
Requirements Quality Assurance

Mehrdad Sabetzadeh

April 7, 2010	

What is a Requirement?

➜ No universally agreed definition
➥ But intuitively: A requirement is something that

 someone needs in order to solve a problem or achieve
 an objective

➜ IEEE Definition
 "A condition or capability that must be met or
 possessed by a system or system component to
 satisfy a contract, standard, specification, or
 other formally imposed document. The set of all
 requirements forms the basis for subsequent
 development of the system or system component".
 [IEEE Std 830-1998]

2	

Types of Requirements
➜  Functional requirements:

➥ What the system does: the interactions between the system and
 its environment

➥ Should be as independent as possible from implementation
➜ Non-functional requirements:

➥ Observable aspects of the system that are not directly related
 to functional behavior
➣  e.g. performance, reliability

➜  Safety/security requirements ("shall not" properties)
➥ A kind of nonfunctional requirement
➥ Behavior the system must never exhibit

➣  e.g. it must be impossible to apply reverse thrust in mid-flight

➜  Constraints (Pseudo requirements)
➥ Imposed by the client or environment in which the system

 operates
➥ Often concern the technology to be used (language, operating

 system, middleware etc.)

3	

What do Requirements Engineers do?

4	

Focus of
today’s
lecture	

Domain Understanding and Elicitation

➜ Domain Understanding
➥ Identify the problem / opportunity
➥ Understand the organizational context
➥ Identify stakeholders
➥ Specify the scope of the software system

➜ Requirements Elicitation
➥ Elaborate stakeholders’ goals
➥ Identify alternative options for satisfying these goals
➥ Identify organizational / technical constraints and

 assumptions
➥ Define typical scenarios illustrating desired interactions

 between the system and its environment
➥ Articulate the requirements the system should meet in

 order to conform to all of the above

5	

Evaluation and Negotiation
➜  Evaluation Tasks

➥ Identify conflicting concerns and resolve them
➣ Conflicts often arise from multiple viewpoints and

 different expectations.
➥ Identify and assess risks associated with the system

➣  Budget, schedule, etc.
➥ Compare the alternative options identified during

 elicitation and select best options
➥ Prioritize the requirements

➣ give weight to requirements that are essential to the
 system

➣ drop lower-priority requirements that would together
 exceed budgets and deadlines

➜ All the above involve some kind of negotiation to
 arrive at a consensus

➜ Output is a preliminary requirements document
6	

Specification and Documentation
➜ Goal
➥ Detailing, structuring, and documenting

the agreed characteristics of the system
as they emerge from the evaluation and negotiation
 activity

➜ Contents
➥ A detailed and precise description of the following:
➣ Objectives
➣ Concept definitions
➣ Relevant domain properties
➣ Responsibilities
➣ System requirements
➣ Software requirements
➣ Environment assumptions

7	

Requirements Quality Assurance (QA)
➜ Goal:
➥ Quality assurance is aimed at

checking that the items specified
in a Requirements Document (RD)
meet the desired qualities attributes
➣ Completeness, consistency, adequacy

➜ Why is Requirements QA important?
➥ Because cost of requirements failures is very high
 “Finding and fixing a software problem after delivery
 is often 100 times more expensive than finding and
 fixing it during the requirements and design
 phase.” [Boehm and Basili]

➜ Remainder of lecture is about Requirements QA
8	

Requirements Quality Attributes
➜  Completeness

➥ The requirements must be sufficient to ensure that the
 system will satisfy all its objectives

➜  Consistency
➥ The requirements must be satisfiable when taken together,

 i.e. they must be compatible
➜  Unambiguity

➥ The requirements must be specified in a way that
 precludes different interpretations.

➜ Measurability
➥ The requirements must be formulated at a level of

 precision that enables analysts to evaluate alternative
 options, and to test or verify whether an implementation
 satisfies them.

➜  Relevance
➥ The requirements must each contribute to the satisfaction

 of one or several objectives underpinning the system
9	

Requirements Quality Attributes (continued)
➜  Feasibility

➥ The requirements must be realizable in view of the budget,
 schedule, and technology constraints

➜  Comprehensibility
➥ The formulation of requirements must be comprehensible by

 the people who need to use them.
➜  Good structuring

➥ The requirements document should be organized in a way
 that highlights the structural links among its elements

➜ Modifiability
➥ It should be possible to revise, adapt, extend, or contract

 the requirements document through modifications that are
 as local as possible

➜  Traceability
➥ The context in which an item of the requirements document

 was created, modified, or used should be easy to
 retrieve. Such context should include the rationale for
 creation, modification, or use.

10	

Common Requirement Defects

11	

➜ Major Issues

Common Requirements Defects

12	

➜ Minor Issues

Techniques for Requirements QA
➜  Prototyping
➥ Partial implementation for validation with customers

➜  Inspections, reviews, walkthroughs
➥ Independent inspectors search for defects and

 recommend appropriate actions on agreed defects

➜ Simulation
➥ Simulates the environment of a system and checks

 the appropriateness of specified behaviors

➜  Formal checks
➥ Completeness and sanity checks
➥ Model checking and theorem proving

13	

Prototyping
➜  Definitions

➥  “A software prototype is a partial implementation constructed primarily to enable
 customers, users, or developers to learn more about a problem or its
 solution.” [Davis 1990]

➥  “Prototyping is the process of building a working model of the system” [Agresti
 1986]

➜  Approaches to prototyping
➥  Presentation Prototypes

➣  explain, demonstrate and inform – then throw away
➣  e.g. used for proof of concept; explaining design features; etc.

➥  Exploratory Prototypes
➣  used to determine problems, elicit needs, clarify goals, compare design

 options
➣  informal, unstructured and thrown away

➥  Breadboards or Experimental Prototypes
➣  explore technical feasibility; test suitability of a technology
➣  Typically no user/customer involvement

➥  Evolutionary (e.g. “operational prototypes”, “pilot systems”):
➣  development seen as continuous process of adapting the system
➣  prototype is an early deliverable, to be continually improved.

14	

Inspections, Reviews, Walkthroughs
➜  Note: these terms are not widely agreed

➥  Formality
➣  informal: from meetings over coffee, to team get-togethers
➣  formal: scheduled meetings, prepared participants, defined agenda, specific

 format, documented output
➥  Management reviews

➣  E.g. preliminary design review, critical design review, …
➣  Used to provide confidence that the design is sound
➣  Attended by management and sponsors (customers)
➣  Usually a “dog-and-pony show”

➥  Walkthroughs
➣  developer technique (usually informal)
➣  used by development teams to improve quality of product
➣  focus is on finding defects

➥  (Fagan) Inspections
➣  a process management tool (always formal)
➣  used to improve quality of the development process
➣  collect defect data to analyze the quality of the process
➣  written output is important
➣  major role in training junior staff and transferring expertise

15	

Benefits of Formal Inspections
➜  Formal inspection works well for programming:

➥  For applications programming:
➣  more effective than testing
➣  most reviewed programs run correctly first time

➠  compare: 10-50 attempts for test/debug approach
➥  Data from large projects

➣  error reduction by a factor of 5; (10 in some reported cases)
➣  improvement in productivity: 14% to 25%
➣  percentage of errors found by inspection: 58% to 82%
➣  cost reduction of 50%-80% for V&V (even including cost of inspection)

➥  Effects on staff competence:
➣  increased morale, reduced turnover
➣  better estimation and scheduling (more knowledge about defect

 profiles)
➣  better management recognition of staff ability

➜  These benefits have been shown to apply to requirements inspections too

16	

Inspection Constraints
➜  Size

➥  enough people so that all the relevant expertise is available
➥  min: 3 (4 if author is present)
➥  max: 7 (less if leader is inexperienced)

➜  Duration
➥  never more than 2 hours; concentration will flag if longer

➜  Output
➥  all reviewers must agree on the result: accept; re-work; re-inspect;
➥  all findings should be documented

➣  summary report (for management); detailed list of issues

➜  Scope
➥  focus on small part of a design, not the whole thing

➜  Timing
➥  Examines a product once its author has finished it

➣  not too soon: product not ready - find problems the author is already aware of
➣  not too late: product in use - errors are now very costly to fix

➜  Purpose
➥  Remember the biggest gains come from fixing the process
➥  collect data to help you not to make the same errors next time

17	

Inspection Guidelines
➜  Prior to the review

➥  schedule Formal Reviews into the project planning
➥  train all reviewers
➥  ensure all attendees prepare in advance

➜  During the review
➥  review the product, not its author
➥  keep comments constructive, professional and task-focused
➥  stick to the agenda
➥  leader must prevent drift
➥  limit debate and rebuttal
➥  record issues for later discussion/resolution
➥  identify problems but don’t try to solve them
➥  take written notes

➜  After the review
➥  review the review process!

18	

Inspection Guidelines
➜  Possibilities

➥  specialists in reviewing (e.g. QA people)
➥  people from the same team as the author
➥  people invited for specialist expertise
➥  people with an interest in the product
➥  visitors who have something to contribute
➥  people from other parts of the organization

➜  Exclude
➥  anyone responsible for reviewing the author

➣  i.e. line manager, appraiser, etc.
➥  anyone with known personality clashes with other reviewers
➥  anyone who is not qualified to contribute
➥  all management
➥  anyone whose presence creates a conflict of interest

19	

Structuring the Inspection
➜  Can structure the inspection in different ways

➥ Free mode
➣ Rely on expertise of the reviewers

➥ Checklists
➣ uses a checklist of questions/issues
➣ checklists tailored to the kind of document

➥ Active reviews (perspective-based reading)
➣ each reviewer is given a specific process to follow for defect

 search and reads for a specific purpose
➣ effectively different reviewers take different perspectives

➜  The differences may matter
➥ Some studies indicate that:

➣ active reviews find more faults than free mode or checklist
 methods

➣ no effective difference between free mode and checklist
 methods

➣ the inspection meeting might be superfluous!

20	

Inspection Checklists

➜ Example

21	

Inspection Checklists
➜ Example (continued)

22	

Simulation
➜  Definition

➥ Mimicking possible behaviors of the environment and executing a model
 of the software system to respond to these events

➥  Often accompanied by animation
➣  a visual representation that shows how the system evolves as the

 model is being executed

➜  Prerequisite
➥  An (abstract) executable model of the system needs to be built

➜  Types of visualization
➥  Textual: input events are entered as textual commands; model

 reactions are displayed as execution traces.
➥  Diagrammatic: input events are entered by event selection among those

 applicable in the current state; model reactions are displayed as
 tokens progressing along the model diagrams

➥  Domain-specific visualization: input events are entered through domain
-specific control devices displayed on the screen; model reactions are
 displayed as new values on domain-specific control panels

23	

Formal Checks

➜ A wide range of mathematically defined checks
 that can be automated by tools
➥ The specification must be formal.

➜ Example 1
➥ Checking disjointness of input cases

➣  For every two cases C1, C2 we must have

24	

C1 ∧ C2 = false

Formal Checks (continued)

➜ Example 2
➥ Checking completeness of input cases

➣  For C1, C2, … Cn we must have:

➜ A wide variety of techniques use model checking
 and theorem proving
➥ Model checking will be covered in a future lecture

25	

C1 ∨ C2 ∨ · · · ∨ Cn = true

References

➜ Lecture contents adapted from:
➥ Requirements Engineering From System Goals to UML

 Models to Software Specifications by Axel van
 Lamsweerde
➣  Chapter 5 Requirements Quality Assurance

➥ Course slides from the Requirements Engineering course
 at the University of Toronto by Steve Easterbrook
➣  http://www.cs.toronto.edu/~sme/CSC2106S/

➜ More Resources
➥  [IEEE Std 830-1998] IEEE Recommended Practice for Software

 Requirements Specifications -Description
➥  [Boehm&Basili] Software Defect Reduction Top 10 List
➥  [Blum] Software Engineering: A Holistic View

26	

