
© Lionel Briand 2010 
1 

Introduction to Software 
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Motivations 

• Software is an essential component of many safety-
critical systems 
• These systems depend on the reliable operation of 
software components 
• How can we decide, whether the software is ready 
to ship after system test?  
• How can we decide, whether an acquired or 
developed component is acceptable? 
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What is Reliability? 

•  IEEE-Std-729-1991: “Software reliability is defined as the 
probability of failure-free operation for a specified period 
of time in a specified environment” 

•  ISO9126: “Reliability is the capability of the software 
product to maintain a specified level of performance when 
used under specified conditions” 

•  Informal: Reliability is a measure of how well the software 
provides the services expected by the customer. 

•  Quantification: Number of failures, severity 
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Reliability as part of
 Dependability 

Sommerville 
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Hardware Reliability 

•  Well-developed reliability theories 
•  A hardware component may fail due to design 

error, poor fabrication quality, momentary 
overload, deterioration, etc. 

•  The random nature of system failure enables the 
estimation of system reliability using probability 
theory 

•  Can it be adapted for software? No physical 
deterioration, most programs always provide the 
same answer to the same input, the “fabrication” 
of code is trivial, etc. 
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Input/Output Mapping 

Sommerville 
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How Can we Measure and Model 
Reliability 

•  The cumulative number of failures by time t 
•  Failure Intensity: The number of failures 

per time unit at time t 
•  Mean-Time-To-Failure MTTF: Average 

value of inter-failure time interval 
•  We do not know for sure when the software 

is going to fail next => model failure 
behavior as a random process  
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Software Reliability Engineering 

•  No method of development can guarantee totally 
reliable software => important field in practice! 

•  A set of statistical modeling techniques 
•  Enables the achieved reliability to be assessed or 

predicted, quantitatively and objectively 
•  Based on observation of system failures during 

system testing and operational use 
•  Uses general reliability theory, but is much more 

than that 
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Applications 
•  How reliable is the program/component now? 
•  Based on the current reliability of a purchased/reused 

component: can we accept it or should we reject it? 
•  Based on the current reliability of the system: can we 

stop testing and start shipping? 
•  How reliable will the system be, if we continue testing 

for some time? 
•  When will the reliability objective be achieved?   
•  How many failures will occur in the field (and when) 

– to help plan resources for customer support? 
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Problems with Quantification? 

•  US standard for equipment on civil aircraft:  
–  [A critical failure must be ] so unlikely that [it] need not be 

considered ever to occur, unless engineering judgment would 
require [its] consideration. 

•  Typical requirement for critical flight systems: 10-9 
probability of failure per flying hour based on a flight 
mean duration of 10 hours.  

•  Problem 1: such a level of reliability cannot be 
demonstrated – would require too much testing time 

•  Problem 2: Reliability is relative to the usage of the system  
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Usage Patterns 

Sommerville 
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Basics of Reliability Theory 
•  Random variable to be modeled: time to failure t 
•  P: Probability that the time to failure is within some time 

interval 
•  F(t) value of the cumulative probability distribution 

function at point t 
•  f(t) value of the probability density function at point t	


•  Question of interest: P(τ ≤ t ≤ τ + Δτ) where Δτ may 

represent the time of a mission for a spacecraft 
•  P(τ ≤ t≤ τ + Δτ) = f(τ)Δτ = F(τ+Δτ) – F(τ) 
•  If we let Δτ -> 0, f(τ) = 
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Basics of Reliability Theory II 

•  Pf(τ) = P(0 ≤ t ≤ τ) = F(τ) – F(0) 
•  Obviously F(0) is 0 

•  Pf(τ) = F(τ) = 

•  Reliability: R(τ) = 1 - Pf(τ) = 

•  MTTF = E(t) =                        =  
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Model Expected System Usage 
•  Definition of reliability assumes a specified environment 

 To make statements on reliability in field during system 
test, we must test in conditions that are “similar to field 
conditions” 

•  Model how users will employ the software: environment, 
type of installation, distribution of inputs over input space 

•  According to the usage model, test cases are selected 
randomly 

•  One example of usage model 
–  Operational Profile (Musa): Set of system operations 

and their probabilities of occurrence 
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Operations 

•  Major system logical task of short duration, which returns 
control to the system when complete and whose processing 
is substantially different from other operations 
–  major: related to functional requirement  
–  logical: not bound to software, hardware, users, 

machines 
–  short: 100s-1000s operations per hour under normal 

load conditions 
–  different: likely to contain different faults  

•  In OO systems, an “operation” is ~ use case 
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Examples 

•  Command executed by a user 
•  Response to an input from an external 

system or device, e.g., processing a 
transaction, processing an event (alarm) 

•  Routine housekeeping, e.g., file backup, 
database cleanup 



© Lionel Briand 2010 
22 

Develop Operational Profiles 
•  Identify who/what can initiate operations 

–  Users (of different types), external systems and devices, 
system itself  

•  Create a list of operations for each operation initiator and 
consolidate results 
–  Source: requirements, draft user manuals, prototypes, 

previous program versions, discuss with expected users 
–  20 to several hundred operations are typical 

•  Determine occurrence rates (per hour) of the individual 
operations 
–  existing field data, record field operations, simulation, 

estimates 
•  Derive occurrence probabilities 
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Example: Fone Follower (FF) 
•  Requirements 

–  Forward incoming phone calls (voice, fax) anywhere 
–  Subscriber calls FF, enters phone numbers for where he 

plans to be as a function of time 
–  FF forwards incoming calls from network (voice, fax) 

to subscriber as per program. If no response to voice 
call, subscriber is paged (if subscriber has pager). If no 
response or no pager, voice calls are forwarded to voice 
mail 

–  Subscribers view service as standard telephone service 
combined with FF 

–  FF uses vendor-supplied operating system of unknown 
reliability  
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Initiators of Operations 

•  Event driven systems often have many external 
systems that can initiate operations in them 

•  Typically, the system under study may initiate 
itself administrative and maintenance operations 

•  FF: 
–  User types: subscribers, system administrators 
–  External system: Telephone network 
–  FF (audits, backups) 
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FF Operations List 
•  Subscriber 
•  System Administrator 

•  Network 

•  FF 

–  Phone number entry 
–  Add subscriber 
–  Delete subscriber 
–  Proc. voice call, no pager, answer 
–  Proc. voice call, no pager, no answer 
–  Proc. voice call, pager, answer 
–  Proc. voice call, pager, ans. on page 
–  Proc. voice call, pager, no ans. on page 
–  Proc. fax call 
–  Audit section of phone number 

database 
–  Recover from hardware failure 
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FF Operational Profile 
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Statistical Testing 
•  Testing based on operational profiles is referred to as 

statistical testing 
•  This form of testing has the advantage of testing more 

intensively the system functions that will be used the most 
•  Good for reliability estimation, but not very effective in 

terms of finding defects 
•  Hence we differentiate testing that aims at finding defects 

(verification) and testing whose purpose is reliability 
assessment (validation). 

•  There exists research on techniques that combine white-
box testing and statistical testing …  
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Failure Intensity 
•    µ(t) = E[M(t)], with Μ(t) be the random process denoting 

the cumulative number of failures by time t, we denote µ(t) as 
its mean value function 

•   λ(t) : Failure intensity, average number of failures by unit of 
time at time t, instantaneous rate of change of the expected 
number of failures (µ(t)) 

•   λ(t) often a useful way to look at reliability, as an alternative 
to mean time to failures (MTTF), e.g., Telecom example next 

•  MTTF is probably more suitable for safety-critical systems, 
such as spacecrafts, sent on a mission of determined time 

•  Reliability growth implies: dλ(t)/dt < 0 
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Graphical Representation 
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Can We Accept a Component? 

•  Certification Testing: Show that a (acquired 
or developed) component satisfies a given 
reliability objective (e.g., failure intensity) 

•  Generate test data randomly according to 
usage model (e.g., operational profile) 

•  Record all failures (also multiple ones) but 
do not correct 
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Procedure 

•  Use a hypothesis testing control chart to show that 
the reliability objective is/is not satisfied 
–  Reliability Demonstration Chart 

•  Collect times at which failures occurred 
•  Normalize data by multiplying with failure intensity 

objective (using same units!) 
•  Plot each failure in chart 
•  Based on region in which failure falls, accept or 

reject component 
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Reliability Demonstration Chart 

John Musa, Software Reliability, 1998 
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Creating Demonstration Charts 
•  Select discrimination ratio γ (acceptable factor of 

error in estimating failure intensity) 
•  Select consumer risk β (probability of accepting a 

system that does not satisfy failure intensity 
objective) 

•  Select supplier risk α (probability of rejecting a 
system that does satisfy failure intensity objective) 

•  Recommended defaults (γ=2, β=0.1, α=0.1) 
–  10% risk of wrongly accepting component when 

failure intensity is actually ≥ 2 * failure 
intensity objective 

–  10% risk of wrongly rejecting component when 
failure intensity is actually ≤ 1/2 * failure 
intensity objective 
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Boundary Lines 

(Lower)   (Higher) 

Where 
 TN = boundaries for normalized failure time (x axis) 
 n = failure number (y axis) 

The next step is to construct boundary lines (between reject and 
Continue and Continue and Accept) according to the following 
formulae 
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Failure Data: Interfailure times 
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The Musa-Okumoto Model 
•  The system test reflects the intended usage of 

the system 
•  The failures are independent 
•  No new faults introduced during corrections 

•  The cumulative number of failures by time t 
follows a Poisson Process (NHPP) 

•  Failure intensity decreases exponentially with 
the expected number of failures experienced µ: 
λ(µ)=λ0exp(-θµ)  
θ>0 is failure intensity decay parameter, λ0 is 
initial failure intensity. 

•  Actual times when failures occurred or failure 
time intervals (execution time) 

General Assumptions 

Model-specific Assumptions 

Data Requirements 
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Poisson Processes 
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The Musa-Okumoto Model (2) 

Failure intensity versus failures experienced 
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Deriving µ(t) and λ(t) 
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The Musa-Okumoto Model (3) 

Failures experienced versus execution time τ	
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Failure intensity versus execution time τ	


•  Collect failure data: 

time when failure 
occurred 

•  Use tools to 
determine model 
parameters λ0 and 
θ 

•  Determine whether 
reliability objective 
is met or how long 
it might take to 
reach 

The Musa-Okumoto Model (4) 



© Lionel Briand 2010 
45 

The Musa-Okumoto Model (5) 
•  Once the parameters λ0 and θ are estimated, it can be used 

to predict failure intensity in the future, not only to 
estimate its current value. From this, we can plan how 
much additional testing is likely to be needed 

•  The model allows for the realistic situation where fault 
correction is not perfect (infinite number of failures at 
infinite time) 

•  When faults stop being corrected, the model reduces to a 
homogeneous Poisson process with failure intensity λ as 
the parameter – the number of failures expected in a time 
interval then follows a Poisson distribution 



© Lionel Briand 2010 
46 

Reliability Estimation 

•  Probability of 0 failures in a time frame of 
length τ (reliability): 

•   Additional time/failures to reach, from 
present failure intensity λP , the required 
failure intensity λF: Δτ 
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Conceptual View of Prediction 
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Time Measurement 

•  Execution (CPU) time: may be difficult to collect 
but accurate 

•  Calendar time: Easy to collect but makes 
numerous assumptions (equivalent testing 
intensity with time periods) 

•  Testing effort: Same as calendar time, but easier to 
verify the assumptions 

•  Specific time measurement may often be devised: 
#Calls, Lines of code compiled, #transactions 
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Selection of Models 
•  Several Models exist (ca. 40 published) => Which one to 

select? Not one model is consistently the best. 
•  Assumptions of Models:  

–  Definition of testing process  
–  Finite or infinite number of failures?  
–  No faults introduced during debugging?   
–  Distribution of data (Poisson, Binomial)? 
–  Data requirements? (inter-failure data, failure count data) 

•  Assessing the goodness-of-fit 
–  Kolmogorow-Smirnov, Chi-Square 

•  Trends in Data (prior to model application) 
–  Usually, Reliability Models assume reliability growth. 

Laplace test can be used to test whether we actually 
experience growth  



© Lionel Briand 2010 
50 

Pro’s and Con’s 
Pro’s  

Con’s •  Usage model may be difficult to devise 
•  Selection of reliability growth model difficult 
•  Measurement of time crucial but may be

 difficult in some contexts 
•  Not easily applicable to safety-critical systems

 as very high reliability requirements would
 take years of testing to verify.  

•  Reliability can be specified 
•  Objective and direct assessment of reliability  
•  Prediction of time to delivery 


