 1.00

All Transition

Mutation Score

0.50

1.00

1.50

2.00

P
ro

ba
bi

lit
y

A
xi

s

.84 .86 .88 .90 .92 .94 .96 .98 1.00

All Transition Pairs

Mutation Score

0.50

1.00

1.50

2.00

Pr
ob

ab
ilit

y
Ax

is

.84 .86 .88 .90 .92 .94 .96 .98 1.00

Transition Tree 1

Mutation Score

0.50

1.00

1.50

2.00

Pr
ob

ab
ilit

y
Ax

is

.84 .86 .88 .90 .92 .94 .96 .98 1.00

Transition Tree 2

Mutation Score

0.50

1.00

1.50

2.00

Pr
ob

ab
ilit

y
Ax

is

.84 .86 .88 .90 .92 .94 .96 .98 1.00

Transition Tree 3

Mutation Score

© Lionel Briand 2010
45

First Case Study:
Conclusions

•  All criteria, as expected, definitely perform better than
their respective null criterion

•  TT is a compromise between AT and ATP in terms of cost
•  It is unclear whether it is more effective than AT (in the

best case, same average but less variance)
•  More studies needed
•  When several transition trees are possible, it is important to

choose carefully the one that exercise common usage
scenarios

•  Here, all the tests should not be performed on a stationary
car (accelerator event must have been received)

•  Use code coverage to select tree? Change definition?

© Lionel Briand 2010
46

Summary of Results
•  AT probably not sufficiently reliable for an indicator of

fault detection
•  ATP highly reliable but also substantially more expensive
•  TT gets mixed results, depending on the statechart

properties: guard conditions, etc.
•  TT good compromise when many guard conditions. Slightly

more expensive but significantly more effective than AT.
•  Where alternative transition trees are possible, one should

be careful to select the one that exercise the code in the
most realistic and complete manner

•  MTT is an interesting alternative but more studies are
needed

•  FP not particularly cost-effective when numerous, complex
guard conditions

© Lionel Briand 2010
47

Test Evaluation based on
Mutant Programs

•  Take a program and test data generated for that program
•  Create a number of similar programs (mutants), each differing from

the original in one small way, i.e., each possessing a fault
•  The test data are then run through the mutants
•  If test data detect differences in mutants, then the mutants are

said to be dead, otherwise live. Oracles are based on both a
comparison of outputs and state invariant checking.

•  A mutant remains live either because it is equivalent to the original
program (functionally identical though syntactically different –
equivalent mutant) or the test set is inadequate to kill the mutant

•  For the automated generation of mutants, we use mutation
operators , that is predefined program modification rules (I.e.,
corresponding to a fault model)

© Lionel Briand 2010
48

Guidelines to Perform
Studies

•  Seed mutants (possibly randomly) before devising
test cases to avoid bias

•  Devise a sample of mutants as large as possible
and automate the execution of drivers on mutants

•  Use adequate mutation operators (depends on
programming language)

•  Focus on mutations that correspond to faults to
be detected by testing (e.g., interface faults for
integration testing)

•  Examine why a mutant was left alive – could it have
been killed, how, what were the chances?

© Lionel Briand 2010
49

Object-Oriented Class
Testing

•  Introduction
•  Accounting for Inheritance
•  Testing Method Sequences
•  State-Based Testing
•  Testability for State-based Testing
•  Test Drivers, Oracles, and Stubs

© Lionel Briand 2010
50

Testability of UML
Statecharts

•  UML does not prevent the definition of untestable
statecharts - It is therefore important to follow
some rules to develop testable statecharts

•  In order to apply the techniques presented, we
need:
–  Unambiguous and testable definition of state (e.g., state

invariant) => Oracles
–  Guards should be expressed in an unambiguous syntax

(e.g., OCL) => Exercise guards, e.g., FP criterion
–  Unambiguous definitions of events and responses

(actions) (e.g., through post-conditions) => Oracles
–  Built-in test support (e.g., get, set, status methods) =>

Decrease the cost of testing

© Lionel Briand 2010
51

Built-in Test Support
•  Get state functions: The simplest case is a function that

evaluates the state invariant and returns a Boolean
indicating whether an object is in that state.
–  During OO analysis and design, each state is defined by a

state invariant, e.g., set of data member values for S0 =
(allowVend=0, curQrts=0) in CCoinBox

–  Each state invariant is associated with an executable
assertions in the code, e.g., isS0()

•  Set state functions: It may be hard to reach a state in
which a test sequence starts, so we may need built-in
methods to set objects in certain states that are difficult
to reach.

© Lionel Briand 2010
52

“Get State” for
BoundedStack

Class BoundedStack {
 public:

 …

 private:
 const char* get_BoundedStack_state () const {
 if (cur_index == 0) return “empty”;
 else if (cur_index == max_index)

 return “full”;
 else return “partially-full”;
 }

};

•  Only test drivers should be allowed to use these operations
•  Get/Set operations can be private and test drivers can be friend classes in
C++ or they can be protected and inherit from the classes under test

© Lionel Briand 2010
53

Using the State Design
Pattern

•  The state design pattern facilitates the
implementation of get/set operations
(enforces it and simplifies it)

•  If we use the state design pattern, the
Get/Set state operations can be coded as
methods in the subclasses representing the
states.

•  Can be part of a design standard in an
organization

•  This is an example of how design decisions
relate to testability

© Lionel Briand 2010
54

State Pattern
•  Intent: Allows an object to alter its behavior when its

internal state changes. The object will appear to change its
class.

•  Applicability: An object's behavior depends on its state, and
it must change its behavior at run-time depending on that
state.

•  Consequences:
–  It localizes state-specific behavior and partitions

behavior for different states.
–  It makes state transitions explicit (object changes

subclass)
–  Ease the addition of new states

Design Patterns

© Lionel Briand 2010
55

Structure
Design Patterns

© Lionel Briand 2010
56

State Pattern: Example
Design Patterns

© Lionel Briand 2010
57

Built-in Test Support
Design Patterns

Assertion / Reporter method: IsState(), GetState(), StateInvariant()

SetState() simply changes this link

© Lionel Briand 2010
58

State Pattern Deficiencies
•  The state pattern does not address UML

statechart concepts
•  Actions on transitions
•  Entry and exit actions associated with

states
•  Activities performed while in states
•  The state pattern needs to be expanded

Design Patterns

© Lionel Briand 2010
59

Extending the State Pattern

ConcreteState1

Event/action3

ConcreteState2

Entry/action1
Do/activity1
Exit/action2

Entry/action4
Do/activity5
Exit/action6

Design Patterns

© Lionel Briand 2010
60

Extending the State Pattern II

ConcreteState1

enter(context: Context)
eventHandler(context: Context)

State = s
State.enter (self)

State

enter(context: Context)
eventHandler(context:Context)

Context

setState(s:State)
eventHandler()
Action1()
Action2()
Action3()
Action4()
Action5()
Activity1()
Activity2()

state

……

State.event
Handler (self)

Context..action1()
Context.activity1

Context..action2()
Context.action3()
Context.SetState(nextState)

Design Patterns

© Lionel Briand 2010
61

Discussion
•  When no Set state operations are used, then sequences of

public methods must be executed by the test driver to
reach the desired state for testing – this may be complex
and error-prone

•  When Set state operations are used, coding or generating a
test driver becomes easier, but at the price of additional
code to be provided by the developers

•  One needs to ensure that set state operations are not
misused in the application code – it is exclusively for the
usage of test drivers

•  Get state operations enables an easier detection of corrupt
states, eliminate the need for characterization input
sequences (Chow), but again require additional code to be
provided by the developers

•  Checking state invariants may not be enough to detect
corrupt states – checking the class invariant may be required

•  All the above is easier to implement when using the state
design pattern

© Lionel Briand 2010
62

Object-Oriented Class
Testing

•  Introduction
•  Accounting for Inheritance
•  Testing Method Sequences
•  State-Based Testing
•  Testability for State-based Testing
•  Test Drivers, Oracles, and Stubs

© Lionel Briand 2010
63

Drivers
•  Assume you have a diff operation that computes

the difference between two ordered sets
(i.e., elements that are in the first set but not in
the second)
// Java code chunk
OrdSet s1, s2, s3;
…
s3 = s1.diff(s2); // s3=s1-s2, e.g.,{1,5}=
{1,4,5}-{4}

System.out.println(s3);

• How to execute the test cases you devised using a
black-box or white-box technique?
– How do you build the test driver that executes

your test cases?

© Lionel Briand 2010
64

Drivers - First solution
public class Driver {
public static void main(String argv[]) {

// The test case consists in s1={1,4,5} and s2={4}
OrdSet s1 = new OrdSet();
OrdSet s2 = new OrdSet();
OrdSet s3 = new OrdSet();
s1.add(1); s1.add(5); s1.add(4); // adding elements to

 sets
s2.add(4);
s3 = s1.diff(s2);
System.out.println(s3);

 }
}

•  Testing technique → many test cases
•  Solution: writing all the test cases in function main in the

driver.
  Can’t selectively run test cases (regression testing), can’t

have different test sets for a class

© Lionel Briand 2010
65

Drivers - Second Solution

public class Driver {
public static void main(String argv[]) {

TS1(); // Test set 1
}
public static void TS1() {

TC1();
TC2();
…

}
public static void TS2() {

TC5();
TC2();
…

}

public static void TC1() {
OrdSet s1 = new OrdSet();
OrdSet s2 = new OrdSet();
OrdSet s3 = new OrdSet();
s1.add(1); s1.add(5);
s1.add(4);
s2.add(4);
s3 = s1.diff(s2);
System.out.println(s3);

}
public static void TC2() {…}
…
}

–  One static method per test set (namely TS1, TS2, …)
–  One static method per test case (namely TC1, TC2, …)
–  Test sets can share test cases

© Lionel Briand 2010
66

Discussion
•  All the static methods that execute test cases have (usually)

the same structure
–  Here: creating sets s1 and s2, and calling the diff

•  A testing technique can produce hundreds of test cases
•  What happens if we want to add test cases?

1.  Add new TCxxx and TSxxx static methods
2. Add calls to these methods in the main
3. Compile the driver
4. Execute the driver

 We create different tests for different purposes, e.g.,
successive regression test sets

 We can change one statement in the main() to execute
different test sets

© Lionel Briand 2010
67

Drivers – Third solution
•  The main function in the driver reads a text file:

–  1 test set per text file
–  No need to recompile when changing test cases
–  The driver must read the text file, create the objects

according to its contents and execute the diff

 public class Driver {
 public static void main(String argv[]) {

 OrdSet s1, s2, s3
 // open file and read test set name …
 while (not at the end of file) {
 // read a test case (elements in sets)
 // instantiate s1 and s2
 // execute the diff, assign result to s3
 // output the test case number and the result
 }

 }

© Lionel Briand 2010
68

Discussion
• What is the format of the text file?

– Many test cases in the text file
• The driver (the main) needs to:

–  Identify test cases:
• Beginning and end of a test case in the file
• Number/Name of the test case

–  Know how to read the data in test cases
• Separation between different fields in the

test case (e.g., the two sets)
 Different strategies: must be standardized

© Lionel Briand 2010
69

Test Set File Format
Solution 1

*** TC1 ***
1
2
3

2
*** TC2 ***
3
5
4

3
5
*** TC3 ***
…

Solution 2
*** TC1 ***
1 2 3

2
*** TC2 ***
3 5 4

3 5
*** TC3 ***
…

fir
st

 te
st

 c
as

e
se

co
nd

 te
st

 c
as

e

first set

second set

first set

second set

First
test case

Second
test case

© Lionel Briand 2010
70

More Complex Drivers
E.g., test cases are different (different kinds of executions/data)
Solutions
1. Several different drivers (main functions) with different execution

flows (i.e., with different file format)
–  Driver (main) one: file format 1
–  Driver (main) two: file format 2
  Implementation depends on the programming language

(difference between Java and C/C++)
2. One driver with several possible inputs (e.g., command line

arguments, or in the text file)
–  Driver (main) with input 1 (command line argument): file format 1
–  Driver (main) with input 2 (command line argument): file format

2
  Implementation language independent (we pass information on

the command line)

© Lionel Briand 2010
71

More Complex Drivers (in
Java)

•  In Java, we can have different driver classes, each having a
main function.
–  In the same directory we would have files OrdSet.java,

Driver1.java, Driver2.java, …
–  And Driver1.java, Driver2.java, …, all have a main function

•  We just choose which main (driver class) we want to execute
when executing the Java Virtual Machine
–  java Driver1 […]
–  java Driver2 […]
–  …

•  Solution can be used even if we test a program (not a class),
that already has a main function
–  Drivers can be considered as additional “entry-points” in

the program

© Lionel Briand 2010
72

More Complex Drivers (in C++)
•  Conditional compilation in C/C++

–  Enables the programmer to control the execution of
preprocessor directives and the compilation of program code.

–  Using #define, #ifdef, #ifndef, and #endif preprocessor
directives, that:
•  Determine whether symbolic constants are already defined
•  Determines whether parts of the code are compiled (and thus

executed)
•  Two solutions:

–  Remove/Add the preprocessor directives
•  Requires modifying source files and compilation

–  Use compiler options
•  Requires compilation only

•  Solutions can be used even if we test a program (not a class), that
already has a main function
–  Drivers can be considered as additional “entry-points” in the

program

© Lionel Briand 2010
73

More Complex Drivers (in C++)
// File: ClassTester.h

#include “ClassTested.h”

class ClassTester {

public:

 ClassTester();

 void runTestSuite();

private: …

};

// File: ClassTester.cpp
#include “ClassTester.h”
ClassTester::ClassTester() {…}
void ClassTester::runTestSuite(){…}
// code to run and report test cases

// File: MainProg.cpp

#define DRIVER

#ifndef DRIVER

#include “ClassTested.h”

class MainProg {

public: …

private: …

};

#endif

// File: ClassTesterMain.cpp
#define DRIVER
#ifdef DRIVER
#include “ClassTester.h”
int main() {
 ClassTester tester;
 tester.runTestSuite();

}
#endif

•  These lines make the driver execute
•  Removing them make the main

 program execute

© Lionel Briand 2010
74

More Complex Drivers (in C++)
•  Executing the Main of the program

–  the main in file MainProg.cpp
cc -c MainProg.cpp
cc -c ClassTester.cpp
cc -c ClassTesterMain.cpp
cc MainProg.o ClassTester.o

ClassTesterMain.o -o Exe
•  Executing the Main of the driver

–  the main in file
ClassTesterMain.cpp

(compiler option -D defines constants
DRIVER)

cc -DDRIVER -c MainProg.cpp
cc -DDRIVER -c ClassTester.cpp
cc -DDRIVER -c ClassTesterMain.cpp
cc MainProg.o ClassTester.o

ClassTesterMain.o -o Exe

// File: MainProg.cpp

#ifndef DRIVER
#include “ClassTested.h”

class MainProg {
public: …

private: …
};
#endif

// File: ClassTesterMain.cpp
#ifdef DRIVER
#include “ClassTester.h”
int main() {

 ClassTester tester;
 tester.runTestSuite();

}
#endif

// File: ClassTester.cpp
#ifdef DRIVER
#include “ClassTester.h”
ClassTester::ClassTester() {…}
void ClassTester::runTestSuite(){…}
// code to run and report test cases
#endif

© Lionel Briand 2010
75

The Oracle
•  In the previous approaches for the implementation of the

driver, the driver reports the observed output.
•  Deciding which test cases failed (a fault has been revealed) is

done manually.
–  Comparing the expected output with the observed one, for each

test case
•  Automating the oracle, i.e., the comparison requires that:

–  We know exactly the expected output (which is the case in
the diff example)
•  However, sometimes, we do not know exactly what is the

result, as (for instance) doing (i.e., implementing) the
comparison would correspond to building the function we test

•  This is when using assertions to check class and state
invariants can come handy

–  Then the driver outputs the test case number when a
failure has been detected
•  We only need to know which test cases have failed

© Lionel Briand 2010
76

The Oracle
•  The oracle is included in the driver

–  The expected output must be found in the input text file
•  Format?

•  The oracle:
–  gets the output produced by the system under test

•  In our example, the toString method of class
OrdSet is called (format of returned string?)

–  gets the expected output from the input text file
–  Performs the comparison

•  In our example, a simple String comparison

© Lionel Briand 2010
77

The Oracle
Solution 1

*** TC1 ***
1
2
3

2

1
3
*** TC2 ***
3
5
4

3
5

4
*** TC3 ***
…

Solution 2
*** TC1 ***
1 2 3

2

1 3
*** TC2 ***
3 5 4

3 5

4
*** TC3 ***
…

fir
st

 te
st

 c
as

e
se

co
nd

 te
st

 c
as

e

first set

second set

first set

second set

First test case
Second test case

expected result

expected result

© Lionel Briand 2010
78

Stubs
• Need for stubs:

–  Parts of the system that are not yet unit tested or even
available (i.e., the code is not ready)

–  Simulation of hardware devices
•  Example 1:

–  Modules A and B use services provided by module C.
•  Here, modules can be functions, classes, sub-systems

–  But: A uses only part of the services in C, say C_A
 B uses only part of the services in C, say C_B

–  Then:
•  When testing A, we create a stub simulating C_A’s behavior
•  When testing B, we create a stub simulating C_B’s behavior

•  Comment: “If the stub is realistic in every way, it is
no longer a stub but the actual routine” [Beizer]

A B

C

© Lionel Briand 2010
79

Stubs
Example 2:
–  An Automated Teller Machine (ATM) has a keyboard (i.e., the

hardware device) and a Keyboard class.
–  During development and testing, a stub is developed for class
Keyboard that is not “connected” to any hardware device.
•  Rather, it is used by the driver to feed the ATM system with a

PIN number, an amount, …
–  Typical test case:

 1. Enter the PIN, 2. Select the account, 3. Enter an amount
•  Each time, the ATM system invokes methods of the Keyboard

stub.
•  So the Keyboard stub must return the correct value according

to the test case.
•  The driver must set different values during the execution of a

test case.
–  The driver must “stop” the ATM in order to set the next

value (threads?)
–  Class Keyboard knows where (e.g., a file) to read the

different inputs.

© Lionel Briand 2010
80

Other Considerations
•  Non-determinism

–  What if the behavior of the system under test is not
deterministic?

–  Concurrent systems
–  Impact on test cases, drivers, stubs, oracles

•  Infinite loop because of a fault
–  How do we decide (when automating the execution of test

cases) that a test case failed?
•  The system under test has a GUI

–  The GUI is removed to facilitate automation during (unit/
integration/system) testing, I.e., the GUI needs to be
substituted with the driver at compilation time.

–  Testing a GUI is a separate task (http://en.wikipedia.org/wiki/
GUI_Testing)

•  It’s not functional testing
•  There are many tools to facilitate the coding and execution

of drivers, e.g., JUnit for Java

