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Programming for Reliability 
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Reliability Achievement 

•  Fault avoidance 
–  The software is developed in such a way that it does not 

contain faults 
•  Fault detection 

–  The development process is organized so that faults in 
the software are detected and repaired before delivery 
to the customer 

•  Fault tolerance 
–  The software is designed so that faults in the delivered 

software do not result in complete system failure 
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Fault Tolerance: Motivations 

•  We cannot achieve complete software 
reliability 

•  Demonstrating high reliability for safety 
critical applications is difficult  

•  How can we ensure an acceptable behavior 
of the system when failures occur? 

•  E.g., the computers of an air traffic control 
systems must be continuously available 
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Aspects of Fault Tolerance 
•  Failure detection: The system must detect that a particular 

state  combination has resulted or will result in a system 
failure 

•  Damage assessment: the parts of the system state which 
have been affected by the failure must be detected 

•  Fault recovery: The system must restore its state to a 
known “safe” state 

•  Fault repair: This involves modifying the system so that 
the fault does not recur. For systems that need to be 
continuously available, replacing the faulty component is 
more complex.  
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Two Main Approaches 

•  Fault-tolerant architectures: Explicit 
support for fault tolerance (problem 
detection, recovery) 

•  Defensive Programming: No specific 
architecture. But redundant code to check 
system state after modification. If 
inconsistencies are detected, state is restored 
to a known correct state. 
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Hardware Fault Tolerance 

•  Triple-modular Redundancy: hardware unit is 
replicated three (or more) times and their outputs 
are compared 

•  If one unit shows inconsistent output, it is ignored 
•  This approach assumes the problem results from 

component failures rather than design faults 
•  Low probability of simultaneous component 

failure in all hardware units 
•  Units may come from different manufacturers 
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Hardware Reliability with TMR 

Sommerville 
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Fault Tolerant Software architectures 
•  The success of TMR at providing fault tolerance is 

based on two fundamental assumptions 
–  The hardware components do not include common 

design faults 
–  Components fail randomly and there is a low 

probability of simultaneous component failure 
•  Neither of these assumptions are true for software 

–  It isn’t possible simply to replicate the same component 
as they would have common design faults 

–  Simultaneous component failure is therefore virtually 
inevitable 

•  Software systems must therefore be diverse  
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Design Diversity 

•  Different versions of the system are designed and 
implemented in different ways. They therefore 
ought to have different failure modes. 

•  Different approaches to design (e.g., object-
oriented and function oriented) 
–  Implementation in different programming languages 
–  Use of different tools and development environments 
–  Use of different algorithms in the implementation 
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Software Analogies to TMR 
•  N-version programming 

–  The same specification is implemented in a number of  
different versions by different teams. All versions 
compute simultaneously and the majority output is 
selected using a voting system.. 

–  This is the most commonly used approach e.g. in 
Airbus 320.  

•  Recovery blocks 
–  A number of explicitly different versions of the same 

specification are written and executed in sequence 
–  An acceptance test is used to select the output to be 

transmitted. 
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N-version Programming 
•  Using a common specification, the software system is 

implemented in a number of different versions by different 
teams 

•  Versions are executed in parallel 
•  Outputs are compared using a voting system and 

inconsistent outputs are rejected 
•  At least three versions should be available 
•  Assumption: it is unlikely different teams will make the 

same design or programming errors 
•  However, there is some empirical evidence that teams 

commonly misinterpret specifications in the same way and 
use the same / similar algorithms in their systems 
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N-version Programming 

Sommerville 
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Recovery Blocks 
•  Finer grain approach to fault tolerance 
•  Each program component includes a test to check if the 

component has executed successfully 
•  It includes alternative code to back-up and repeat the 

computation with another algorithm (versions) if the test 
detects a failure 

•  Versions are executed in sequence.  
•  The output which conforms to an “acceptance test” is 

selected.  
•  Reduce probability of common errors as different 

algorithms MUST be used for each recovery block 
•  The weakness in this system is writing an appropriate 

acceptance test. 
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Recovery Blocks 

Sommerville 
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Discussion 
•  Different teams can make the same mistakes.  Some parts 

of an implementation are more difficult than others so all 
teams tend to make mistakes in the same place. 

•  N-version programming gives increased confidence 
though, but not absolute confidence 

•  Both presented approaches to fault tolerance assume that 
the specifications are correct 

•  They both require a fault-tolerant controller which will 
ensure that the steps involved in tolerating faults are 
executed 

•  That fault-tolerant controller may fail … 
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Defensive Programming 

•  Assume there may be undetected faults and 
inconsistencies 

•  Does not require a fault-tolerant controller 
•  Do not assume correct specifications 
•  Redundant code is incorporated to prevent 

incorrect state changes and check system state 
after modification 

•  If inconsistent, state change is retracted or restored 
to known state 

•  One common approach to fault tolerance 
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Failure Prevention 
•  One approach is to use state assertions to check whether 

certain constraints are fulfilled 
•  Logical predicates over the state variables (state invariant 

in UML terms) 
•  This predicate is checked before an assignment is made to 

a state variable 
•  If an anomalous value for the variable would result from 

the assignment, an error has occurred 
•  In most programming languages it is up to the programmer 

to include explicit assertion checks 
•  Can be simplified if all assignments to state variables are 

always implemented as operations (methods) on objects – 
the assertion code is part of the operation 
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Example: 
Even 

Number 
Class 

class PositiveEvenInteger { ""
"int val = 0 ;"

public void assign (int n) throws NumericException"
"{"
" "if (n < 0 | n%2 == 1)"
" " "throw new NumericException ();"
" "else"
" " "val = n ;"
"} // assign ""

            int toInteger ()"
"{"
" "return val ;"
"} //to Integer"

"boolean equals (PositiveEvenInteger n)"
"{"
" "return (val == n.val) ;"
"} // equals"

} //PositiveEven 	
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Discussion 

•  Failure prevention avoids the problems related to 
damage assessment and recovery (next) 

•  But it involves significant overhead (copies of 
state variables) and for systems where 
performance is important this may not be 
applicable 

•  Retrospective fault detection may be a more 
adequate alternative in some cases: Damage 
assessment and Recovery 
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Damage Assessment 

•  Analyze system state, after a state change, to judge 
the extent of corruption 

•  Must assess what parts of the state space have 
been affected by the failure 

•  Generally based on ‘validity functions’ which can 
be applied to the state elements to assess if their 
value is within an allowed range 

•  If damage is identified, an exception is signaled 
and a repair mechanism is used to recover from 
the damage 
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Java Implementation 
•  Objects to be checked are instantiations of a class that 

implements the interface: 

 Interface CheckableObject { 
 Public boolean check(); 
} 

•  Each class implements its own check method 
•  When the state as a whole is checked, dynamic binding is 

used to ensure that the appropriate check function is 
executed 
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Example 
Damage 

Assessment 
(java) 

class RobustArray {"
"// Checks that all the objects in an array of objects"
"// conform to some defined constraint"
"private boolean [] checkState ;"
"private CheckableObject [] theRobustArray ;"

"RobustArray (CheckableObject [] theArray)"
"{"
" "checkState = new boolean [theArray.length] ;"
" "theRobustArray = theArray ;"
"} //RobustArray ""
"public void assessDamage () throws ArrayDamagedException"
"{"
" "boolean hasBeenDamaged = false ;"
" ""
" "for (int i= 0; i <this.theRobustArray.length ; i ++)"
" "{"
" " "if (! theRobustArray [i].check ())"
" " " "{"
" " " " "checkState [i] = true ;"
" " " " "hasBeenDamaged = true ;"
" " " "}"
" " "else"
" " " "checkState [i] = false ;"
" "}"
" "if (hasBeenDamaged)"
" " "throw new ArrayDamagedException (checkState) ;"
"} //assessDamage"

} // RobustArray"
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Exception Handling 
•  Exception: User error, hardware failure, software failure 
•  Exception handling: Mechanism by which a system treats 

an exception 
–  User Error: meaningful error message 

•  In OO systems: Exceptions usually associated with 
violations of pre-conditions, post-conditions, and/or class 
invariants 

•  Using normal control constructs (if statements) to detect 
exceptions in a sequence of nested procedure calls needs 
many additional statements to be added to the program and 
adds a significant timing overhead. 

•  Some languages have built-in mechanisms for exceptions 
e.g., Java, C++) 

Reminder 
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Exception Handlers 

•  Some programming languages include facilities to 
detect and handle exceptions (Ada, C++, Java) 

•  An exception is signaled and control in the 
program is transferred to an exception handler, 
I.e., a segment of code that deals with this 
exceptional situation (e.g., catch block in Java) 

•  Exceptions are often handled by catch block in a 
calling unit higher up the call sequence, as the 
units called often do not know what to do when an 
exception is detected 

Reminder 
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Java Exception Handling 
•  Keyword throw means raise an exception. It can only be 

used in a try block or a function (indirectly) called from 
it. Handler is indicated by the keyword catch. 

•  The try block wraps the code that may throw an 
exception and the code that should not execute in this case 

•  Exceptions are defined as classes so may inherit properties 
from other exception classes. There is a pre-defined 
Exception class in Java. All exceptions are defined as a 
subclass of Exception 

•  When possible, exceptions are completely handled in the 
block where they arise rather than propagated for handling. 
But this is not often the case  

Reminder 
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Example: SensorFailureException 
class SensorFailureException extends Exception { 
 SensorFailureException (String msg) { 
  super (msg) ; 
  Alarm.activate (msg) ; 
 }   

} // SensorFailureException  

class Sensor { 
 int readVal () throws SensorFailureException { 
 try { 
  int theValue = DeviceIO.readInteger () ; 
  if (theValue < 0) 
   throw new SensorFailureException ("Sensor failure") ; 
  return theValue ; 
 } 
 catch (deviceIOException e) 
  { throw new SensorFailureException (“ Sensor read error ”) ; } 
 } // readVal 

} // Sensor 

Reminder 
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Another Example 

•  System that controls a freezer and keeps 
temperature within a specified range 

•  Switches a refrigerant pump on and off 
•  Sets of an alarm is the maximum allowed  

temperature is exceeded 
•  Uses external objects of type Pump, 
TempDial, TempSensor, Alarm 



© Lionel Briand 2010 
28 

class FreezerController  extends Thread {"
"Sensor tempSensor = new Sensor () ;"
"Dial tempDial = new Dial () ;"
"float freezerTemp = tempSensor.readVal () ;"
"final float dangerTemp = (float) -18.0 ;"
"final long coolingTime = (long) 200000.0 ;"
"public void run ( )  throws FreezerTooHotException, InterruptedException {"
"try {"
" "Pump.switchIt (Pump.on) ;"
" "do { if (freezerTemp > tempDial.setting ())"
" " " "if (Pump.status == Pump.off)"
" " " "{     Pump.switchIt (Pump.on) ;"
" " " "      Thread.sleep (coolingTime) ; "
" " " "} "

                            else"
" " " "if (Pump.status == Pump.on)"
" " " "       Pump.switchIt (Pump.off) ;"
" " "if (freezerTemp > dangerTemp)"
" " " " throw new FreezerTooHotException () ;"
" " "freezerTemp = tempSensor.readVal () ;"
" "} while (true) ; " ""
"}  // try block"
"catch (FreezerTooHotException f)"
"{ "Alarm.activate ( ) ;   }"
"catch (InterruptedException e)"
"{ "System.out.println (“Thread exception”) ;"
" "throw  new InterruptedException ( ) ;   "
"}"
"} //run"

} // FreezerController"

Example: 
FreezerCon

troller 
(Java) 
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Other Damage Assessment 
Techniques 

•  Checksums are used for damage assessment  
in data transmission 

•  Redundant pointers can be used to check 
the integrity of data structures 

•  Watch dog timers can check for non-
terminating processes in concurrent 
systems. If no response after a certain time, 
a problem is assumed 
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Fault Recovery 

•  Forward recovery 
–  Apply “repairs” to a corrupted system state 

•  Backward recovery 
–  Restore the system state to a previous, known safe state 

•  Forward recovery is usually application specific  
–  domain knowledge is required to compute  

possible state corrections 
•  Backward error recovery is simpler. Details of a  

safe state are maintained and this replaces the  
corrupted system state 
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Forward Recovery 
•  Corruption of data coding 

–  Error coding techniques which add redundancy to 
coded data can be used for repairing data corrupted 
during transmission 

•  Redundant pointers 
–  When redundant pointers are included in data structures  

(e.g. two-way lists), a corrupted list or file store may be  
rebuilt if a sufficient number of pointers are 
uncorrupted 

–  Often used for database and file system repair 
•  Sometimes, a simple approach is possible: 

–  Reinitialize system, acquire new operating context 
(e.g., re-reading the sensors), bring to safe state  
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Backward Recovery 
•  Transactions are a frequently used method of  

backward recovery. Changes are not applied  
until computation is complete. If an error  
occurs, the system is left in the state preceding  
the transaction 

•  E.g., database systems, changes made during 
transactions are not immediately incorporated in 
the database (committed), database updated after 
transaction is completed 

•  Periodic checkpoints allow system to 'roll-back'  
to a correct state – restore to a correct state from a 
copy 
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Example: Safe Sort Procedure 

•  Sort operation monitors its own execution and 
assesses if the sort has been correctly executed 

•  Maintains a copy of its input so that if an error 
occurs, the input is not corrupted 

•  Based on identifying and handling exceptions 
•  Possible in this case as ‘valid’ sort is known. 

However, in many cases it is difficult to write 
validity checks 
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Backward 
Recovery 

Code 
(Java) 

class SafeSort {"
"static void sort ( int [] intarray, int order ) throws SortError"
"{"
" "int [] copy = new int [intarray.length];"
" ""
" "// copy the input array"
" ""
" "for (int i = 0; i < intarray.length ; i++)"
" " "copy [i] = intarray [i] ;"
" "try {"
" " "Sort.bubblesort (intarray, intarray.length, order) ;"
" " "if (order == Sort.ascending)"
" " " "for (int i = 0; i <= intarray.length-2 ; i++)"
" " " " "if (intarray [i] > intarray [i+1])"
" " " " " "throw new SortError () ;"
" " "else"
" " " "for (int i = 0; i <= intarray.length-2 ; i++)"
" " " " "if (intarray [i+1] > intarray [i])"
" " " " " "throw new SortError () ;"
" "} // try block"
" "catch (SortError e )"
" "{"
" " "for (int i = 0; i < intarray.length ; i++)"
" " " "intarray [i] = copy [i] ;"
" " "throw new SortError ("Array not sorted") ;"
" "} //catch " ""
"} // sort"

} // SafeSort"
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Conclusions 

•  Many programming techniques to make the code 
more reliable and more robust 

•  All of these techniques have a cost, in terms of 
development effort and system performance 

•  Should be used with discretion 
•  Some technical issues:  

–  backward recovery difficult to implement in concurrent, 
distributed systems, incompatible with systems that 
have had real-time deadlines 


