
© Lionel Briand 2010
1

Safety Analysis

© Lionel Briand 2010
2

Safety-critical Software
•  Systems whose failure can threaten human life or

cause serious environmental damage, e.g., control
system for chemical plant

•  Increasingly important as computers replace
simpler, hard-wired control systems

•  Primary safety-critical systems
–  Embedded software systems whose failure can cause

the associated hardware to fail and directly threaten
people.

•  Secondary safety-critical systems
–  Systems whose failure results in faults in other systems

which can threaten people

© Lionel Briand 2010
3

Other Critical Systems

•  Mission-critical systems: A system whose
failure may result in the failure of some
goal-directed activity, e.g., navigational
system for spacecraft

•  Business critical system: A system whose
failure may result in the failure of the
business using that system,e.g., customer
account bank system

© Lionel Briand 2010
4

Safety vs. Reliability

•  Not the same thing
•  Reliability is concerned with conformance to a

given specification and delivery of service
•  Safety is concerned with ensuring system cannot

cause damage irrespective of whether or not it
conforms to its specification

•  A system may be reliable but not safe – but,
usually, if a critical system is unreliable it is likely
to be unsafe …

© Lionel Briand 2010
5

Reliable Unsafe Systems

•  Specification errors
–  If the system specification is incorrect then the system

can behave as specified but still cause an accident

•  Hardware failures generating spurious inputs
–  Hard to anticipate in the specification

•  Context-sensitive commands, i.e., issuing a correct
command at the wrong time
–  Often the result of operator error

© Lionel Briand 2010
6

Definitions
•  Mishap (or accident)

–  An unplanned event or event sequence which results in
human death or injury. It may be more generally
defined as covering damage to property or the
environment

•  Damage
–  A measure of the loss resulting from a mishap

•  Hazard
–  A condition with the potential for causing or

contributing to a mishap
–  2 characteristics: severity, probability

•  Hazard severity
–  An assessment of the worst possible damage which

could result from a particular hazard

© Lionel Briand 2010
7

Definitions II

•  Hazard probability (or likelihood)
–  The probability of the events occurring which create a

hazard (qualitative or quantitative)
•  Expected loss (or Hazard level): for all mishaps,

probability * severity
•  Risk

–  The risk is assessed by considering the hazard probability, the
hazard severity, and the probability that the hazard will result in a
mishap.

–  The objective of all safety systems is to minimize risk, by
minimizing any or all of its components.

© Lionel Briand 2010
8

Severity - MIL-STD-882B

•  Severity
–  Category I: Catastrophic; may cause death or system

loss
–  Category II: Critical; may cause severe injury, severe

occupational illness, or major system damage
–  Category III: Marginal; may cause minor injury, minor

occupational illness, or minor system damage
–  Category IV: Negligible; will not result in injury,

occupational illness, or system damage

© Lionel Briand 2010
9

Hazard Probability - Subjective
Scale

•  Frequent: Likely to occur frequently
•  Probable: Will occur several times in unit life
•  Occasional: Likely to occur sometime in unit life
•  Remote: Unlikely to occur in unit life, but possible
•  Improbable: Extremely unlikely to occur
•  Impossible: Equal to a probability of zero

© Lionel Briand 2010
10

Example of Risk Evaluation
•  Robot Control System:

–  Probability the computer causes a spurious or unexpected machine
movement (hazard)

–  Probability a human is in the field of movement
–  Probability the human has no time to move
–  Severity of worst-case consequences

•  Continuous and protective monitoring function for a plant:
–  Probability of a dangerous plant condition arising (hazard)
–  Probability of the computer not detecting it
–  Probability of the computer not initiating its safety function
–  Probability of the safety function not preventing the hazard
–  Probability of conditions occurring that will cause the hazard to

lead to an accident
–  Worst-case severity of the accident

© Lionel Briand 2010
11

Risk Assessment

•  Assesses hazard severity, hazard probability and
accident probability

•  Outcome of risk assessment may be defined as a
statement of acceptability
–  Intolerable. Must never arise or result in an accident
–  As low as reasonably practical(ALARP). Must

minimize possibility of hazard given cost and schedule
constraints

–  Acceptable. Consequences of hazard are acceptable and
no extra costs should be incurred to reduce hazard
probability

© Lionel Briand 2010
12

Risk Acceptability
•  The acceptability of a risk is determined by

human, social and political considerations
•  In most societies, the boundaries between the

regions are pushed upwards with time i.e. society
is less willing to accept risk
–  For example, the costs of cleaning up pollution may be

less than the costs of preventing it but this may not be
socially acceptable

•  Risk assessment is subjective
–  Risks are identified as probable, unlikely, etc. This

depends on who is making the assessment

© Lionel Briand 2010
13

Safety Achievement
•  The number of faults which can cause significant safety-

related failures is usually a small subset of the total number
of faults which may exist in a system

•  Safety achievement should ensure that either these faults
cannot occur or, if they do occur, they cannot result in a
mishap

•  Should also ensure that correct functioning of the system
cannot cause a mishap

•  Safety-related actions: Changes in design, inclusion of
safety or warning devices, operational procedures

© Lionel Briand 2010
14

Safety Requirements

•  The safety requirements of a system should
be separately specified

•  These requirements should be based on an
analysis of the possible hazards and risks

•  Safety requirements usually apply to the
system as a whole rather than to individual
sub-systems

© Lionel Briand 2010
15

Safety Analysis Process
•  Hazard and risk analysis: Assess the hazards and the risks

of damage associated with the system
•  Safety requirements specification: Specify a set of safety

requirements which apply to the system
•  Designation of safety-critical sub-systems: Identify the

sub-systems whose incorrect operation may compromise
system safety (to act on them, according to the safety
specifications)

•  Safety verification: Check controls have been implemented
and are effective

•  Safety validation (certification): Check and test the overall
resulting system safety

© Lionel Briand 2010
16

Hazard and Risk Analysis
•  Hazard identification

–  Identify potential hazards which may arise
•  Risk Analysis and Hazard classification

–  Assess the risk associated with each hazard
–  Rank hazards

•  Hazard decomposition
–  Analyze hazards to discover their potential root causes

•  Risk Reduction -> safety requirements
–  Define how each hazard must be taken into account

when the system is designed, I.e., specifications of
preventive or corrective measures

–  Cost benefit tradeoff

© Lionel Briand 2010
17

Insulin Delivery Example

•  Simple example of a safety-critical system.
Most medical systems are safety-critical

•  People with diabetes cannot make their own
insulin (used to metabolize sugar). It must
be delivered externally

•  Delivers a dose of insulin (required by
diabetics) depending on the value of a blood
sugar sensor

© Lionel Briand 2010
18

Insulin Pump

Sommerville

© Lionel Briand 2010
19

System Data Flow

•  Data flow model of software-controlled
insulin pump

© Lionel Briand 2010
20

Insulin System Hazard
Identification

•  insulin overdose or underdose
•  power failure
•  machine interferes electrically with other medical

equipment such as a heart pacemaker
•  parts of machine break off in patient’s body
•  poor sensor/actuator contact caused by incorrect

fitting
•  infection caused by introduction of machine
•  allergic reaction to the materials or insulin used in

the machine

© Lionel Briand 2010
21

Risk Assessment Example

© Lionel Briand 2010
22

Fault-Tree Analysis
•  Method of hazard decomposition which starts with an

identified hazard and works backward to the causes of the
hazard.

•  Identify hazard from system definition
•  Identify potential causes of the hazard. Usually there will

be a number of alternative causes. Link these on the fault-
tree with ‘or’ or ‘and’ logic gates

•  Continue process until root causes are identified
•  The hazard probability can then be assessed
•  A design objective should be that no single cause can

result in a hazard. That is, ‘or’s should be replaced by
‘and’s wherever possible

© Lionel Briand 2010
23

Insulin
System

Fault-Tree

Sommerville

© Lionel Briand 2010
24

Fault Tree Gates

•  The output of an ‘and’ gate exists only if all the inputs
exists

•  The output of an ‘or’ gate exists provided that at least one
of the inputs exists

•  The input events to an ‘or’ gate do not cause the event
above the gate, but are simply re-expressions of the output
event. In contrast, events attached to an ‘and’ gate are the
causes of the above event.

•  It is the causal relationship that differentiates an ‘and’ gate
from an ‘or’ gate

© Lionel Briand 2010
25

Fault-Tree
Example

© Lionel Briand 2010
26

Risk Reduction

•  System should be specified so that hazards do not
arise or, if they do, do not result in an accident

•  Hazard avoidance
–  The system should be designed so that the hazard can

never arise during correct system operation
•  Hazard probability reduction

–  The system should be designed so that the probability
of a hazard arising is minimized

•  Accident prevention
–  If the hazard arises, there should be mechanisms built

into the system to prevent an accident

© Lionel Briand 2010
27

Safety Assurance

© Lionel Briand 2010
28

Safety Validation
•  Safety validation

–  Does the system always operate in such a way that
accidents do not occur or that accident consequences
are minimised?

•  Demonstrating safety by testing is difficult because testing
is intended to demonstrate what the system does in a
particular situation. Testing all possible operational
situations is impossible

•  Normal reviews for correctness may be supplemented by
specific techniques that are intended to focus on checking
that unsafe situations never arise

© Lionel Briand 2010
29

Hazard-driven Assurance
•  Effective safety assurance relies on hazard

identification
•  Safety can be assured by

–  Hazard avoidance
–  Accident avoidance
–  Protection systems

•  Safety reviews should demonstrate that one or
more of these techniques have been applied to all
identified hazards

© Lionel Briand 2010
30

The system safety case

•  It is now normal practice for a formal safety case to be
 required for all safety-critical computer-based systems e.g.
 railway signalling, air traffic control, etc.

•  A safety case is:
–  A documented body of evidence that provides a convincing and

 valid argument that a system is adequately safe for a given
 application in a given environment.

•  Arguments in a safety or dependability case can be based
 on formal proof, design rationale, safety proofs, test
 results, etc. Process factors may also be included.

© Lionel Briand 2010
31

Components of a safety case
Component Description

System description An overview of the system and a description of its critical components.

Safety requirements The safety requirements abstracted from the system requirements
specification.

Hazard and risk
analysis

Documents describing the hazards and risks that have been identified
and the measures taken to reduce risk.

Design analysis A set of structured arguments that justify why the design is safe.

Verification and
validation

A description of the V & V procedures used and, where appropriate,
the test plans for the system. Results of system V &V.

Review reports Records of all design and safety reviews.

Team competences Evidence of the competence of all of the team involved in safety-
related systems development and validation.

Process QA Records of the quality assurance processes carried out during system
development.

Change
management
processes

Records of all changes proposed, actions taken and, where appropriate,
justification of the safety of these changes.

Associated safety
cases

References to other safety cases that may impact on this safety case.

© Lionel Briand 2010
32

Argument structure

© Lionel Briand 2010
33

Insulin pump argument

© Lionel Briand 2010
34

Claim hierarchy

© Lionel Briand 2010
35

Formal Methods and Safety
•  Formal methods are mandated in Britain for the

development of some types of safety-critical software
•  Formal specification and correctness proofs increases

confidence that a system meets its specification
•  Formal specifications require specialized notations so

domain experts cannot check for specification
incompleteness (which may lead to unsafe behaviors)

•  The cost-effectiveness of formal methods is unknown
•  Use of formal methods for safety-critical software

development is likely to increase

© Lionel Briand 2010
36

Safe Design Principles

•  Separate critical software from the rest & make critical
software as simple as possible (possibly at the expense of
performance)

•  Use simple techniques for software development avoiding
error-prone constructs such as pointers and recursion

•  Use information hiding to localize the effect of any data
corruption

•  Make appropriate use of fault-tolerant techniques but do
not be seduced into thinking that fault-tolerant software is
necessarily safe

© Lionel Briand 2010
37

Safety Proofs
•  Safety proofs are intended to show that the system

cannot reach an unsafe state
•  Weaker than correctness proofs which must show

that the system code conforms to its specification
•  Generally based on proof by contradiction

–  Assume that an unsafe state can be reached
–  Show that this is contradicted by the program code

•  May be displayed graphically

© Lionel Briand 2010
38

Construction of a safety proof

•  Establish the safe exit conditions for a program
•  Starting from the END of the code, work

backwards until you have identified all paths that
lead to the exit of the code

•  Assume that the safe exit condition is false
•  Show that, for each path leading to the exit that

the assignments made in that path contradict the
assumption of an unsafe exit from the program

© Lionel Briand 2010
39

Example: Gas warning system

•  System to warn of poisonous gas. Consists of a
sensor, a controller and an alarm

•  Two levels of gas are hazardous
–  Warning level - no immediate danger but take action to

reduce level
–  Evacuate level - immediate danger. Evacuate the area

•  The controller takes air samples, computes the gas
level and then decides whether or not the alarm
should be activated

© Lionel Briand 2010
40

Gas sensor control
Gas_level: GL_TYPE ; ���
loop ���

	
-- Take 100 samples of air	

	
Gas_level := 0.000 ;���
	
for i in 1..100 loop ���
	
 	
Gas_level := Gas_level + Gas_sensor.Read ;���
	
end loop ;���
	
Gas_level := Gas_level / 100 ;���
	
if Gas_level > Warning and Gas_level < Danger then ���
	
 	
Alarm := Warning ; Wait_for_reset ;���
	
elsif Gas_level > Danger then ���
	
 	
Alarm := Evacuate ; Wait_for_reset ;���
	
else	

	
 	
Alarm := off ; 	

	
end if ;���

end loop ;	

© Lionel Briand 2010
41

Graphical argument
Gas_level > Warning and Alarm = off	
 Unsafe state	

Gas_level > Warning and
 Gas_level < Danger	

Gas_level > Danger	

Alarm = Warning	

Alarm = Evacuate	
 Alarm = off	

or	
 or	
 or	

contradiction	
 contradiction	

Path 1	
 Path 2	
 Path 3	

© Lionel Briand 2010
42

Condition checking

Code is incorrect. 	

Gas_level = Danger does not cause the alarm to be on	

© Lionel Briand 2010
43

Key points
•  Safety-related systems should be developed to be as

simple as possible using ‘safe’ development
techniques

•  Safety assurance may depend on ‘trusted’
development processes and specific development
techniques such as the use of formal/rigorous
methods and safety proofs

•  Safety proofs are easier than proofs of consistency or
correctness. They must demonstrate that the system
cannot reach an unsafe state. Usually proofs by
contradiction

© Lionel Briand 2010
44

Validating the safety of the
insulin pump system

© Lionel Briand 2010
45

Insulin delivery system
•  Safe state is a shutdown state where no insulin is

delivered
–  If hazard arises,shutting down the system will prevent

an accident
•  Software may be included to detect and prevent

hazards such as power failure
•  Consider only hazards arising from software

failure
–  Arithmetic error The insulin dose is computed

incorrectly because of some failure of the computer
arithmetic

–  Algorithmic error The dose computation algorithm is
incorrect

© Lionel Briand 2010
46

•  Use language exception handling mechanisms to
trap errors as they arise

•  Use explicit error checks for all errors which are
identified

•  Avoid error-prone arithmetic operations (multiply
and divide). Replace with add and subtract

•  Never use floating-point numbers
•  Shut down system if exception detected (safe

state)

Arithmetic errors

© Lionel Briand 2010
47

•  Harder to detect than arithmetic errors. System
should always err on the side of safety

•  Avoid recursion, pointers, dynamic memory
allocation

•  Use reasonableness checks for the dose delivered
based on previous dose and rate of dose change

•  Set maximum delivery level in any specified time
period

•  If computed dose is very high, medical
intervention may be necessary anyway because the
patient may be ill

Algorithmic errors

© Lionel Briand 2010
48

Insulin delivery code
// The insulin dose to be delivered is a function of blood sugar level, the previous dose  
// delivered and the time of delivery of the previous dose#

#currentDose = computeInsulin () ; # # ##
#// Safety check - adjust currentDose if necessary#
#if (previousDose == 0) # # # #// if statement 1#
#{#
#if (currentDose > 16)#
#currentDose = 16 ;#
#}#
#else#
#if (currentDose > (previousDose * 2))#
#currentDose = previousDose * 2 ;#
#if (currentDose < minimumDose) # # #// if statement 2#
#currentDose = 0 ; # # # #// then branch#
#else if (currentDose > maxDose) # # #// else branch#
#currentDose = maxDose ;#
 administerInsulin (currentDose) ;

© Lionel Briand 2010
49

Safety
‘Proofs’

Sommerville

© Lionel Briand 2010
50

System testing

•  System testing of the software has to rely on
simulators for the sensor and the insulin delivery
components.

•  Test for normal operation using an operational
profile. Can be constructed using data gathered
from existing diabetics

•  Testing has to include situations where rate of
change of glucose is very fast and very slow

•  Test for exceptions using the simulator

© Lionel Briand 2010
51

Safety assertions
•  Similar to defensive programming
•  Predicates included in the program indicating

conditions which should hold at that point
•  May be based on pre-computed limits e.g. number

of insulin pump increments in maximum dose
•  Used to check safety constraints at run time and

may throw safety–related exceptions
•  Assertions should be generated from safety

specifications

© Lionel Briand 2010
52

Safety assertions
static void administerInsulin () throws SafetyException #

#{#
#int maxIncrements = InsulinPump.maxDose / 8 ;#
#int increments = InsulinPump.currentDose / 8 ;#
#// assert currentDose <= InsulinPump.maxDose#
#if (InsulinPump.currentDose > InsulinPump.maxDose)#
#throw new SafetyException (Pump.doseHigh);#
#else#
#for (int i=1; i<= increments; i++)#
#{#
#generateSignal () ;#
#if (i > maxIncrements)#
#throw new SafetyException (Pump.incorrectIncrements);#
#} // for loop#
#} //administerInsulin#

© Lionel Briand 2010
53

Conclusions
•  Safety is a system property regarding how it interacts with its

environment
•  Hazard analysis is a key part of the safety specification process – it

can be supported by fault tree analysis
•  Risk analysis involves assessing the probability of hazards, their

severity and the probability that they will result in an accident
•  Design strategies may be used for hazard avoidance, hazard

probability reduction and accident avoidance
•  Safety arguments should be used as part of product safety assurance.
•  Safety arguments are a way of demonstrating that a hazardous

condition can never occur.
•  Safety cases collect together the evidence that a system is safe.

