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Testing Object-Oriented 
Software 
Class Testing 
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•  EFSMs (FSMs + variables) + concurrency + 
hierarchy + communication + real-time  

•  Plus special features, e.g., history states, 
pseudo states   

•  Widely used for specifying real-time 
embedded HW/SW controllers 

•  Also used in most of object-oriented 
methodologies, e.g., UML 

•  FSMs and EFSMs are in practice not often 
used. Statecharts are.  

Statecharts 
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A coffee vending machine 

Statecharts = 
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Transition coverage 
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Guard Conditions and Transition 
Pairs (Offutt et al., 1999) 

•  Offut et al, Criteria for Generating Specifications-based Tests, 
proceedings of UML’99, 1999, Springer 

•  Transition Coverage: The test suite T causes every transition in the state 
model to be taken at least once. 

•  Full Predicate Coverage: It is trying to determine whether each clause in a 
transition predicate (guard condition) is necessary and formulated 
correctly. For each predicate P on each transition,  T must include tests 
that cause each clause c in P to result in a pair of outcomes (true, false) 
where the value of P is directly correlated with the value of c.  

•  Transition-Pair Coverage: For each pair of adjacent transitions Si:Sj and 
Sj:Sk, T contains a test that traverses the pair of transitions in sequence. 
It tries to exercise interactions between pairs of transitions.  

•  Complete Sequence coverage: The test engineer must define meaningful 
sequences of transitions on the state model diagram by choosing sequences 
of states that should be entered. Usually impractical or impossible. We will 
see how to select a subset of paths next.  



© Lionel Briand 2010 
7 

Full Predicate Coverage 
•  This is specific to EFSMs and statecharts, as in UML, not 

FSMs 
•  Testers should at minimum provide test cases to test each 

clause in each guard condition (predicate) 
•  Same as modified condition decision coverage criterion, but 

for guard conditions in statecharts, not source code 
•  Rationale: Check if each clause is necessary and is 

formulated correctly 
•  Clause: Boolean expression that contains no boolean 

operators (e.g., AND, OR, NOT) 
•  Predicate: Boolean expression that is composed of clauses 

and zero or more Boolean operators. A clause may appear 
more than once in a predicate.  
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Example 
(A OR B) AND  C 

1 T F T 

2 F F T 

3 F T T 

4 F F T 

5 T T T 

6 T T F 

• Significantly increase the cost of transition coverage 

• Example: 6 traversals of the transition 
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Transition-Pair Coverage 
•  Previous criteria do not test sequences of transitions 
•  Interactions between transitions (e.g., data flow) should be 

exercised 
•  Check for invalid transition sequence allowed or valid 

sequence not allowed 
•  Example:  

–  Transitions are triggered based on predicates pi 
–  Test inputs must satisfy predicate pairs associated with 

transition pairs 
•  to test S, 6 transition pairs are required 
•  (p1:p3), (p1:p4), (p1:p5), (p2:p3), (p2:p4), (p2:p5) 

assuming all pairs are possible … 

S 

p1 

p2 

p3 

p4 

p5 
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Complete Sequence Criterion 

•  Experience and knowledge of the test 
engineer required 

•  Select “meaningful sequences” of 
transitions 

•  Sequence of state transitions that 
form a complete practical use of the 
system 

•  In many cases, the number of possible 
sequences is too large if not infinite 
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Empirical Study 
•  Small cruise control system (400 C lines, 7 

functions, 184 blocks, 174 decisions) 
•  Evaluation Criteria 

•  Structural coverage (decision and block 
coverage) 

•  Fault coverage  
•  Four states: Off, Inactive, Cruise, and Override 
•  A. J. Offutt and A. Abdurazik, “Generating Tests from UML specifications,” 

Proc. 2nd International Conference on the Unified Modeling Language 
(UML'99), Fort Collins, CO, pp. 416-429, October, 1999.  

•  A. J. Offutt, Y. Xiong and S. Liu, "Criteria for Generating Specification-
based Tests," Proc. 5th International Conference on Engineering of Complex 
Computer Systems (ICECCS'99), Las Vegas, NV, pp. 119-129, October, 1999. 
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Empirical Settings 
• 25 faults were inserted in separate versions of the 
program (aka mutation testing) 

• Most were in the logic that implemented the state machine 

• Compare All transition to Predicate Coverage 

• Tests were created independently from the faults, by 
different people (manually) 

• Each test case was executed against each faulty version 

• As a comparison, 54 test cases were generated randomly 
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Program and Fault Coverage 

Random Transition Full Pred 

# TC 54 12 54 

Faults found 15 15 20 

Faults missed 9 9 4 

Percent (mutation 
score) 

62.5% 62.5% 83.3% 

• The FP criterion lead to 89% of blocks (stmt) and 95% of 
decisions (branches) in the code being covered 
• Fault detection: 
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Transition / Test Trees 
•  Offutt defines coverage criteria but does not propose methods to 

automate the determination of state sequences to test 
•  One of the earliest papers for FSMs is Chow’s paper (1978) 
•  Does not address guard conditions on transitions  
•  Adapted for (flattened) statecharts by Binder (2000) 
•  The first step is to generate a transition or test tree from the 

statechart 
•  The tree paths includes all round-trip state-transition paths: 

transition sequences that begin and end with the same state (with 
no repetitions of state other than the sequence start/end state) 
and simple paths from the initial to the final state  
–  A path here is a sequence of transitions: statep, eventi, stateq, 

eventj, stater, … 
–  A simple path contains no loop iteration 

•  Append each sequence with the characterization set (W) or a call 
to a ‘status’ / get_state method (assertion) 
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Procedure for Deriving Tree 
•  Flatten statechart (remove concurrency and hierarchy) 
•  Initial state as the root node of the tree 
•  An edge is drawn for every transition out of the initial node, 

with nodes being added as resultant states 
•  A leaf node is marked as terminal if the state it represents 

has already been drawn or is the final state 
•  No more transition are traced out of a terminal node 
•  This procedure is repeated until all leaf nodes are terminal 
•  The tree structure depends on the order in which 

transitions are traced (breadth or depth first) 
•  A depth first search yield fewer, longer test sequences 
•  The order in which states are investigated is supposed to be 

irrelevant 
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CCoinBox Test Tree 
•  Based on the (faulty) 

statechart presented 
earlier 

•  Root node = initial state 
•  S4 was not in the 

statechart (missing 
corrupt state) and is not 
a terminal node 

•  S0: allowVend = 0, curQtrs = 0 
•  S1: allowVend = 0, curQtrs = 1 
•  S2: allowVend = 1, curQtrs > 1 
•  S3: allowVend = 1, curQtrs = 0 

(corrupt state made possible by the fault
 in code) 

•  S4: allowVend = 1, curQtrs = 1  
(corrupt state made possible by the fault

 in code) 

This corresponds to
 several edges in
 the tree S0 

S0 

S1 

S1 

S2 

S2 S0 S3 

S4 S0 S0 

Reset(), Vend(), ReturnQtr() AddQtr() 

Vend() AddQtr() 

ReturnQtr() AddQtr() Reset(), Vend() 

AddQtr() 
Reset(), Vend() ReturnQtr() 

Reset(), ReturnQtr() 

S0 

… … 
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CCoinBox Test Tree (correct) 
S0 

S0 

S1 

S1 

S2 

S2 S0 S0 

Reset(), Vend(), ReturnQtr() AddQtr() 

Vend() AddQtr() 

ReturnQtr() AddQtr() Reset(), Vend() 

Reset(), ReturnQtr() 

S0 

Based on the correct statechart, 
modeling how the code should 
behave 
S0: allowVend = 0, curQtrs = 0 
S1: allowVend = 0, curQtrs = 1 
S2: allowVend = 1, curQtrs > 1 

Using this transition tree, with the faulty CCoinBox program, 
ReturnQtr() on S2 would not lead to S0 but to a corrupt 
state – however it would not be observable unless we have a way 
to directly access & check the state of CCoinBox or use 
distinguishing/UIO sequences after each leaf (we attempt to 
vend, then add a quarter and vend). 
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From Test Tree to Test 
Cases 

•  Each test sequence begins at the root node and ends at a 
leaf node 

•  The expected result (Oracle) is the sequence of states and 
actions (outputs, other objects’ change of state) – assuming 
states can be “observed”. 

•  Test cases are completed by identifying method parameter 
values and required conditions to traverse a path 

•  We run the test cases by setting the object under test to 
the initial state, applying the sequence, and then checking 
the intermediary states, final state, and outputs (e.g., 
logged) 
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Guard Conditions 
•  The guard is a simple Boolean expression or 

contains only logical and operators: one true 
combination  

•  The guard is a compound Boolean expression 
containing at least one logical or operator. One 
transition is required for each true combination. 

•  The guard specifies a relationship that occurs only 
after repeating some event several times: single 
arc annotated with * for the transition 

•  At least one false combination in all cases (see 
sneak paths) 

•  Alternative: use Offutt’s predicate coverage, 
which is more complex – difficult to say which one 
is more cost-effective 
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BoundedStack Example 

empty 

create() 

pop() destroy() 

partially full 

push() 
pop() 
[curIndex = minIndex+1] 

destroy() 
push() 
[curIndex < maxIndex-1] pop() 

[curIndex > minIndex+1] 

full 

pop() 

push() 
[curIndex = maxIndex-1] 

push() destroy() 

Assume that three data members are defined in the class: 
•  curIndex: current index of last element introduced in the stack 
•  minIndex: minimum index value (e.g.,

 0 minimum number of elements in
 stack) 

•  maxIndex: maximum index
 (maximum size of the stack) 

Assume, for example, that
 there is a bug in the way
 push() handles a full stack 
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BoundedStack Transition 
Tree 

empty 

empty 

empty 

partially full 

full 

partially full full 

pop() push() 

pop() * [curIndex = maxIndex ]  push() 

pop() push() 

destroy() 

destroy() 

destroy() 

final state 

final state 

final state 

partially full 

pop() If we do not do this, we do not cover the statechart
 transition from partially full to partially full and do not
 satisfy All Transition coverage! 
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BoundedStack Test Driver 
int boundedStack_test_driver() { 
 BoundedStack stack(2); 
 stack.push(3);  // push() when empty 
 stack.push(1);  // push() when partially-full 
 try {Stack.push(9);} // push() when full 
 catch (Overflow ex) {} // expected to throw 
 stack.pop();   // pop() when full 
 stack.pop(); // pop() when partially-full 
 try {stack.pop();}  // pop() when empty 
 catch (Underflow ex) {} // expected to throw 
 BoundedStack stack2(3); 
 stack2.push(6);  // stack2 is partially-full 
 stack2.push(5);  // stack2 is still partially-full 
 BoundedStack stack3(1); 
 stack3.push(6);   // stack3 is full 
 // destructors called implicitly at end of block for 
 // stack (empty), stack2 (partially-full) and stack3 (full) 

}; 



© Lionel Briand 2010 
23 

Types of Faults Detected 
•  Incorrect or missing transitions 
•  Incorrect or missing actions leading to 

incorrect output or system state 
•  Missing states and some corrupt states 
•  Some extra transitions (sneak paths) 

cannot be detected unless state model 
completely specified (unlikely) 

•  How to improve testability by improving 
the observability of corrupt states: Class 
invariant check.  
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Detecting Sneak Paths 
•  Covering all round-trip paths shows conformance to the 

explicitly modeled behavior 
•  When state machines are incompletely specified (and they 

usually are), we have to test for sneak paths 
•  They are unexpected transitions 
•  A sneak path is possible for each unspecified transition and 

for guarded transitions that evaluate to false 
•  We need to test all state’s illegal events (no need to check 

for sneak paths traversing two or more states) – this 
guarantees to reveal all sneak paths 

•  Detecting sneak paths may be particularly important for 
safety-critical systems 

•  One has to check that the appropriate action is taken: 
exception handling, error message … 
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Sneak Path Testing 
Procedure 

•  Place the object in the corresponding state 
(possibly using a built-in set method) 

•  Apply illegal event by sending message or forcing 
the virtual machine to generate the desired event 

•  Check that the actual response matches the 
specified response (e.g., raise exception, error 
message) 

•  Check that the resultant state is unchanged 
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Subsumption Hierarchy 
•  Piecewise: All states, all events, all actions 
•  All (explicit) transitions: Every specified transition is 

exercised  
–  Maximum #test cases is #events*#states 
–  Catch all operation errors, but may not catch all 

transfer / transition errors 
•  All (explicit) n-Transitions Sequences: Every specified 

transition sequence of n events is exercised at least once 
•  All Round-Trip Paths 
•  Exhaustive 
=> Overall, despite some theory, very little experience exists 

with these coverage criteria 
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Problems with Binder’s 
Approach 

•  Covering certain transitions requires to traverse specific 
paths to satisfy the guard condition. We cannot simply 
follow the test tree algorithm when the statechart contains 
guard conditions. How do we automate the generation of the 
tree? 
–  Potential solution: Dynamic test generation 

•  Sometimes, as a result of the above problem, using the tree 
algorithm does not lead to covering all transitions 

•  The test tree covers round trip paths in a piecewise manner 
- it does not execute the round trip paths per se. Therefore, 
we cannot say that the round trip path technique subsumes 
the n-transitions sequence criterion 
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Object-Oriented Class 
Testing 

•  Introduction 
•  Accounting for Inheritance 
•  Testing Method Sequences 
•  State-Based Testing 

–  Methodology 
–  Case studies and simulations 

•  Testability for State-based Testing 
•  Test Drivers, Oracles, and Stubs 
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Motivations 
•  How do we assess the cost-effectiveness of 

various state-based coverage criteria? 
•  This cannot be done in an analytical manner 

(beyond subsumption).  
•  Empirically, we have several options: 

–  Controlled experiments 
–  Case studies 
–  Simulation 

•  Simulation allows us to perform more 
comprehensive studies, but is challenging: (1) 
automation of the simulation process, (2) external 
validity of results. 
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SUT Class 
Diagram 

Applet 

Runnable 

CarSimulator 

ignition : Boolean = false 
throttle : Double = 0.0 
speed : Integer = 0 
distance : Integer = 0 
brakepedla : Integer = 0 
engine : Thread = null 

engineOn() 
engineOff() 
accelerate() 
brake() 
setThrottle() 
getSpeed() 

CarSpeed 

setThrottle() 
getSpeed() 

Controller 

controlState : Integer = INACTIVE 
sc : SpeedControl 

brake() 
accelerator() 
engineOff() 
engineon() 
on() 
off() 
resume() 

CruiseControl 

handleEvent() 

car 

control 

SpeedControl 

state : Integer = DISABLE 
setSpeed : Integer = 0 
speedController : Thread 
cs : CarSpeed 
disp : CruiseDisplay 

enableControl() 
disableControl() 
recordSpeed() 
clearSpeed() 

cs sc 

CruiseDisplay 

recorded : Integer = 0 
cruiseOn : Boolean = false 

enable() 
disable() 
record() 

disp 

disp 

car 

sc 

control 

disp 

disp 

cs 
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Concurrent Statechart 

Idle Running
Do/speed

engineOn/engineOn()

engineOff/engineOff()

INACTIVE ACTIVE

STANDBY

CRUISING

Do/
SpeedController
,setThrottle

engineOn/clearSpeed()

engineOff/speedControl.disableControl()

on/
speedControl.recordSpeed(),
speedControl.enableControl()

off/speedControl.disableControl()

accelerator/speedControl.disable()

brake/speedControl.disable()

resume/speedControl.enableControl()

accelerator/
accelerate()

brake/brake()

CarSimulator Controller

engineOff/speedControl.disableControl()

engineOff/speedControl.disableControl()

on/
speedControl.recordSpeed(),
speedControl.enableControl()

on/speedControl.recordSpeed(),
speedControl.enableControl()
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Flattened Statechart 

Inactive/Idle Active/Running

Standby/
Running

Cruising/
Running

engineOn/carSimulator.engineOn(),speedControl.clearSpeed

engineOff/carSimulator.engineOff(),speedControl.disableControl()

on/
speedControl.recordSpeed(),
speedControl.enableControl()

off/speedControl.disabelControl()

resume/speedControl.enableControl()

accelerator/
carSimplator.accelerate(),

speedControl.disableControl()

brake/
carSimulator.brake(),

speedControl.disable()

engineOff/
carSimulator.engineOff(),speedControl.disableControl()

engineOff/
carSimulator.engineOff(),speedControl.disableControl()

accelerator/
carSimulator.accelerate(),

speedControl.disableControl()

brake/
carSimulator.brake(),

speedControl.disable() brake/carSimulator.brake(),speedControl.disable()

accelerator/carSimulator.accelerate(), speedControl.disableControl()

on/speedControl.recordSpeed(), speedControl.enableControl()

on/
speedControl.recordSpeed(),
speedControl.enableControl()
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Example 
Transition  

Tree 

Idle Running

Running

Running
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Standby

Standby

Cruising
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Cruising
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r
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e
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engineOff
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engineOff

engineOff
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e

brake

accelerator

accelerator

on

res
um
e

off
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3 
Transition  

Trees 
Idle Running

Running

Running

Idle

Cruising

Standby

Standby

Cruising

Standby

Cruising

Cruising

Standby
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off

Idle Running
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Standby

Standby
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Standby

engineOn
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e
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Cruising

Cruising

Standby

Standby

Idle
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ff

engineO
ff
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e
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off

(c) Transition Tree
 3: 

Idle Running

Running

Running

Idle

Cruising

Standby

Standby

Cruising

Standby

engineOn

Idle
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br
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e

on

engineO
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on

Cruising

Cruising

Standby

Standby

Idle

engineO
ff engineO
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e
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accelerator accelerator

on
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e

off

(b) Transition Tree
 2: 

(a) Transition Tree
 1: 
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Mutation Operators I 
Class mutation operator Description 

LOR (Language Operator 
Replacement) 

Replace a language operator with other legal 
alternatives. 

LCO (Literal Change 
Operator) 

Increase/decrease numeric values or swap 
boolean literals. 

SSO (Swap Statement 
Operator) 

Swap case block statement in a switch 
statement, swap first and second contained 
statements in if-then-else statement, and so 
on. 

CFD (Control Flow 
Disrupt operator) 

Disrupt normal control flow: add/remove 
break, continue, return. 

VRO (Variable 
Replacement Operator) 

Replaces a variable name with other names 
of the same type and of the compatible types. 
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Mutation Operators II 
Class mutation operator Description 

CRT (Compatible Reference 
Type replacement) 

Replace a class type with compatible 
types. 

ICE (Instance Creation 
Expression changes) 

Change an instance creation expression 
with other instance creation expressions 
of the same and/or compatible class 
types. 

POC (Parameter Order 
Change) 

Change method parameter order in 
method declarations. 

VMR (oVerloading Method 
Removal) 

Remove the declaration of an 
overloading method. 

AOC (Argument Order 
Change) 

Change method argument order in 
method invocation expressions. 
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Mutation Operators III 
Class mutation operator Description 

AND (Argument Number Decrease) Decrease arguments one by one. 

HFR (Hiding Field variable 
Removal) 

Remove a field variable declaration 
when it hides the variable in 
superclasses. 

HFA (Hiding Field variable 
Addition) 

Add a field variable of the same 
name as the inherited field variable. 

OMR (Overriding Method 
Removal) 

The declaration of an overriding 
method is removed 

AMC (Access Modifier Change) Replace an access modifier with 
other modifiers. 
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Mutation Operators IV 
Class mutation operator Description 

SMC (Static Modifier Change) Add or remove a static modifier. 

HER (Exception Handler Removal) Remove exception handlers one by 
one. 

EHC (Exception Handling Change) Change an exception handling 
statement to an exception program 
statement, and vice versa. 
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Mutant Distribution 
Distributions of Mutants
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All Transition Pairs 
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Transition Tree 
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Comparing Criteria 
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Adequate Test Sets 
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First Case Study: 
Conclusions 

•  All criteria, as expected, definitely perform better than 
their respective null criterion 

•  TT is a compromise between AT and ATP in terms of cost 
•  It is unclear whether it is more effective than AT (in the 

best case, same average but less variance) 
•  More studies needed 
•  When several transition trees are possible, it is important to 

choose carefully the one that exercise common usage 
scenarios 

•  Here, all the tests should not be performed on a stationary 
car (accelerator event must have been received) 

•  Use code coverage to select tree? Change definition? 
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Summary of Results 
•  AT probably not sufficiently reliable for an indicator of 

fault detection 
•  ATP highly reliable but also substantially more expensive  
•  TT gets mixed results, depending on the statechart 

properties: guard conditions, etc.  
•  TT good compromise when many guard conditions. Slightly 

more expensive but significantly more effective than AT.  
•  Where alternative transition trees are possible, one should 

be careful to select the one that exercise the code in the 
most realistic and complete manner  

•  MTT is an interesting alternative but more studies are 
needed 

•  FP not particularly cost-effective when numerous, complex 
guard conditions 
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Test Evaluation based on 
Mutant Programs 

•  Take a program and test data generated for that program 
•  Create a number of similar programs (mutants), each differing from 

the original in one small way, i.e., each possessing a fault 
•  The test data are then run through the mutants 
•  If test data detect differences in mutants, then the mutants are 

said to be dead, otherwise live. Oracles are based on both a 
comparison of outputs and state invariant checking. 

•  A mutant remains live either because it is equivalent to the original 
program (functionally identical though syntactically different – 
equivalent mutant) or the test set is inadequate to kill the mutant 

•  For the automated generation of mutants, we use mutation 
operators , that is predefined program modification rules (I.e., 
corresponding to a fault model) 
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Guidelines to Perform 
Studies 

•  Seed mutants (possibly randomly) before devising 
test cases to avoid bias 

•  Devise a sample of mutants as large as possible 
and automate the execution of drivers on mutants 

•  Use adequate mutation operators (depends on 
programming language) 

•  Focus on mutations that correspond to faults to 
be detected by testing (e.g., interface faults for 
integration testing) 

•  Examine why a mutant was left alive – could it have 
been killed, how, what were the chances? 
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Object-Oriented Class 
Testing 

•  Introduction 
•  Accounting for Inheritance 
•  Testing Method Sequences 
•  State-Based Testing 
•  Testability for State-based Testing 
•  Test Drivers, Oracles, and Stubs 
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Testability of UML 
Statecharts 

•  UML does not prevent the definition of untestable 
statecharts - It is therefore important to follow 
some rules to develop testable statecharts 

•  In order to apply the techniques presented, we 
need: 
–  Unambiguous and testable definition of state (e.g., state 

invariant) => Oracles 
–  Guards should be expressed in an unambiguous syntax 

(e.g., OCL) => Exercise guards, e.g., FP criterion 
–  Unambiguous definitions of events and responses 

(actions) (e.g., through post-conditions) => Oracles 
–  Built-in test support (e.g., get, set, status methods) => 

Decrease the cost of testing 
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Built-in Test Support 
•  Get state functions: The simplest case is a function that 

evaluates the state invariant and returns a Boolean 
indicating whether an object is in that state.  
–  During OO analysis and design, each state is defined by a 

state invariant, e.g., set of data member values for S0 = 
(allowVend=0, curQrts=0) in CCoinBox 

–  Each state invariant is associated with an executable 
assertions in the code, e.g., isS0() 

•  Set state functions: It may be hard to reach a state in 
which a test sequence starts, so we may need built-in 
methods to set objects in certain states that are difficult 
to reach. 
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“Get State” for 
BoundedStack 

Class BoundedStack { 
 public: 

   … 

  private: 
     const char* get_BoundedStack_state () const { 
       if (cur_index == 0) return “empty”; 
       else if (cur_index == max_index)  

              return “full”; 
       else return “partially-full”; 
     } 

}; 

•  Only test drivers should be allowed to use these operations  
•  Get/Set operations can be private and test drivers can be friend classes in 
C++ or they can be protected and inherit from the classes under test 
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Using the State Design 
Pattern 

•  The state design pattern facilitates the 
implementation of get/set operations 
(enforces it and simplifies it) 

•  If we use the state design pattern, the 
Get/Set state operations can be coded as 
methods in the subclasses representing the 
states. 

•  Can be part of a design standard in an 
organization 

•  This is an example of how design decisions 
relate to testability 
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State Pattern 
•  Intent: Allows an object to alter its behavior when its 

internal state changes. The object will appear to change its 
class. 

•  Applicability: An object's behavior depends on its state, and 
it must change its behavior at run-time depending on that 
state. 

•  Consequences: 
–  It localizes state-specific behavior and partitions 

behavior for different states.  
–  It makes state transitions explicit (object changes 

subclass) 
–  Ease the addition of new states 

Design Patterns 
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Structure 
Design Patterns 
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State Pattern: Example 
Design Patterns 
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Built-in Test Support 
Design Patterns 

Assertion / Reporter method: IsState(), GetState(), StateInvariant() 

SetState() simply changes this link 
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State Pattern Deficiencies 
•  The state pattern does not address UML 

statechart concepts 
•  Actions on transitions 
•  Entry and exit actions associated with 

states 
•  Activities performed while in states 
•  The state pattern needs to be expanded 

Design Patterns 
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Extending the State Pattern 

ConcreteState1 

Event/action3 

ConcreteState2 

Entry/action1 
Do/activity1 
Exit/action2 

Entry/action4 
Do/activity5 
Exit/action6 

Design Patterns 
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Extending the State Pattern II 

ConcreteState1 

enter(context: Context) 
eventHandler(context: Context) 

State = s 
State.enter (self) 

State 

enter(context: Context) 
eventHandler(context:Context) 

Context 

setState(s:State) 
eventHandler() 
Action1() 
Action2() 
Action3() 
Action4() 
Action5() 
Activity1() 
Activity2() 

state 

…… 

State.event 
Handler (self) 

Context..action1() 
Context.activity1 

Context..action2() 
Context.action3() 
Context.SetState(nextState) 

Design Patterns 
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Discussion 
•  When no Set state operations are used, then sequences of 

public methods must be executed by the test driver to 
reach the desired state for testing – this may be complex 
and error-prone 

•  When Set state operations are used, coding or generating a 
test driver becomes easier, but at the price of additional 
code to be provided by the developers  

•  One needs to ensure that set state operations are not 
misused in the application code – it is exclusively for the 
usage of test drivers  

•  Get state operations enables an easier detection of corrupt 
states, eliminate the need for characterization input 
sequences (Chow), but again require additional code to be 
provided by the developers  

•  Checking state invariants may not be enough to detect 
corrupt states – checking the class invariant may be required 

•  All the above is easier to implement when using the state 
design pattern 
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Object-Oriented Class 
Testing 

•  Introduction 
•  Accounting for Inheritance 
•  Testing Method Sequences 
•  State-Based Testing 
•  Testability for State-based Testing 
•  Test Drivers, Oracles, and Stubs 
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Drivers 
•  Assume you have a diff operation that computes 

the difference between two ordered sets  
(i.e., elements that are in the first set but not in 
the second) 
// Java code chunk 
OrdSet s1, s2, s3; 
… 
s3 = s1.diff(s2);  // s3=s1-s2, e.g.,{1,5}=
{1,4,5}-{4} 

System.out.println(s3); 

• How to execute the test cases you devised using a 
black-box or white-box technique? 
– How do you build the test driver that executes 

your test cases? 
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Drivers - First solution 
public class Driver { 
public static void main(String argv[]) { 

// The test case consists in s1={1,4,5} and s2={4} 
OrdSet s1 = new OrdSet();  
OrdSet s2 = new OrdSet(); 
OrdSet s3 = new OrdSet(); 
s1.add(1); s1.add(5); s1.add(4);  // adding elements to  

     sets 
s2.add(4); 
s3 = s1.diff(s2); 
System.out.println(s3); 

 } 
} 

•  Testing technique → many test cases 
•  Solution: writing all the test cases in function main in the 

driver. 
  Can’t selectively run test cases (regression testing), can’t 

have different test sets for a class 
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Drivers - Second Solution 

public class Driver { 
public static void main(String argv[]) { 

TS1(); // Test set 1 
} 
public static void TS1() { 

TC1(); 
TC2(); 
… 

} 
public static void TS2() { 

TC5(); 
TC2(); 
… 

} 

public static void TC1() { 
OrdSet s1 = new OrdSet(); 
OrdSet s2 = new OrdSet(); 
OrdSet s3 = new OrdSet(); 
s1.add(1); s1.add(5); 
s1.add(4);  
s2.add(4); 
s3 = s1.diff(s2); 
System.out.println(s3); 

} 
public static void TC2() {…} 
… 
} 

–  One static method per test set (namely TS1, TS2, …) 
–  One static method per test case (namely TC1, TC2, …) 
–  Test sets can share test cases 
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Discussion 
•  All the static methods that execute test cases have (usually) 

the same structure 
–  Here: creating sets s1 and s2, and calling the diff 

•  A testing technique can produce hundreds of test cases 
•  What happens if we want to add test cases? 

1.  Add new TCxxx and TSxxx static methods 
2. Add calls to these methods in the main 
3. Compile the driver 
4. Execute the driver 

 We create different tests for different purposes, e.g., 
successive regression test sets 

 We can change one statement in the main() to execute 
different test sets 
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Drivers – Third solution 
•  The main function in the driver reads a text file: 

–  1 test set per text file 
–  No need to recompile when changing test cases 
–  The driver must read the text file, create the objects 

according to its contents and execute the diff 

 public class Driver { 
 public static void main(String argv[]) { 

 OrdSet s1, s2, s3 
 // open file and read test set name … 
 while (not at the end of file) { 
 // read a test case (elements in sets) 
 // instantiate s1 and s2 
 // execute the diff, assign result to s3 
 // output the test case number and the result 
 } 

 } 
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Discussion 
• What is the format of the text file? 

– Many test cases in the text file 
• The driver (the main) needs to: 

–  Identify test cases: 
• Beginning and end of a test case in the file 
• Number/Name of the test case 

–  Know how to read the data in test cases 
• Separation between different fields in the 

test case (e.g., the two sets) 
 Different strategies: must be standardized 
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Test Set File Format 
Solution 1 

*** TC1 *** 
1 
2 
3 
*** 
2 
*** TC2 *** 
3 
5 
4 
*** 
3 
5 
*** TC3 *** 
… 

Solution 2 
*** TC1 *** 
1 2 3 
*** 
2 
*** TC2 *** 
3 5 4 
*** 
3 5 
*** TC3 *** 
… 

fir
st

 te
st

 c
as

e 
se

co
nd

 te
st
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as

e 

first set 

second set 

first set 

second set 

First 
test case 

Second 
test case 
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More Complex Drivers 
E.g., test cases are different (different kinds of executions/data) 
Solutions 
1. Several different drivers (main functions) with different execution 

flows (i.e., with different file format) 
–  Driver (main) one: file format 1 
–  Driver (main) two: file format 2 
  Implementation depends on the programming language 

(difference between Java and C/C++) 
2. One driver with several possible inputs (e.g., command line 

arguments, or in the text file) 
–  Driver (main) with input 1 (command line argument): file format 1 
–  Driver (main) with input 2 (command line argument): file format 

2 
  Implementation language independent (we pass information on 

the command line) 
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More Complex Drivers (in 
Java) 

•  In Java, we can have different driver classes, each having a 
main function. 
–  In the same directory we would have files OrdSet.java, 

Driver1.java, Driver2.java, … 
–  And Driver1.java, Driver2.java, …, all have a main function 

•  We just choose which main (driver class) we want to execute 
when executing the Java Virtual Machine 
–  java Driver1 […] 
–  java Driver2 […] 
–  … 

•  Solution can be used even if we test a program (not a class), 
that already has a main function 
–  Drivers can be considered as additional “entry-points” in 

the program 
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More Complex Drivers (in C++) 
•  Conditional compilation in C/C++ 

–  Enables the programmer to control the execution of 
preprocessor directives and the compilation of program code. 

–  Using #define, #ifdef, #ifndef, and #endif preprocessor 
directives, that: 
•  Determine whether symbolic constants are already defined 
•  Determines whether parts of the code are compiled (and thus 

executed) 
•  Two solutions: 

–  Remove/Add the preprocessor directives 
•  Requires modifying source files and compilation 

–  Use compiler options 
•  Requires compilation only 

•  Solutions can be used even if we test a program (not a class), that 
already has a main function 
–  Drivers can be considered as additional “entry-points” in the 

program 
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More Complex Drivers (in C++) 
// File: ClassTester.h 

#include “ClassTested.h” 

class ClassTester { 

public: 

 ClassTester();   

 void runTestSuite(); 

private: … 

}; 

// File: ClassTester.cpp 
#include “ClassTester.h” 
ClassTester::ClassTester() {…} 
void ClassTester::runTestSuite(){…} 
// code to run and report test cases 

// File: MainProg.cpp 

#define DRIVER 

#ifndef DRIVER 

#include “ClassTested.h” 

class MainProg { 

public: …   

private: … 

}; 

#endif 

// File: ClassTesterMain.cpp 
#define DRIVER 
#ifdef DRIVER 
#include “ClassTester.h” 
int main() { 
 ClassTester tester; 
 tester.runTestSuite(); 

} 
#endif 

•  These lines make the driver execute 
•  Removing them make the main

 program execute 
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More Complex Drivers (in C++) 
•  Executing the Main of the program 

–  the main in file MainProg.cpp 
cc -c MainProg.cpp 
cc -c ClassTester.cpp 
cc -c ClassTesterMain.cpp 
cc MainProg.o ClassTester.o 

ClassTesterMain.o -o Exe 
•  Executing the Main of the driver 

–  the main in file 
ClassTesterMain.cpp 

(compiler option -D defines constants 
DRIVER) 

cc -DDRIVER -c MainProg.cpp 
cc -DDRIVER -c ClassTester.cpp 
cc -DDRIVER -c ClassTesterMain.cpp 
cc MainProg.o ClassTester.o 

ClassTesterMain.o -o Exe 

// File: MainProg.cpp 

#ifndef DRIVER 
#include “ClassTested.h” 

class MainProg { 
public: …   

private: … 
}; 
#endif 

// File: ClassTesterMain.cpp 
#ifdef DRIVER 
#include “ClassTester.h” 
int main() { 

 ClassTester tester; 
 tester.runTestSuite(); 

} 
#endif 

// File: ClassTester.cpp 
#ifdef DRIVER 
#include “ClassTester.h” 
ClassTester::ClassTester() {…} 
void ClassTester::runTestSuite(){…} 
// code to run and report test cases 
#endif 
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The Oracle 
•  In the previous approaches for the implementation of the 

driver, the driver reports the observed output. 
•  Deciding which test cases failed (a fault has been revealed) is 

done manually. 
–  Comparing the expected output with the observed one, for each 

test case 
•  Automating the oracle, i.e., the comparison requires that: 

–  We know exactly the expected output (which is the case in 
the diff example) 
•  However, sometimes, we do not know exactly what is the 

result, as (for instance) doing (i.e., implementing) the 
comparison would correspond to building the function we test 

•  This is when using assertions to check class and state 
invariants can come handy 

–  Then the driver outputs the test case number when a 
failure has been detected 
•  We only need to know which test cases have failed 
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The Oracle 
•  The oracle is included in the driver 

–  The expected output must be found in the input text file 
•  Format? 

•  The oracle: 
–  gets the output produced by the system under test 

•  In our example, the toString method of class 
OrdSet is called  (format of returned string?) 

–  gets the expected output from the input text file 
–  Performs the comparison 

•  In our example, a simple String comparison 
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The Oracle 
Solution 1 

*** TC1 *** 
1 
2 
3 
*** 
2 
*** 
1 
3 
*** TC2 *** 
3 
5 
4 
*** 
3 
5 
*** 
4 
*** TC3 *** 
… 

Solution 2 
*** TC1 *** 
1 2 3 
*** 
2 
*** 
1 3 
*** TC2 *** 
3 5 4 
*** 
3 5 
*** 
4 
*** TC3 *** 
… 

fir
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first set 

second set 

first set 

second set 

First test case 
Second test case 

expected result 

expected result 
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Stubs 
• Need for stubs: 

–  Parts of the system that are not yet unit tested or even 
available (i.e., the code is not ready) 

–  Simulation of hardware devices 
•  Example 1: 

–  Modules A and B use services provided by module C. 
•  Here, modules can be functions, classes, sub-systems 

–  But: A uses only part of the services in C, say C_A 
       B uses only part of the services in C, say C_B 

–  Then:   
•  When testing A, we create a stub simulating C_A’s behavior 
•  When testing B, we create a stub simulating C_B’s behavior 

•  Comment: “If the stub is realistic in every way, it is 
no longer a stub but the actual routine” [Beizer] 

A B 

C 
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Stubs 
Example 2: 
–  An Automated Teller Machine (ATM) has a keyboard (i.e., the 

hardware device) and a Keyboard class. 
–  During development and testing, a stub is developed for class 
Keyboard that is not “connected” to any hardware device. 
•  Rather, it is used by the driver to feed the ATM system with a 

PIN number, an amount, … 
–  Typical test case: 

  1. Enter the PIN, 2. Select the account, 3. Enter an amount 
•  Each time, the ATM system invokes methods of the Keyboard 

stub. 
•  So the Keyboard stub must return the correct value according 

to the test case. 
•  The driver must set different values during the execution of a 

test case. 
–  The driver must “stop” the ATM in order to set the next 

value (threads?) 
–  Class Keyboard knows where (e.g., a file) to read the 

different inputs. 
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Other Considerations 
•  Non-determinism 

–  What if the behavior of the system under test is not 
deterministic? 

–  Concurrent systems 
–  Impact on test cases, drivers, stubs, oracles 

•  Infinite loop because of a fault 
–  How do we decide (when automating the execution of test 

cases) that a test case failed? 
•  The system under test has a GUI 

–  The GUI is removed to facilitate automation during (unit/
integration/system) testing, I.e., the GUI needs to be 
substituted with the driver at compilation time.  

–  Testing a GUI is a separate task (http://en.wikipedia.org/wiki/
GUI_Testing) 

•  It’s not functional testing  
•  There are many tools to facilitate the coding and execution 

of drivers, e.g., JUnit for Java 


