. research laboratory |

Programming for Reliability

© Lionel Briand 2010

. research laboratory |
Reliability Achievement

e Fault avoidance

— The software 1s developed 1n such a way that 1t does not
contain faults

e Fault detection

— The development process 1s organized so that faults in
the software are detected and repaired before delivery
to the customer

o Fault tolerance

— The software 1s designed so that faults in the delivered
software do not result in complete system failure

© Lionel Briand 2010

. research laboratory |

Fault Tolerance: Motivations

We cannot achieve complete software
reliability

Demonstrating high reliability for safety
critical applications 1s difficult

How can we ensure an acceptable behavior
of the system when failures occur?

E.g., the computers of an air traffic control
systems must be continuously available

© Lionel Briand 2010

. research laboratory |

Aspects of Fault Tolerance

Failure detection: The system must detect that a particular
state combination has resulted or will result in a system
failure

Damage assessment: the parts of the system state which
have been affected by the failure must be detected

Fault recovery: The system must restore its state to a
known “safe” state

Fault repair: This involves modifying the system so that
the fault does not recur. For systems that need to be

continuously available, replacing the faulty component 1s
more complex.

© Lionel Briand 2010

. research laboratory |

Two Main Approaches

* Fault-tolerant architectures: Explicit
support for fault tolerance (problem
detection, recovery)

* Defensive Programming: No specific
architecture. But redundant code to check
system state after modification. If
inconsistencies are detected, state 1s restored
to a known correct state.

© Lionel Briand 2010

. research laboratory |

Hardware Fault Tolerance

Triple-modular Redundancy: hardware unit 1s
replicated three (or more) times and their outputs
are compared

If one unit shows inconsistent output, 1t 1s 1gnored

This approach assumes the problem results from
component failures rather than design faults

Low probability of simultaneous component
failure 1n all hardware units

Units may come from different manufacturers

© Lionel Briand 2010

| simula.research laboratory |

Hardware Reliability with TMR

— Al
’
> AD > Output
comparator
>
> A3
Sommerville

© Lionel Briand 2010

. research laboratory |

Fault Tolerant Software architectures

* The success of TMR at providing fault tolerance 1s
based on two fundamental assumptions

— The hardware components do not include common
design faults

— Components fail randomly and there 1s a low
probability of simultaneous component failure

* Neither of these assumptions are true for software

— It 1sn’t possible simply to replicate the same component
as they would have common design faults

— Simultaneous component failure 1s therefore virtually
inevitable

» Software systems must therefore be diverse

© Lionel Briand 2010

. research laboratory |

Design Diversity

» Different versions of the system are designed and
implemented 1n different ways. They therefore
ought to have different failure modes.

 Different approaches to design (e.g., object-
oriented and function oriented)

— Implementation in different programming languages
— Use of different tools and development environments

— Use of different algorithms in the implementation

© Lionel Briand 2010

. research laboratory |

Software Analogies to TMR

« N-version programming
— The same specification is implemented in a number of
different versions by different teams. All versions

compute simultaneously and the majority output 1s
selected using a voting system..

— This 1s the most commonly used approach e.g. in
Airbus 320.

* Recovery blocks

— A number of explicitly different versions of the same
specification are written and executed in sequence

— An acceptance test 1s used to select the output to be
transmitted.

10
© Lionel Briand 2010

. research laboratory |

N-version Programming

Using a common specification, the software system i1s
implemented 1n a number of different versions by different
teams

Versions are executed in parallel

Outputs are compared using a voting system and
inconsistent outputs are rejected

At least three versions should be available

Assumption: 1t 1s unlikely different teams will make the
same design or programming errors

However, there 1s some empirical evidence that teams
commonly misinterpret specifications in the same way and
use the same / similar algorithms 1n their systems

11
© Lionel Briand 2010

| simula.research laboratory |

N-version Programming

— | \lersion 1
>
Input . Output
»| \ersion 2 = — >
comparator
> Agreed
result
| \lersion 3
Fault
manager
N-versions
Sommerville
12

© Lionel Briand 2010

. research laboratory |
Recovery Blocks

Finer grain approach to fault tolerance

Each program component includes a test to check if the
component has executed successfully

It includes alternative code to back-up and repeat the
computation with another algorithm (versions) if the test
detects a failure

Versions are executed in sequence.

The output which conforms to an “acceptance test” is
selected.

Reduce probability of common errors as different
algorithms MUST be used for each recovery block

The weakness in this system 1s writing an appropriate

acceptance test.

13
© Lionel Briand 2010

| simula.research laboratory |

Try algorithm
1
—

Recovery Blocks

Algorithm 1

Acceptance test
fails — retry

Test for
success
—> Accipt?nce — > Continue execution if
€3 acceptance test succeeds
A \ Signal exception if all
algorithms fail
Retry 8
Re-test Re'ti
Algorithm 2 Algorithm 3

Recovery blocks

© Lionel Briand 2010

Sommerville

14

. research laboratory |

Discussion

Different teams can make the same mistakes. Some parts
of an implementation are more difficult than others so all
teams tend to make mistakes 1n the same place.

N-version programming gives increased confidence
though, but not absolute confidence

Both presented approaches to fault tolerance assume that
the specifications are correct

They both require a fault-tolerant controller which will
ensure that the steps involved 1n tolerating faults are
executed

That fault-tolerant controller may fail ...

15
© Lionel Briand 2010

. research laboratory |

Defensive Programming

Assume there may be undetected faults and
Inconsistencies

Does not require a fault-tolerant controller
Do not assume correct specifications

Redundant code 1s incorporated to prevent
incorrect state changes and check system state
after modification

If inconsistent, state change 1s retracted or restored
to known state

One common approach to fault tolerance

16
© Lionel Briand 2010

. research laboratory |

Failure Prevention

One approach is to use state assertions to check whether
certain constraints are fulfilled

Logical predicates over the state variables (state invariant
in UML terms)

This predicate is checked before an assignment 1s made to
a state variable

If an anomalous value for the variable would result from
the assignment, an error has occurred

In most programming languages it 1s up to the programmer
to include explicit assertion checks

Can be simplified if all assignments to state variables are
always implemented as operations (methods) on objects —
the assertion code 1s part of the operation

17
© Lionel Briand 2010

. research laboratory |

class PositiveEveninteger {

intval=0;
Example o public void assign (int n) throws NumericException
{
Even if (Nn<01n%2==1)
throw new NumericException ();
else

Numb er } // assign val=n:
Clas S {int tolnteger ()

return val ;
} /to Integer

boolean equals (PositiveEveninteger n)

{
return (val == n.val) ;
} // equals

} //PositiveEven

18
© Lionel Briand 2010

. research laboratory |
Discussion

» Failure prevention avoids the problems related to
damage assessment and recovery (next)

* But 1t involves significant overhead (copies of
state variables) and for systems where
performance is important this may not be
applicable

* Retrospective fault detection may be a more
adequate alternative in some cases: Damage
assessment and Recovery

19
© Lionel Briand 2010

. research laboratory |

Damage Assessment

Analyze system state, after a state change, to judge
the extent of corruption

Must assess what parts of the state space have
been affected by the failure

Generally based on ‘validity functions’ which can
be applied to the state elements to assess if their
value 1s within an allowed range

If damage 1s 1dentified, an exception 1s signaled
and a repair mechanism is used to recover from
the damage

, _ 20
© Lionel Briand 2010

. research laboratory |

Java Implementation

Objects to be checked are instantiations of a class that
implements the interface:

Interface CheckableObject {
Public boolean check();

Each class implements its own check method

When the state as a whole 1s checked, dynamic binding is
used to ensure that the appropriate check function 1s
executed

21
© Lionel Briand 2010

. research laboratory [lass RobustArray {
/I Checks that all the objects in an array of objects
/I conform to some defined constraint

Example private boolean [] checkState ;

private CheckableObiject [] theRobustArray ;

D amage RobustArray (CheckableObject [] theArray)
{

checkState = new boolean [theArray.length] ;

theRobustArray = theArray ;
AS Ses Sment } //RobustArray

public void assessDamage () throws ArrayDamagedException
” {
(J ava) boolean hasBeenDamaged = false ;

for (int i= O; i <this.theRobustArray.length ; i ++)

{
if (! theRobustArray [i].check ())
{
checkState [i] = true ;
hasBeenDamaged = true ;
}
else
checkState [i] = false ;
}

if (hasBeenDamaged)
throw new ArrayDamagedException (checkState) ;
} //lassessDamage
} // RobustArray

22
© Lionel Briand 2010

.research laboratory] Reminder

Exception Handling

Exception: User error, hardware failure, software failure

Exception handling: Mechanism by which a system treats
an exception

— User Error: meaningful error message

In OO systems: Exceptions usually associated with
violations of pre-conditions, post-conditions, and/or class
invariants

Using normal control constructs (if statements) to detect
exceptions 1n a sequence of nested procedure calls needs
many additional statements to be added to the program and
adds a significant timing overhead.

Some languages have built-in mechanisms for exceptions

e.g., Java, C++)

, _ 23
© Lionel Briand 2010

.research laboratory] Reminder
Exception Handlers

* Some programming languages include facilities to
detect and handle exceptions (Ada, C++, Java)

* An exception is signaled and control in the
program 1s transferred to an exception handler,
I.e., a segment of code that deals with this
exceptional situation (e.g., catch block 1n Java)

* Exceptions are often handled by catch block 1n a
calling unit higher up the call sequence, as the
units called often do not know what to do when an
exception 1s detected

_ 24
© Lionel Briand 2010

.research laboratory] Reminder

Java Exception Handling

Keyword throw means raise an exception. It can only be
used 1n a try block or a function (indirectly) called from
it. Handler 1s indicated by the keyword catch.

The try block wraps the code that may throw an
exception and the code that should not execute 1n this case

Exceptions are defined as classes so may inherit properties
from other exception classes. There 1s a pre-defined
Exception class in Java. All exceptions are defined as a
subclass of Exception

When possible, exceptions are completely handled in the
block where they arise rather than propagated for handling.
But this 1s not often the case

, _ 25
© Lionel Briand 2010

.research laboratory] Reminder

Example: SensorFailureException

class SensorFailurekException extends Exception {
SensorFaillureException (String msg) {
super (msg) ;
Alarm.activate (msg) ;

}

} // SensorFailureException

class Sensor {

int readVal () throws SensorFailureException {
try |
int theValue = DevicelO.readInteger () ;
1f (theValue < 0)
throw new SensorFailureException ("Sensor failure") ;

return theValue ;
}
catch (deviceIOException e)

{ throw new SensorFailureException (% Sensor read error ”) ; }
} // readvVal

} // Sensor

, _ 26
© Lionel Briand 2010

. research laboratory |

Another Example

System that controls a freezer and keeps
temperature within a specified range

Switches a refrigerant pump on and off

Sets of an alarm 1s the maximum allowed

temperature 1s exceeded

Uses external objects of type Pump,

TempDial,

TempSensor,

© Lionel Briand 2010

Alarm

27

lass FreezerC ntroller extends Thread {
.research la Of‘@ oY1 mpSensor = new Sensor () ;
Dial tempDial = new Dial () ;
float freezerTemp = tempSensor.readVal () ;
final float dangerTemp = (float) -18.0 ;

EXample : final'long_ coolingTime = (long) 200000.0 ;

public void run () throws FreezerTooHotException, InterruptedException {
try {

Pump.switchlt (Pump.on) ;
Fre ezercon do { if (freezerTemp > tempDial.setting ())
if (Pump.status == Pump.off)
{ Pump.switchlt (Pump.on) ;
tr()ller Thread.sleep (coolingTime) ;
}

else
(Java) if (Pump.status == Pump.on)

Pump.switchlt (Pump.off) ;
if (freezerTemp > dangerTemp)
throw new FreezerTooHotException () ;
freezerTemp = tempSensor.readVal () ;
} while (true) ;
} // try block
catch (FreezerTooHotException f)
{ Alarm.activate () ; }
catch (InterruptedException e)
{ System.out.printin (“Thread exception”) ;
throw new InterruptedException () ;
}
} /frun
} 1/ FreezerController 7
© Lionel Briand 2010

. research laboratory |

Other Damage Assessment
Techniques

* Checksums are used for damage assessment
in data transmission

* Redundant pointers can be used to check
the integrity of data structures

 Watch dog timers can check for non-
terminating processes 1n concurrent
systems. If no response after a certain time,
a problem is assumed

, _ 29
© Lionel Briand 2010

. research laboratory |

Fault Recovery

Forward recovery
— Apply “repairs” to a corrupted system state

Backward recovery
— Restore the system state to a previous, known safe state

Forward recovery 1s usually application specific
— domain knowledge is required to compute
possible state corrections
Backward error recovery is simpler. Details of a
safe state are maintained and this replaces the
corrupted system state

, _ 30
© Lionel Briand 2010

. research laboratory |

Forward Recovery

e Corruption of data coding

— Error coding techniques which add redundancy to
coded data can be used for repairing data corrupted
during transmission

* Redundant pointers

— When redundant pointers are included in data structures
(e.g. two-way lists), a corrupted list or file store may be
rebuilt 1f a sufficient number of pointers are
uncorrupted

— Often used for database and file system repair

* Sometimes, a simple approach 1s possible:

— Reinitialize system, acquire new operating context
(e.g., re-reading the sensors), bring to safe state

31
© Lionel Briand 2010

. research laboratory |

Backward Recovery

* Transactions are a frequently used method of

backward recovery. Changes are not applied
until computation 1s complete. If an error
occurs, the system 1s left in the state preceding
the transaction

E.g., database systems, changes made during
transactions are not immediately incorporated 1n
the database (committed), database updated after
transaction 1s completed

Periodic checkpoints allow system to 'roll-back’
to a correct state — restore to a correct state from a

copy

, _ 32
© Lionel Briand 2010

. research laboratory |

Example: Safe Sort Procedure

Sort operation monitors 1ts own execution and
assesses 1f the sort has been correctly executed

Maintains a copy of its input so that if an error
occurs, the mput 1s not corrupted

Based on identifying and handling exceptions

Possible in this case as ‘valid’ sort 1s known.
However, 1n many cases 1t 1s difficult to write
validity checks

33
© Lionel Briand 2010

. research laboratory |class SafeSort{
static void sort (int [] intarray, int order) throws SortError

{

int [] copy = new int [intarray.length];
Backward

/l copy the input array

Recovery for (inti = 0; i< intarray.length ; i++)

copy [i] = intarray [i] ;
try {
Code Sort.bubblesort (intarray, intarray.length, order) ;
if (order == Sort.ascending)
for (inti = 0; i <= intarray.length-2 ; i++)
(J aV a) if (intarray [i] > intarray [i+1])
throw new SortError () ;
else
for (inti = 0; i <= intarray.length-2 ; i++)
if (intarray [i+1] > intarray [i])
throw new SortError () ;
} /1 try block
catch (SortError e)
{
for (inti = 0; i <intarray.length ; i++)
intarray [i] = copy [i] ;
throw new SortError ("Array not sorted") ;
} /lcatch

} /1 sort
} // SafeSort

, _ 34
© Lionel Briand 2010

. research laboratory |
Conclusions

Many programming techniques to make the code
more reliable and more robust

All of these techniques have a cost, 1n terms of
development effort and system performance

Should be used with discretion
Some technical i1ssues:

— backward recovery difficult to implement in concurrent,
distributed systems, incompatible with systems that
have had real-time deadlines

35
© Lionel Briand 2010

