
© Lionel Briand 2010
1

Introduction to Software
Reliability Estimation

© Lionel Briand 2010
2

Motivations

• Software is an essential component of many safety-
critical systems
• These systems depend on the reliable operation of
software components
• How can we decide, whether the software is ready
to ship after system test?
• How can we decide, whether an acquired or
developed component is acceptable?

© Lionel Briand 2010
3

What is Reliability?

•  IEEE-Std-729-1991: “Software reliability is defined as the
probability of failure-free operation for a specified period
of time in a specified environment”

•  ISO9126: “Reliability is the capability of the software
product to maintain a specified level of performance when
used under specified conditions”

•  Informal: Reliability is a measure of how well the software
provides the services expected by the customer.

•  Quantification: Number of failures, severity

© Lionel Briand 2010
4

Reliability as part of
 Dependability

Sommerville

© Lionel Briand 2010
5

Hardware Reliability

•  Well-developed reliability theories
•  A hardware component may fail due to design

error, poor fabrication quality, momentary
overload, deterioration, etc.

•  The random nature of system failure enables the
estimation of system reliability using probability
theory

•  Can it be adapted for software? No physical
deterioration, most programs always provide the
same answer to the same input, the “fabrication”
of code is trivial, etc.

© Lionel Briand 2010
6

Input/Output Mapping

Sommerville

© Lionel Briand 2010
7

How Can we Measure and Model
Reliability

•  The cumulative number of failures by time t
•  Failure Intensity: The number of failures

per time unit at time t
•  Mean-Time-To-Failure MTTF: Average

value of inter-failure time interval
•  We do not know for sure when the software

is going to fail next => model failure
behavior as a random process

© Lionel Briand 2010
8

Modeling Cumulative # Failures

x x x x

time

F
ai

lu
re

 1

F
ai

lu
re

 2

F
ai

lu
re

 3

F
ai

lu
re

 4

?

© Lionel Briand 2010
9

Software Reliability Engineering

•  No method of development can guarantee totally
reliable software => important field in practice!

•  A set of statistical modeling techniques
•  Enables the achieved reliability to be assessed or

predicted, quantitatively and objectively
•  Based on observation of system failures during

system testing and operational use
•  Uses general reliability theory, but is much more

than that

© Lionel Briand 2010
10

Applications
•  How reliable is the program/component now?
•  Based on the current reliability of a purchased/reused

component: can we accept it or should we reject it?
•  Based on the current reliability of the system: can we

stop testing and start shipping?
•  How reliable will the system be, if we continue testing

for some time?
•  When will the reliability objective be achieved?
•  How many failures will occur in the field (and when)

– to help plan resources for customer support?

© Lionel Briand 2010
11

Problems with Quantification?

•  US standard for equipment on civil aircraft:
–  [A critical failure must be] so unlikely that [it] need not be

considered ever to occur, unless engineering judgment would
require [its] consideration.

•  Typical requirement for critical flight systems: 10-9
probability of failure per flying hour based on a flight
mean duration of 10 hours.

•  Problem 1: such a level of reliability cannot be
demonstrated – would require too much testing time

•  Problem 2: Reliability is relative to the usage of the system

© Lionel Briand 2010
12

Usage Patterns

Sommerville

© Lionel Briand 2010
13

Basics of Reliability Theory
•  Random variable to be modeled: time to failure t
•  P: Probability that the time to failure is within some time

interval
•  F(t) value of the cumulative probability distribution

function at point t
•  f(t) value of the probability density function at point t	

•  Question of interest: P(τ ≤ t ≤ τ + Δτ) where Δτ may

represent the time of a mission for a spacecraft
•  P(τ ≤ t≤ τ + Δτ) = f(τ)Δτ = F(τ+Δτ) – F(τ)
•  If we let Δτ -> 0, f(τ) =

© Lionel Briand 2010
14

© Lionel Briand 2010
15

Basics of Reliability Theory II

•  Pf(τ) = P(0 ≤ t ≤ τ) = F(τ) – F(0)
•  Obviously F(0) is 0

•  Pf(τ) = F(τ) =

•  Reliability: R(τ) = 1 - Pf(τ) =

•  MTTF = E(t) = =

© Lionel Briand 2010
16

define
reliability objective

modeling expected
system usage

prepare
test cases

execute test
collect failure data

Perform: Reliability Certification
Monitor: Reliability Growth

Requirements Design/Code Test

Software Reliability Engineering
Process

© Lionel Briand 2010
17

define
reliability objective

modeling expected
system usage

prepare
test cases

execute test
collect failure data

Perform: Reliability Certification
Monitor: Reliability Growth

Requirements Design/Code Test

Software Reliability Engineering
Process

© Lionel Briand 2010
18

Model Expected System Usage
•  Definition of reliability assumes a specified environment

 To make statements on reliability in field during system
test, we must test in conditions that are “similar to field
conditions”

•  Model how users will employ the software: environment,
type of installation, distribution of inputs over input space

•  According to the usage model, test cases are selected
randomly

•  One example of usage model
–  Operational Profile (Musa): Set of system operations

and their probabilities of occurrence

© Lionel Briand 2010
19

Operational Profile

O
pe

ra
tio

n1

O
pe

ra
tio

n2

O
pe

ra
tio

n3

O
pe

ra
tio

n4

pr
ob

ab
ili

ty

10%

20%

30%

40%

© Lionel Briand 2010
20

Operations

•  Major system logical task of short duration, which returns
control to the system when complete and whose processing
is substantially different from other operations
–  major: related to functional requirement
–  logical: not bound to software, hardware, users,

machines
–  short: 100s-1000s operations per hour under normal

load conditions
–  different: likely to contain different faults

•  In OO systems, an “operation” is ~ use case

© Lionel Briand 2010
21

Examples

•  Command executed by a user
•  Response to an input from an external

system or device, e.g., processing a
transaction, processing an event (alarm)

•  Routine housekeeping, e.g., file backup,
database cleanup

© Lionel Briand 2010
22

Develop Operational Profiles
•  Identify who/what can initiate operations

–  Users (of different types), external systems and devices,
system itself

•  Create a list of operations for each operation initiator and
consolidate results
–  Source: requirements, draft user manuals, prototypes,

previous program versions, discuss with expected users
–  20 to several hundred operations are typical

•  Determine occurrence rates (per hour) of the individual
operations
–  existing field data, record field operations, simulation,

estimates
•  Derive occurrence probabilities

© Lionel Briand 2010
23

Example: Fone Follower (FF)
•  Requirements

–  Forward incoming phone calls (voice, fax) anywhere
–  Subscriber calls FF, enters phone numbers for where he

plans to be as a function of time
–  FF forwards incoming calls from network (voice, fax)

to subscriber as per program. If no response to voice
call, subscriber is paged (if subscriber has pager). If no
response or no pager, voice calls are forwarded to voice
mail

–  Subscribers view service as standard telephone service
combined with FF

–  FF uses vendor-supplied operating system of unknown
reliability

© Lionel Briand 2010
24

Initiators of Operations

•  Event driven systems often have many external
systems that can initiate operations in them

•  Typically, the system under study may initiate
itself administrative and maintenance operations

•  FF:
–  User types: subscribers, system administrators
–  External system: Telephone network
–  FF (audits, backups)

© Lionel Briand 2010
25

FF Operations List
•  Subscriber
•  System Administrator

•  Network

•  FF

–  Phone number entry
–  Add subscriber
–  Delete subscriber
–  Proc. voice call, no pager, answer
–  Proc. voice call, no pager, no answer
–  Proc. voice call, pager, answer
–  Proc. voice call, pager, ans. on page
–  Proc. voice call, pager, no ans. on page
–  Proc. fax call
–  Audit section of phone number

database
–  Recover from hardware failure

© Lionel Briand 2010
26

FF Operational Profile

10.000
50
50

18.000
17.000
17.000
12.000
10.000
15.000

900
0,1

Phone number entry
Add subscriber
Delete subscriber
Proc. voice call, no pager, answer
Proc. voice call, no pager, no answer
Proc. voice call, pager, answer
Proc. voice call, pager, ans. on page
Proc. voice call, pager, no ans. on page
Proc. fax call
Audit section of phone number database
Recover from hardware failure

0,10
0,0005
0,0005

0,18
0,17
0,17
0,12
0,10
0,15

0,009
0,000001

Operation Occ.Rate (per hr) Occ.Prob.

© Lionel Briand 2010
27

Statistical Testing
•  Testing based on operational profiles is referred to as

statistical testing
•  This form of testing has the advantage of testing more

intensively the system functions that will be used the most
•  Good for reliability estimation, but not very effective in

terms of finding defects
•  Hence we differentiate testing that aims at finding defects

(verification) and testing whose purpose is reliability
assessment (validation).

•  There exists research on techniques that combine white-
box testing and statistical testing …

© Lionel Briand 2010
28

define
reliability objective

modeling expected
system usage

prepare
test cases

execute test
collect failure data

Perform: Reliability Certification
Monitor: Reliability Growth

Requirements Design/Code Test

Software Reliability Engineering
Process

© Lionel Briand 2010
29

Failure Intensity
•  µ(t) = E[M(t)], with Μ(t) be the random process denoting

the cumulative number of failures by time t, we denote µ(t) as
its mean value function

•  λ(t) : Failure intensity, average number of failures by unit of
time at time t, instantaneous rate of change of the expected
number of failures (µ(t))

•  λ(t) often a useful way to look at reliability, as an alternative
to mean time to failures (MTTF), e.g., Telecom example next

•  MTTF is probably more suitable for safety-critical systems,
such as spacecrafts, sent on a mission of determined time

•  Reliability growth implies: dλ(t)/dt < 0

© Lionel Briand 2010
30

Graphical Representation

© Lionel Briand 2010
31

Can We Accept a Component?

•  Certification Testing: Show that a (acquired
or developed) component satisfies a given
reliability objective (e.g., failure intensity)

•  Generate test data randomly according to
usage model (e.g., operational profile)

•  Record all failures (also multiple ones) but
do not correct

© Lionel Briand 2010
32

Procedure

•  Use a hypothesis testing control chart to show that
the reliability objective is/is not satisfied
–  Reliability Demonstration Chart

•  Collect times at which failures occurred
•  Normalize data by multiplying with failure intensity

objective (using same units!)
•  Plot each failure in chart
•  Based on region in which failure falls, accept or

reject component

© Lionel Briand 2010
33

Reliability Demonstration Chart

John Musa, Software Reliability, 1998

1 0.1875 0.75
2 0.3125 1.25
3 1.25 5.0

Fail.No
Mcalls at

failure
Normalized

measure

Failure Intensity Objective:
4 failures/Mcalls

=> accept

© Lionel Briand 2010
34

Creating Demonstration Charts
•  Select discrimination ratio γ (acceptable factor of

error in estimating failure intensity)
•  Select consumer risk β (probability of accepting a

system that does not satisfy failure intensity
objective)

•  Select supplier risk α (probability of rejecting a
system that does satisfy failure intensity objective)

•  Recommended defaults (γ=2, β=0.1, α=0.1)
–  10% risk of wrongly accepting component when

failure intensity is actually ≥ 2 * failure
intensity objective

–  10% risk of wrongly rejecting component when
failure intensity is actually ≤ 1/2 * failure
intensity objective

© Lionel Briand 2010
35

Boundary Lines

(Lower) (Higher)

Where
 TN = boundaries for normalized failure time (x axis)
 n = failure number (y axis)

The next step is to construct boundary lines (between reject and
Continue and Continue and Accept) according to the following
formulae

© Lionel Briand 2010
36

define
reliability objective

modeling expected
system usage

prepare
test cases

execute test
collect failure data

Perform: Reliability Certification
Monitor: Reliability Growth

Requirements Design/Code Test

Software Reliability Engineering
Process

© Lionel Briand 2010
37

Failure Data: Interfailure times

© Lionel Briand 2010
38

execute test
collect failure data

Failure intensity

 measured failure intensity

reliability
objective

fitted reliability model curves

estimated time of
reliability achievement

Monitor: Reliability Growth

Select appr. reliability models

Use models to
compute current reliability

reliability
objective

met?

reliability objective

no

yes

delivery

Can We Stop Testing?

© Lionel Briand 2010
39

The Musa-Okumoto Model
•  The system test reflects the intended usage of

the system
•  The failures are independent
•  No new faults introduced during corrections

•  The cumulative number of failures by time t
follows a Poisson Process (NHPP)

•  Failure intensity decreases exponentially with
the expected number of failures experienced µ:
λ(µ)=λ0exp(-θµ)
θ>0 is failure intensity decay parameter, λ0 is
initial failure intensity.

•  Actual times when failures occurred or failure
time intervals (execution time)

General Assumptions

Model-specific Assumptions

Data Requirements

© Lionel Briand 2010
40

Poisson Processes

x x x x
Time t

1
2

µ(t)

k

© Lionel Briand 2010
41

The Musa-Okumoto Model (2)

Failure intensity versus failures experienced

© Lionel Briand 2010
42

Deriving µ(t) and λ(t)

© Lionel Briand 2010
43

The Musa-Okumoto Model (3)

Failures experienced versus execution time τ	

© Lionel Briand 2010
44

Failure intensity versus execution time τ	

•  Collect failure data:

time when failure
occurred

•  Use tools to
determine model
parameters λ0 and
θ

•  Determine whether
reliability objective
is met or how long
it might take to
reach

The Musa-Okumoto Model (4)

© Lionel Briand 2010
45

The Musa-Okumoto Model (5)
•  Once the parameters λ0 and θ are estimated, it can be used

to predict failure intensity in the future, not only to
estimate its current value. From this, we can plan how
much additional testing is likely to be needed

•  The model allows for the realistic situation where fault
correction is not perfect (infinite number of failures at
infinite time)

•  When faults stop being corrected, the model reduces to a
homogeneous Poisson process with failure intensity λ as
the parameter – the number of failures expected in a time
interval then follows a Poisson distribution

© Lionel Briand 2010
46

Reliability Estimation

•  Probability of 0 failures in a time frame of
length τ (reliability):

•  Additional time/failures to reach, from
present failure intensity λP , the required
failure intensity λF: Δτ

© Lionel Briand 2010
47

Conceptual View of Prediction

© Lionel Briand 2010
48

Time Measurement

•  Execution (CPU) time: may be difficult to collect
but accurate

•  Calendar time: Easy to collect but makes
numerous assumptions (equivalent testing
intensity with time periods)

•  Testing effort: Same as calendar time, but easier to
verify the assumptions

•  Specific time measurement may often be devised:
#Calls, Lines of code compiled, #transactions

© Lionel Briand 2010
49

Selection of Models
•  Several Models exist (ca. 40 published) => Which one to

select? Not one model is consistently the best.
•  Assumptions of Models:

–  Definition of testing process
–  Finite or infinite number of failures?
–  No faults introduced during debugging?
–  Distribution of data (Poisson, Binomial)?
–  Data requirements? (inter-failure data, failure count data)

•  Assessing the goodness-of-fit
–  Kolmogorow-Smirnov, Chi-Square

•  Trends in Data (prior to model application)
–  Usually, Reliability Models assume reliability growth.

Laplace test can be used to test whether we actually
experience growth

© Lionel Briand 2010
50

Pro’s and Con’s
Pro’s

Con’s •  Usage model may be difficult to devise
•  Selection of reliability growth model difficult
•  Measurement of time crucial but may be

 difficult in some contexts
•  Not easily applicable to safety-critical systems

 as very high reliability requirements would
 take years of testing to verify.

•  Reliability can be specified
•  Objective and direct assessment of reliability
•  Prediction of time to delivery

