
Static Analysis
for Software Verification

Leon Moonen

Today’s topics

  Software inspection
–  it’s relation to testing
–  benefits and drawbacks

  Static (program) analysis
–  potential benefits
–  limitations and their cause
–  examples
–  building blocks of static analysis tools
–  static analysis tools in practice

  Improving static analysis tools
–  prioritize based on static profiling
–  by learning from the past

14 April 2010 2 <leon.moonen@computer.org>

Software Inspection

  examine representation of a software system with the
aim of discovering anomalies and defects
–  “check software artifacts for constructs that are

known to be problematic from past experience”

  systematic & detailed review technique
–  peer review (not author or his boss but inspection team)

  applicable to all kinds of software artifacts
–  requirement specification, design documents, source code, …
–  e.g. last week you heard about requirement inspections,

this week we’ll focus on code inspections

  defined in the 70’s by Fagan (IBM)
–  several alternatives & extensions proposed that vary in

rigorousness of the review and focus on particular goals
–  pair programming can be seen as a light & informal instance

14 April 2010 3 <leon.moonen@computer.org>

Inspections in relation to testing

14 April 2010 4 <leon.moonen@computer.org>

Inspection benefits

  inspections do not require execution of a system, so
can be done before implementation is completely
finished
–  many different defects may be discovered in a single inspection
–  in testing, one defect may mask another so repeated

executions are required

  inspections reuse domain and programming knowledge
so reviewers are likely to have seen the types of error
that commonly arise

14 April 2010 5 <leon.moonen@computer.org>

Inspection benefits (2)

  inspections identify defects that are missed by testing
–  inspection does not replace testing (nor the other way around)
–  complementary techniques; find different types of faults
–  various studies that compare code inspection and testing

approaches to QA
  general conclusion: there is no clear ‘best’ approach, but

techniques found different faults; recommended combining them
 [Hetzel, Myers, Basili & Selby, Kamsties & Lott, Wood et al.]

  inspections helps to educate new team members
–  learn by collectively going through a design, code, …
–  make people (more) aware of desired quality standards

14 April 2010 6 <leon.moonen@computer.org>

Inspections known to be very effective

remember the
data shown last

week

14 April 2010 7 <leon.moonen@computer.org>

Inspection drawbacks

  (originally) manual process with strict guidelines
–  time-consuming (expensive)
–  tedious and error-prone (cannot be done full-time)

  inspections increase costs early in the software process

  precise standards or guidelines must be available and
inspection team members must be familiar with them

  not incremental
–  repeated inspection costs same as first one

  as a consequence, (formal) inspections often end up
not being performed well, or even abandoned

14 April 2010 8 <leon.moonen@computer.org>

Is there a way out?

  static analysis aims at getting the traditional code
inspection benefits by using automated checks
–  avoiding the drawbacks mentioned

  note that we are now focusing on code inspections

14 April 2010 9 <leon.moonen@computer.org>

What is static analysis?

  analyzing what a program does without executing it
–  by careful examination of the program’s source code

  static analysis can diagnose:
–  violations of rules and conventions that

  are needed for correct program execution (i.e. defect finding)
  are desired for certain non-functional quality aspects such as

maintainability and complexity (but not usability or performance)
–  coding standard compliance
–  best programming practices and unsafe programming

  so static analysis can be used to find a lot of the issues
that traditional (manual) inspections aimed at
–  enables ”inspection for the masses”
–  additional inspections can still pay off (e.g. safety critical sw.)

14 April 2010 10 <leon.moonen@computer.org>

A simple static analysis example

  most of you know a simple static analysis by heart…

–  is the outcome of 346288 * －8782332 positive or negative?
–  and what about －439232 * －2323347 ?

  the ‘rule of signs’
 + * + = +
 + * － = －
 － * － = +

allows to statically analyze the sign of the outcome of a
multiplication without actually doing the computation

14 April 2010 11 <leon.moonen@computer.org>

Properties of static analysis

  advantage:
–  static analysis provides information that is valid for all possible

executions of the program

  disadvantage:
–  the information provided is not always precise since it is usually

based on an approximation

  compare: testing is a form of dynamic analysis
–  advantage:

  detailed and precise info for a single run (test case)
–  disadvantage:

  no guarantees about other runs (can be addressed by doing
multiple runs, each exercising different paths)

14 April 2010 12 <leon.moonen@computer.org>

Potential benefits are high

0
20000
40000
60000
80000

100000
120000
140000

1M 2M 3M 4M 5M 6M 7M 9M 10M
Lines of code

D
ef

ec
ts

Without Static Analysis
With Static Analysis

Static Analysis can reduce defects by up to a factor of six
[Capers Jones, Software Productivity Group]

14 April 2010 13 <leon.moonen@computer.org>

Defect Removal Cost

Cost of defect removal rises

exponentially for defects found

later in the development cycle

Static Analysis

Unit Testing

Integration Testing

Acceptance Testing

Rule of thumb: A defect that costs $1 to fix on the programmer’s
desktop costs $100 to fix once it is incorporated into a complete
program and many thousands of dollars if it is identified only after
the software has been deployed in the field

[Building a Better Bug Trap, The Economist, June 2003]

14 April 2010 14 <leon.moonen@computer.org>

More findings on static analysis

  “We proved the tight relationship between static analysis and
the reduction of support efforts on released software
products.“

Dr. Thomas Liedtke and Dr. Christian Ebert, Alcatel Germany, On the
Benefits of Reinforcing Code Inspection Activities, EuroStar 1995

  “60% of the software faults that were found in released
software products could have been detected by means of
static analysis”

Bloor Research Ltd., UK CAST Tools report of 1996

  “On average, 40% of the faults that could be found through
static analysis will eventually become a defect in the field.”

professor Dr. Les Hatton, University of Kent

14 April 2010 15 <leon.moonen@computer.org>

For the software manager

  static analysis helps to
–  reduce risk of expensive after-deployment bugs

–  reduce time to market

–  reduce cost & time of code review and testing
  automate (part of) review, no or more limited manual inspections

  removing obvious bugs improves focus & speed of testing

–  improve code quality (adhere to coding standards)

–  achieve higher coverage (more code is checked)
  related to, but not same as testing coverage, since focus differs

14 April 2010 16 <leon.moonen@computer.org>

For the software developer

  static analysis helps to
–  find / prevent bugs earlier (before they are hard to fix)

  tools can be used as part of development cycle, like a compiler

  more direct and obvious feedback

–  find / prevent “hard to test” bugs
  e.g., good at detecting potential memory leaks & buffer overflows

  make developers more efficient

  spend less time debugging

14 April 2010 17 <leon.moonen@computer.org>

Example from LINT static analysis tool

> cat lint_ex.c
#include <stdio.h>
printarray (Anarray)
 int Anarray;
{ printf(“%d”,Anarray); }

main () {
 int Anarray[5]; int i; char c;
 printarray (Anarray, i, c);
 printarray (Anarray) ;
}

> cc lint_ex.c
> lint lint_ex.c

lint_ex.c(10): warning: c may be used before set
lint_ex.c(10): warning: i may be used before set
printarray: variable # of args. lint_ex.c(4) :: lint_ex.c(10)
printarray, arg. 1 used inconsistently lint_ex.c(4) :: lint_ex.c(10)
printarray, arg. 1 used inconsistently lint_ex.c(4) :: lint_ex.c(11)
printf returns value which is always ignored

14 April 2010 18 <leon.moonen@computer.org>

Other examples of static analysis tools

  several open source tools for Java, e.g.
–  Findbugs http://findbugs.sourceforge.net/
–  QJPro http://qjpro.sourceforge.net/
–  PMD http://pmd.sourceforge.net/

  most of these integrate with an IDE like Eclipse

  also other languages like FxCop for .NET, Perl::Critic

  many commercial tools
–  often aimed at ‘industrial’ languages such as C, C++, Ada
–  typically come with rulesets to check conformance with various

coding standards (e.g. the MISRA C standard)
–  some vendors include Coverity, Grammatech, Klocwork, QA-C
–  licenses typically based on # lines of code to analyze

14 April 2010 19 <leon.moonen@computer.org>

How does it work?

  static analysis tools parse the source code and build
one or more abstractions (models) of the system
–  typically typed (colored) and directed graphs

–  staged process, looks a lot like compilation

  abstractions are used to check if certain properties hold
–  check violations based on a given set of well-defined rules

–  by performing graph traversals (sometimes transformations)

  if the tool finds a violation in the abstraction, the
violation is expected also to be in the source code
–  provided that the abstraction is correct for this particular check

14 April 2010 20 <leon.moonen@computer.org>

Types of imprecision

  suppose we have an static analysis tool that checks for
violation of certain coding rules

  what could go wrong?

  defects can be missed
–  false negatives

  tool can report defects where there are none
–  false positives

Real defects in system

Defects detected by tool

false positives

false
negatives

14 April 2010 21 <leon.moonen@computer.org>

Limitations: Dealing with undecidabilty

  halting problem makes it undecidable to prove
non-trivial properties of a program (in general)
–  static analysis tools will need to work around this

  only analyze loop-free programs
–  works in some situations, not desirable in general

  analyze simple static properties
–  e.g. metrics collected to assess complexity (size, McCabe)

  use an interactive solution: human-in-the-loop

  make conservative estimates
–  e.g. every statement in a loop is executed at least once,

in a conditional statement both branches are executed, …
–  the aim is that every potential defect is caught

  but some “false alarms” may be triggered

14 April 2010 22 <leon.moonen@computer.org>

Limitations (2)

  static analysis computes an approximation of what
would happen during execution
–  such an approximation is bound to have imperfections

  some false positives (noise)
  some false negatives (didn’t find what it should have)

  don’t believe that a program is good because the
analysis tool says so
–  it’s simply saying that it couldn’t find anything!

–  from an internal Microsoft presentation on their in-house static
analysis tools for driver verification (SLAM/SDV & PREfast)
  “The biggest risk with using static tools is overconfidence in

the results. The second biggest risk is not using them at all.”

14 April 2010 23 <leon.moonen@computer.org>

Building blocks of static analysis tools

  syntactic analysis
–  parse the code, build syntax tree
–  can be used to check some coding standards
–  e.g. missing ‘default’ or ‘break’ in a switch statement
–  first step of many other analyses…

  control flow analysis
–  can be used to detect poorly structured code, dead code and

some cases of non-termination
–  e.g. find multiple exits from a loop
–  concepts already explained in the lecture on whitebox testing

  data flow analysis

  program slicing

14 April 2010 24 <leon.moonen@computer.org>

Data Flow Analysis

  can be used to identify data flow that does not conform
to sound programming practices, e.g. variables are not
read before they are written; inactive code.
–  pure symbolic analysis, i.e. no specific values are used
–  based on relationships between variables and expressions

  annotate the control flow graph with data definitions (D),
uses (U) and kills (K) (point where an earlier definition
is invalidated)

  traverse the graph
–  DD paths suggest redundancy (why define twice?)
–  DK paths point at potential bugs (why kill a value before use?)

14 April 2010 25 <leon.moonen@computer.org>

Program Slicing

  program slicing is a technique to zoom in on a particular
subset of variables within a given program

  the part of the program that is relevant to the chosen
subset of variables is called the program slice
–  i.e. a “subprogram” with all non-relevant statements removed

  various applications:
–  program testing & static analysis:

  reduce program to limit overhead (e.g. warnings) from parts that
you’re currently not interested in

  can help to address scalability issues
–  program comprehension & debugging:

  reduce program to make it easier to understand and analyze

14 April 2010 26 <leon.moonen@computer.org>

Types of program slicing

  backward slicing:
–  for a given statement S, a backward slice through a program

contains all statements that effect whether control reaches S
and all statements that effect the value of variables in S

  forward slicing:
–  for a given statement S, a forward slice through a program

contains all statements that are affected by S

  note that these slices can be calculated either statically
or dynamically:
–  a static program slice is calculated symbolically, i.e. takes no

account of concrete data values
–  a dynamic program slice is calculated based upon particular

data values

14 April 2010 27 <leon.moonen@computer.org>

Program Slicing Example
Program:

 read(X);
 read(Y);
 Q := 0;
 R := X;
 while R >= Y do
 begin
 R := R - Y;
 Q := Q + 1
 end;
 print(Q);
 print(R);

A program slice for R:

 read(X);
 read(Y);
 R := X;
 while R >= Y do
 begin
 R := R - Y;
 end;
 print(R);

14 April 2010 28

Q: what statements would be in a slice for R ?

<leon.moonen@computer.org>

Static analysis tools in practice

  detailed analyses require considerable power
–  however, computer power still doubles every 18 months
–  and tools improve rapidly

  software security analysis is a big driver

  not everyone happy with amount of data generated ;-)
–  in practice there can be many false positives (>50%)
–  lot’s of complaints over trivial issues make introduction hard
–  prioritization of reported warnings is needed

  not always easy to add new rules to be checked
–  bug patterns can be obscure and depend on control & dataflow

patterns (not just simple syntactic matching)

14 April 2010 29 <leon.moonen@computer.org>

Making better static analysis tools

  we have conducted research on techniques that may
help to improve on the results of existing tools
–  i.e. don’t compete and build a new static analysis tool but build

a pre- or postprocessor that can be used with all tools

  two approaches investigated:
1.  aimed at improving the prioritization of inspection results
2.  aimed at reducing noise in the list of warnings

[based on joint work with Cathal Boogerd at Delft Univ. of Technology]

14 April 2010 30 <leon.moonen@computer.org>

Prioritizing Inspection Results

  After getting a huge list of violations from a static
analysis tool, the question arises: “Where to start?”

  our approach: determine execution likelihood of the
violation locations and use it to prioritize the list
–  given a program P and location v, the execution likelihood Ev is

the probability that v is executed in an arbitrary run of P

–  likelihood can be approximated by static profiling: an analysis
of the program’s control-flow structure
  simplistic: statements inside each of the branches of an in-then-

else are half as likely to be executed than the statement itself

  actually: compiler literature has heuristics for these probabilities
depending on the types and comparison in the condition

–  e.g. integer comparison ‘less than zero’ likely to fail

14 April 2010 31 <leon.moonen@computer.org>

Prioritizing Inspection Results (2)

  the above approach can be considered rather crude
–  developed “deeper” static profiling algorithms
–  use detailed data flow analysis (value range propagation) to

better estimate which branch is taken
–  these did not systematically outperform the one above

  prioritization based on execution likelihood leads
developer to violations that have high change of being
triggered during an actual run
–  aimed at fixing issues with most impact first
–  but these might be found anyway, whereas faults deep down in

the system are, in a way, hidden further from inspection…

14 April 2010 32 <leon.moonen@computer.org>

Filter by learning from the past

  do violations of certain rules really indicate faults?
–  can we use this to prioritize or filter based on relevance?

  analyzed history of three (related) software projects
–  using a newly introduced coding standard checker

  compute true positive rates for rules
–  a ‘true positive’ is a violation in release n that correctly

predicted a line to be faulty, i.e., part of a bug fix in a later
release >n

  use these values to identify ‘significant rule sets’
–  those rules where the violation predictions outperform a

random guess

14 April 2010 33 <leon.moonen@computer.org>

Filter by learning from the past

  some conclusions:
–  partially consistent behavior of rules for the three cases

  so it’s possible to select a rule set within a product family
–  historical true positive rates help select effective subset of rules

  selected sets cover 64%-86% of issues while reducing the number
of violations by 63%-95%

  results from the past can give guidance for the future

14 April 2010 34 <leon.moonen@computer.org>

Static analysis and formal methods

  formal methods can be used when a mathematical
specification of the system can be created

  the analysis creates a formal argument that a program
conforms to its mathematical specification (or refutes
this by showing a counter example)

  advantages:
–  very precise; the ultimate static verification technique
–  creating the specification may already uncover errors

  disadvantages:
–  the pure version does not scale well to real-size programs

  can be addressed by special measures (abstractions) that
however reduce precision…

  you will hear more about model checking later

14 April 2010 35 <leon.moonen@computer.org>

Summary

  software inspections are very effective way of QA
–  used in addition to testing, focus on different types of faults

  manual code inspections are expensive and error-prone
–  as a result not very popular outside specific domains (safety)

  these drawbacks can be partly removed by using
automatic static analysis tools
–  we have seen how static analysis tools are made
–  and discussed why they have (inherent) limitations
–  presented some research aimed at better dealing with these

“The biggest risk with using static tools is overconfidence in the
results. The second biggest risk is not using them at all.”

14 April 2010 36 <leon.moonen@computer.org>

References

  Fagan, M. E. (1976). Design and code inspections to reduce errors in
program development. IBM Systems Journal, 15(3):182–211

  Gilb, T. and Graham, D. (1993). Software Inspection. Addison-Wesley

  Young, M. and Pezze, M. (2007), Software Testing and Analysis

  Boehm, B. W. (1981). Software Engineering Economics. Prentice Hall
  Nagappan et al. (2004) “Preliminary Results on Using Static Analysis

Tools for Software Inspection” (ISSRE)

  Boogerd, C. and Moonen, L. (2008). Assessing the value of coding
standards: An empirical study (ICSM)

  Boogerd, C. and Moonen, L. (2009b). Evaluating the relation between
coding standard violations and faults within and across versions
(MSR)

14 April 2010 37 <leon.moonen@computer.org>

