
© Lionel Briand 2010
1

Programming for Reliability

© Lionel Briand 2010
2

Reliability Achievement

•  Fault avoidance
–  The software is developed in such a way that it does not

contain faults
•  Fault detection

–  The development process is organized so that faults in
the software are detected and repaired before delivery
to the customer

•  Fault tolerance
–  The software is designed so that faults in the delivered

software do not result in complete system failure

© Lionel Briand 2010
3

Fault Tolerance: Motivations

•  We cannot achieve complete software
reliability

•  Demonstrating high reliability for safety
critical applications is difficult

•  How can we ensure an acceptable behavior
of the system when failures occur?

•  E.g., the computers of an air traffic control
systems must be continuously available

© Lionel Briand 2010
4

Aspects of Fault Tolerance
•  Failure detection: The system must detect that a particular

state combination has resulted or will result in a system
failure

•  Damage assessment: the parts of the system state which
have been affected by the failure must be detected

•  Fault recovery: The system must restore its state to a
known “safe” state

•  Fault repair: This involves modifying the system so that
the fault does not recur. For systems that need to be
continuously available, replacing the faulty component is
more complex.

© Lionel Briand 2010
5

Two Main Approaches

•  Fault-tolerant architectures: Explicit
support for fault tolerance (problem
detection, recovery)

•  Defensive Programming: No specific
architecture. But redundant code to check
system state after modification. If
inconsistencies are detected, state is restored
to a known correct state.

© Lionel Briand 2010
6

Hardware Fault Tolerance

•  Triple-modular Redundancy: hardware unit is
replicated three (or more) times and their outputs
are compared

•  If one unit shows inconsistent output, it is ignored
•  This approach assumes the problem results from

component failures rather than design faults
•  Low probability of simultaneous component

failure in all hardware units
•  Units may come from different manufacturers

© Lionel Briand 2010
7

Hardware Reliability with TMR

Sommerville

© Lionel Briand 2010
8

Fault Tolerant Software architectures
•  The success of TMR at providing fault tolerance is

based on two fundamental assumptions
–  The hardware components do not include common

design faults
–  Components fail randomly and there is a low

probability of simultaneous component failure
•  Neither of these assumptions are true for software

–  It isn’t possible simply to replicate the same component
as they would have common design faults

–  Simultaneous component failure is therefore virtually
inevitable

•  Software systems must therefore be diverse

© Lionel Briand 2010
9

Design Diversity

•  Different versions of the system are designed and
implemented in different ways. They therefore
ought to have different failure modes.

•  Different approaches to design (e.g., object-
oriented and function oriented)
–  Implementation in different programming languages
–  Use of different tools and development environments
–  Use of different algorithms in the implementation

© Lionel Briand 2010
10

Software Analogies to TMR
•  N-version programming

–  The same specification is implemented in a number of
different versions by different teams. All versions
compute simultaneously and the majority output is
selected using a voting system..

–  This is the most commonly used approach e.g. in
Airbus 320.

•  Recovery blocks
–  A number of explicitly different versions of the same

specification are written and executed in sequence
–  An acceptance test is used to select the output to be

transmitted.

© Lionel Briand 2010
11

N-version Programming
•  Using a common specification, the software system is

implemented in a number of different versions by different
teams

•  Versions are executed in parallel
•  Outputs are compared using a voting system and

inconsistent outputs are rejected
•  At least three versions should be available
•  Assumption: it is unlikely different teams will make the

same design or programming errors
•  However, there is some empirical evidence that teams

commonly misinterpret specifications in the same way and
use the same / similar algorithms in their systems

© Lionel Briand 2010
12

N-version Programming

Sommerville

© Lionel Briand 2010
13

Recovery Blocks
•  Finer grain approach to fault tolerance
•  Each program component includes a test to check if the

component has executed successfully
•  It includes alternative code to back-up and repeat the

computation with another algorithm (versions) if the test
detects a failure

•  Versions are executed in sequence.
•  The output which conforms to an “acceptance test” is

selected.
•  Reduce probability of common errors as different

algorithms MUST be used for each recovery block
•  The weakness in this system is writing an appropriate

acceptance test.

© Lionel Briand 2010
14

Recovery Blocks

Sommerville

© Lionel Briand 2010
15

Discussion
•  Different teams can make the same mistakes. Some parts

of an implementation are more difficult than others so all
teams tend to make mistakes in the same place.

•  N-version programming gives increased confidence
though, but not absolute confidence

•  Both presented approaches to fault tolerance assume that
the specifications are correct

•  They both require a fault-tolerant controller which will
ensure that the steps involved in tolerating faults are
executed

•  That fault-tolerant controller may fail …

© Lionel Briand 2010
16

Defensive Programming

•  Assume there may be undetected faults and
inconsistencies

•  Does not require a fault-tolerant controller
•  Do not assume correct specifications
•  Redundant code is incorporated to prevent

incorrect state changes and check system state
after modification

•  If inconsistent, state change is retracted or restored
to known state

•  One common approach to fault tolerance

© Lionel Briand 2010
17

Failure Prevention
•  One approach is to use state assertions to check whether

certain constraints are fulfilled
•  Logical predicates over the state variables (state invariant

in UML terms)
•  This predicate is checked before an assignment is made to

a state variable
•  If an anomalous value for the variable would result from

the assignment, an error has occurred
•  In most programming languages it is up to the programmer

to include explicit assertion checks
•  Can be simplified if all assignments to state variables are

always implemented as operations (methods) on objects –
the assertion code is part of the operation

© Lionel Briand 2010
18

Example:
Even

Number
Class

class PositiveEvenInteger { ""
"int val = 0 ;"

public void assign (int n) throws NumericException"
"{"
" "if (n < 0 | n%2 == 1)"
" " "throw new NumericException ();"
" "else"
" " "val = n ;"
"} // assign ""

 int toInteger ()"
"{"
" "return val ;"
"} //to Integer"

"boolean equals (PositiveEvenInteger n)"
"{"
" "return (val == n.val) ;"
"} // equals"

} //PositiveEven 	

	

© Lionel Briand 2010
19

Discussion

•  Failure prevention avoids the problems related to
damage assessment and recovery (next)

•  But it involves significant overhead (copies of
state variables) and for systems where
performance is important this may not be
applicable

•  Retrospective fault detection may be a more
adequate alternative in some cases: Damage
assessment and Recovery

© Lionel Briand 2010
20

Damage Assessment

•  Analyze system state, after a state change, to judge
the extent of corruption

•  Must assess what parts of the state space have
been affected by the failure

•  Generally based on ‘validity functions’ which can
be applied to the state elements to assess if their
value is within an allowed range

•  If damage is identified, an exception is signaled
and a repair mechanism is used to recover from
the damage

© Lionel Briand 2010
21

Java Implementation
•  Objects to be checked are instantiations of a class that

implements the interface:

 Interface CheckableObject {
 Public boolean check();
}

•  Each class implements its own check method
•  When the state as a whole is checked, dynamic binding is

used to ensure that the appropriate check function is
executed

© Lionel Briand 2010
22

Example
Damage

Assessment
(java)

class RobustArray {"
"// Checks that all the objects in an array of objects"
"// conform to some defined constraint"
"private boolean [] checkState ;"
"private CheckableObject [] theRobustArray ;"

"RobustArray (CheckableObject [] theArray)"
"{"
" "checkState = new boolean [theArray.length] ;"
" "theRobustArray = theArray ;"
"} //RobustArray ""
"public void assessDamage () throws ArrayDamagedException"
"{"
" "boolean hasBeenDamaged = false ;"
" ""
" "for (int i= 0; i <this.theRobustArray.length ; i ++)"
" "{"
" " "if (! theRobustArray [i].check ())"
" " " "{"
" " " " "checkState [i] = true ;"
" " " " "hasBeenDamaged = true ;"
" " " "}"
" " "else"
" " " "checkState [i] = false ;"
" "}"
" "if (hasBeenDamaged)"
" " "throw new ArrayDamagedException (checkState) ;"
"} //assessDamage"

} // RobustArray"

© Lionel Briand 2010
23

Exception Handling
•  Exception: User error, hardware failure, software failure
•  Exception handling: Mechanism by which a system treats

an exception
–  User Error: meaningful error message

•  In OO systems: Exceptions usually associated with
violations of pre-conditions, post-conditions, and/or class
invariants

•  Using normal control constructs (if statements) to detect
exceptions in a sequence of nested procedure calls needs
many additional statements to be added to the program and
adds a significant timing overhead.

•  Some languages have built-in mechanisms for exceptions
e.g., Java, C++)

Reminder

© Lionel Briand 2010
24

Exception Handlers

•  Some programming languages include facilities to
detect and handle exceptions (Ada, C++, Java)

•  An exception is signaled and control in the
program is transferred to an exception handler,
I.e., a segment of code that deals with this
exceptional situation (e.g., catch block in Java)

•  Exceptions are often handled by catch block in a
calling unit higher up the call sequence, as the
units called often do not know what to do when an
exception is detected

Reminder

© Lionel Briand 2010
25

Java Exception Handling
•  Keyword throw means raise an exception. It can only be

used in a try block or a function (indirectly) called from
it. Handler is indicated by the keyword catch.

•  The try block wraps the code that may throw an
exception and the code that should not execute in this case

•  Exceptions are defined as classes so may inherit properties
from other exception classes. There is a pre-defined
Exception class in Java. All exceptions are defined as a
subclass of Exception

•  When possible, exceptions are completely handled in the
block where they arise rather than propagated for handling.
But this is not often the case

Reminder

© Lionel Briand 2010
26

Example: SensorFailureException
class SensorFailureException extends Exception {
 SensorFailureException (String msg) {
 super (msg) ;
 Alarm.activate (msg) ;
 }

} // SensorFailureException

class Sensor {
 int readVal () throws SensorFailureException {
 try {
 int theValue = DeviceIO.readInteger () ;
 if (theValue < 0)
 throw new SensorFailureException ("Sensor failure") ;
 return theValue ;
 }
 catch (deviceIOException e)
 { throw new SensorFailureException (“ Sensor read error ”) ; }
 } // readVal

} // Sensor

Reminder

© Lionel Briand 2010
27

Another Example

•  System that controls a freezer and keeps
temperature within a specified range

•  Switches a refrigerant pump on and off
•  Sets of an alarm is the maximum allowed

temperature is exceeded
•  Uses external objects of type Pump,
TempDial, TempSensor, Alarm

© Lionel Briand 2010
28

class FreezerController extends Thread {"
"Sensor tempSensor = new Sensor () ;"
"Dial tempDial = new Dial () ;"
"float freezerTemp = tempSensor.readVal () ;"
"final float dangerTemp = (float) -18.0 ;"
"final long coolingTime = (long) 200000.0 ;"
"public void run () throws FreezerTooHotException, InterruptedException {"
"try {"
" "Pump.switchIt (Pump.on) ;"
" "do { if (freezerTemp > tempDial.setting ())"
" " " "if (Pump.status == Pump.off)"
" " " "{ Pump.switchIt (Pump.on) ;"
" " " " Thread.sleep (coolingTime) ; "
" " " "} "

 else"
" " " "if (Pump.status == Pump.on)"
" " " " Pump.switchIt (Pump.off) ;"
" " "if (freezerTemp > dangerTemp)"
" " " " throw new FreezerTooHotException () ;"
" " "freezerTemp = tempSensor.readVal () ;"
" "} while (true) ; " ""
"} // try block"
"catch (FreezerTooHotException f)"
"{ "Alarm.activate () ; }"
"catch (InterruptedException e)"
"{ "System.out.println (“Thread exception”) ;"
" "throw new InterruptedException () ; "
"}"
"} //run"

} // FreezerController"

Example:
FreezerCon

troller
(Java)

© Lionel Briand 2010
29

Other Damage Assessment
Techniques

•  Checksums are used for damage assessment
in data transmission

•  Redundant pointers can be used to check
the integrity of data structures

•  Watch dog timers can check for non-
terminating processes in concurrent
systems. If no response after a certain time,
a problem is assumed

© Lionel Briand 2010
30

Fault Recovery

•  Forward recovery
–  Apply “repairs” to a corrupted system state

•  Backward recovery
–  Restore the system state to a previous, known safe state

•  Forward recovery is usually application specific
–  domain knowledge is required to compute

possible state corrections
•  Backward error recovery is simpler. Details of a

safe state are maintained and this replaces the
corrupted system state

© Lionel Briand 2010
31

Forward Recovery
•  Corruption of data coding

–  Error coding techniques which add redundancy to
coded data can be used for repairing data corrupted
during transmission

•  Redundant pointers
–  When redundant pointers are included in data structures

(e.g. two-way lists), a corrupted list or file store may be
rebuilt if a sufficient number of pointers are
uncorrupted

–  Often used for database and file system repair
•  Sometimes, a simple approach is possible:

–  Reinitialize system, acquire new operating context
(e.g., re-reading the sensors), bring to safe state

© Lionel Briand 2010
32

Backward Recovery
•  Transactions are a frequently used method of

backward recovery. Changes are not applied
until computation is complete. If an error
occurs, the system is left in the state preceding
the transaction

•  E.g., database systems, changes made during
transactions are not immediately incorporated in
the database (committed), database updated after
transaction is completed

•  Periodic checkpoints allow system to 'roll-back'
to a correct state – restore to a correct state from a
copy

© Lionel Briand 2010
33

Example: Safe Sort Procedure

•  Sort operation monitors its own execution and
assesses if the sort has been correctly executed

•  Maintains a copy of its input so that if an error
occurs, the input is not corrupted

•  Based on identifying and handling exceptions
•  Possible in this case as ‘valid’ sort is known.

However, in many cases it is difficult to write
validity checks

© Lionel Briand 2010
34

Backward
Recovery

Code
(Java)

class SafeSort {"
"static void sort (int [] intarray, int order) throws SortError"
"{"
" "int [] copy = new int [intarray.length];"
" ""
" "// copy the input array"
" ""
" "for (int i = 0; i < intarray.length ; i++)"
" " "copy [i] = intarray [i] ;"
" "try {"
" " "Sort.bubblesort (intarray, intarray.length, order) ;"
" " "if (order == Sort.ascending)"
" " " "for (int i = 0; i <= intarray.length-2 ; i++)"
" " " " "if (intarray [i] > intarray [i+1])"
" " " " " "throw new SortError () ;"
" " "else"
" " " "for (int i = 0; i <= intarray.length-2 ; i++)"
" " " " "if (intarray [i+1] > intarray [i])"
" " " " " "throw new SortError () ;"
" "} // try block"
" "catch (SortError e)"
" "{"
" " "for (int i = 0; i < intarray.length ; i++)"
" " " "intarray [i] = copy [i] ;"
" " "throw new SortError ("Array not sorted") ;"
" "} //catch " ""
"} // sort"

} // SafeSort"

© Lionel Briand 2010
35

Conclusions

•  Many programming techniques to make the code
more reliable and more robust

•  All of these techniques have a cost, in terms of
development effort and system performance

•  Should be used with discretion
•  Some technical issues:

–  backward recovery difficult to implement in concurrent,
distributed systems, incompatible with systems that
have had real-time deadlines

