
© Lionel Briand 2010
1

Software Verification and Validation

Prof. Lionel Briand
Ph.D., IEEE Fellow

© Lionel Briand 2010
2

White-Box Testing

© Lionel Briand 2010
3

Specification

System

Implementation

Missing functionality:
Cannot be revealed by white-
box techniques

Unexpected functionality:
Cannot be revealed by black-
box techniques

© Lionel Briand 2010
4

Develop an initial
Test suite using BB

techniques

Apply BB coverage
criteria to enhance it

Enhance the Test suite
using WB techniques

Apply WB coverage
criteria to enhance it

Analyze the parts of
the code uncovered
by BB test suite

© Lionel Briand 2010
5

Greatest common divisor (GCD) program

read(x);

read(y);

while x ≠ y loop
 if x>y then

 x := x – y;

 else

 y := y – x;

 end if;
end loop;

gcd := x;

x<=y x > y
x = y

x ≠ y

© Lionel Briand 2010
6

•  Directed graph
•  Nodes are blocks of sequential statements
•  Edges are transfers of control
•  Edges may be labeled with predicate

 representing the condition of control
 transfer

•  There are several conventions for flow
 graph models with subtle differences
 (e.g., hierarchical CFGs, concurrent CFGs)

x<=y x > y
x = y

x ≠ y

© Lionel Briand 2010
7

If-Then-Else While loop Switch

© Lionel Briand 2010
8

[year < 1]	

[month in (1,3,5,7,10,12)]	

n=31	

throw2	
 n=28	

return	

throw1	

n=29	

n=30	
[month in (4,6,9,11)]	

[month == 2]	
 [leap(year)]	

© Lionel Briand 2010
9

Control flow Coverage

•  Depending on the (adequacy) criteria to cover (traverse)
 CFGs, we can have different types of control flow
 coverage:
–  Statement/Node Coverage
–  Edge Coverage
–  Condition Coverage
–  Path Coverage

•  Discussed in detail next…
x<=y x > y

x = y

x ≠ y

© Lionel Briand 2010
10

Statement/Node Coverage
•  Hypothesis: Faults cannot be discovered if

 the statements containing them are not
 executed

•  Statement coverage criteria: Equivalent to
 covering all nodes in CFG

•  Executing a statement is a weak guarantee
 of correctness, but easy to achieve

•  In general, several inputs execute the
 same statements

•  An important question in practice is: how
 can we minimize (the number of) test
 cases so we can achieve a given statement
 coverage ratio?

x<=y x > y
x = y

x ≠ y

© Lionel Briand 2010
11

Incompleteness of Statement/Node
 Coverage

•  Though often used, statement coverage is a weak
 guarantee of fault detection

•  An example:

if x < 0 then
 x := -x;

end if
z := x;

A negative x would result in the coverage
of all statements.

But not exercising x >= 0 is an important
case.

Doing nothing for the case x >= 0 may turn
out to be wrong and need to be tested.

© Lionel Briand 2010
12

•  Based on the program structure, the
 control flow graph (CFG)

•  Edge coverage criterion: Select a test
 set T such that, by executing P for each
 test case t in T, each edge of P’s control
 flow graph is traversed at least once

•  We need to exercise all conditions that
 traverse the control flow of the
 program with true and false values

x<=y x > y
x = y

x ≠ y

© Lionel Briand 2010
13

Example: Searching for an element in a table
Derivation of the test set in the next slide…

counter:= 0;
found := false;
if number_of_items ≠ 0 then
 counter :=1;

 while (not found) and counter < number_of_items loop
 if table(counter) = desired_element then
 found := true;
 end if;
 counter := counter + 1;
 end loop;

end if;
if found then write (“the desired element exists in the table”);
else write (“the desired element does not exists in the table”);
end if;

•  Here is an example of a common mistake in a search algorithm.
•  If the desired element = last element, we exit the loop before we find

 it.

Should have been ≤

© Lionel Briand 2010
14

Example’s Control Flow Graph

while

if

found := true

init

counter++

if

if

else then

© Lionel Briand 2010
15

•  We choose a test set with two test cases:
1.  One table with 0 items and,
2.  A table with 3 items, the second element being the desired one

•  For the second test case, the “while” loop body is executed twice,
 once executing the “if-then” branch.

•  The edge coverage criterion is fulfilled and the error is NOT
 discovered by the test set

 ...

 while (not found) and counter < number_of_items loop
 ...

•  The reason for the above problem?
–  Not all possible values of the constituents of the condition in the while

 loop have been exercised. counter < number_of_items is not
 evaluated to False.

© Lionel Briand 2010
16

•  We need to further strengthen the edge coverage criterion
•  Condition Coverage (CC) Criterion: Select a test set T such

 that, by executing P for each element in T, each edge of P’s
 control flow graph is traversed, and all possible values of the
 constituents of compound conditions (defined below) are
 exercised at least once

•  Compound conditions: C1 and C2 or C3 … where Ci’s are
 relational expressions or Boolean variables (atomic conditions)

•  Another version: Modified Condition-Decision Coverage (MC
/DC) Criterion: Only combinations of values such that every Ci
 drives the overall condition truth value twice (true and false).

•  Examples next…

© Lionel Briand 2010
17

•  Two equivalent programs: though you would write the left
 one

•  Edge coverage
–  would not compulsorily cover the “hidden” edges in the right one
–  Example: C2 = false might not be covered

•  Condition coverage would cover C2 = false

if c1 and c2 then
 st;

else
 sf;

end if;

if c1 then
 if c2 then
 st;
 else
 sf;
 end if;

else
 sf;

end if;

© Lionel Briand 2010
18

•  Use in industry: The international standard DO-178B for
 Airborne Systems Certification (since 1992) requires
 testing the airborne software systems with MC/DC
 coverage.

•  Example : A∧(B∨C), e.g., in a while loop, …

Deriving a modified condition /decision
criterion (MC/DC) Test suite:
Take a pair for each constituent:

•  A: (1,5), or (2,6), or (3,7)
•  B: (2,4)
•  C: (3,4)

Two minimal sets to cover the MCC:
•  (2,3,4,6) or (2,3,4,7)

That is 4 test cases instead of 8 for
all possible combinations.

ABC Results Corresponding negate
Case

1 TTT T A (5)

2 TTF T A (6), B (4)

3 TFT T A (7), C (4)

4 TFF F B (2), C (3)

5 FTT F A (1)

6 FTF F A (2)

7 FFT F A (3)

8 FFF F -

© Lionel Briand 2010
19

A Real Example: MC/DC coverage in Military
 Software

•  Consider the controller SW of a modern tank with three guns

•  (x, y, z) is the 3D coordinate of a hit target (e.g., from the GPS unit)
•  The SW has the following requirements:

–  R1.1: Invoke method Fire1 (firing with gun #1) when (x<y) AND (z*z > y)
 AND (previous direction of the gun=“East”).

–  R1.2: Invoke Fire2 when (x<y) AND (z*z ≤ y) OR (current direction
 =“South”).

–  R1.3: Invoke Fire3 when none of the two conditions above is true.
–  R2: The invocation described above must continue until an input Boolean

 variable becomes true (when the stop firing button is pressed).

© Lionel Briand 2010
20

MC/DC coverage: Example (contd.)

© Lionel Briand 2010
21

MC/DC coverage: Example (contd.)
•  Verify that the following test suite of four tests, executed in

 the given order, is adequate with respect to statement, and
 decision (edge) coverage criteria but not with respect to the
 condition coverage criterion.

•  Draw a CFG for this program and verify that all statements are
 covered.

•  We assess the decision (edge) and condition coverage here…

© Lionel Briand 2010
22

•  Path Coverage Criterion: Select a test set
 T such that, by executing P for each test
 case t in T, all paths leading from the
 initial to the final node of P’s control flow
 graph are traversed

•  In practice, however, the number of paths
 is too large, if not infinite (e.g., when we
 have loops)

•  Some paths are infeasible (e.g., not
 practical given the system’s business logic)

•  It may be important to determine “critical
 paths”, leading to more system load,
 security intrusions, etc.

x<=y x > y
x = y

x ≠ y

© Lionel Briand 2010
23

Path Coverage - Example

if x ≠ 0 then
 y := 5;

else
 z := z – x;

end if;
if z > 1 then
 z := z / x;

else
 z := 0;

end if;

Let us compare how the following
two test sets cover this CFG:

T1 (test set) =

{TC11:<x=0, z =1>,

TC12:<x =1, z=3>}

T2 =

{TC21:<x=0, z =3>,

TC22:<x =1, z=1>}

See next…

© Lionel Briand 2010
24

Path Coverage – Example
T1’s coverage

if x ≠ 0 then
 y := 5;

else
 z := z – x;

end if;
if z > 1 then
 z := z / x;

else
 z := 0;

end if;

T1’s coverage:

T1 (test set) =
{TC11:<x=0, z =1>,
TC12:<x =1, z=3>}

T1 executes all edges
but…!

Do you see any testing issue
(uncovered paths which can
be sources of failure)?

T1 executes all edges
and all conditions but
does not test risk of
division by 0. (See
the red “path”)

© Lionel Briand 2010
25

Path Coverage – Example
T2’s coverage

if x ≠ 0 then
 y := 5;

else
 z := z – x;

end if;
if z > 1 then
 z := z / x;

else
 z := 0;

end if;

T2’s coverage:

T2 =
{TC21:<x=0, z =3>,
TC22:<x =1, z=1>}

T2 would find the problem
(triggering division by 0) by
exercising the remaining
possible flows of control
through the program
fragment.

© Lionel Briand 2010
26

Path Coverage - Example

T1 (test set) =
{TC11:<x=0, z =1>,
TC12:<x =1, z=3>}

T1 executes all edges but do
not show risk of division by 0

T2 = {TC21:<x=0, z =3>,
TC22:<x =1, z=1>}

T2 would find the problem by
exercising the remaining
possible flows of control
through the program fragment

Observation:

T1 ∪ T2 -> all paths
covered

© Lionel Briand 2010
27

•  In practice, however, the number of paths can be too large, if
 not infinite (e.g., when we have loops) → Impractical

•  An pragmatic heuristic: Look for conditions that execute
 loops
–  Zero times
–  A maximum number of times
–  A average number of times (statistical criterion)

•  For example, in the array search algorithm
–  Skipping the loop (the table is empty)
–  Executing the loop once or twice and then finding the element
–  Searching the entire table without finding the desired element

© Lionel Briand 2010
28

Path Coverage – Dealing with Loops
Another Example: Power Function

Program computing
Z=X^Y

BEGIN
read (X, Y) ;
W = abs(Y) ;
Z = 1 ;
WHILE (W <> 0) DO
Z = Z * X ;
W = W - 1 ;

END
IF (Y < 0) THEN
Z = 1 / Z ;

END
print (Z) ;

END

1

2

3 4

5

6

read(X,Y)
W=abs(Y)
Z=1

Z=Z*X
W=W-1

W≠0 W=0

Y<0
Y≥0

Z=1/Z

print(Z)

© Lionel Briand 2010
29

Path Coverage – comparison with “all
 branches” and “all statements”

•  All paths
–  Infeasible path

•  1 → 2 → 4 → 5 → 6, Why infeasible?
•  The way Y and W relate.

–  Potentially large number of paths (depends on Y)
•  As many ways to iterate

2 → (3 → 2)* as values of Abs(Y)
•  All branches

–  Two test cases are enough
•  Y<0 : 1 → 2 → (3 → 2)+ → 4 → 5 → 6
•  Y>0 : 1 → 2 → (3 → 2)* → 4 → 6

•  All statements
–  One test case is enough

•  Y<0 : 1 → 2 → (3 → 2)+ → 4 → 5 → 6

1

2

3 4

5

6

read(X,Y)
W=abs(Y)
Z=1

Z=Z*X
W=W-1

W≠0
W=0

Y<0
Y≥0

Z=1/Z

print(Z)

© Lionel Briand 2010
30

•  To find test inputs that will execute an arbitrary
 statement Q within a program source, the tester must
 work backward from Q through the program’s flow of
 control to an input statement

•  For simple programs, this amounts to solving a set of
 simultaneous inequalities in the input variables of the
 program, each inequality describing the proper path
 through one conditional

•  An example next…

© Lionel Briand 2010
31

int z;
scanf(“%d%d”, &x, &y);
if (x > 3) {
 z = x+y;
 y+= x;
 if (2*z == y) {
 an example statement
/* e.g., we want this statement to be covered
 by a test case */
…

Inequalities?
. 2(x+y)=x+y
 x = -y
. x> 3

We can have many
solutions, e.g.:
x = 4
y= -4

© Lionel Briand 2010
32

•  The presence of loops and recursion in the code
 makes it very hard (and sometimes impossible)
 to write and solve the inequalities in general

•  Each pass through a loop may alter the values of
 variables that figure in a following conditional
 and the number of passes cannot be determined
 by static analysis in general

© Lionel Briand 2010
33

Control Flow Coverage
Reachability

•  Not all statements are usually reachable in real-world programs
•  It is not always possible to decide automatically if a statement is

 reachable and the percentage of reachable statements
•  When one does not reach a 100% coverage, it is therefore difficult

 to determine the reason
•  Tools are needed to support this activity but it cannot be fully

 automated
•  Research focuses on search algorithms to help automate coverage
•  Control flow testing is, in general, more applicable to testing in the

 small

© Lionel Briand 2010
34

© Lionel Briand 2010
35

Definitions and uses

A program written in a procedural language, such as C
 and Java, contains variables. Variables are defined by
 assigning values to them and are used in expressions.
Statement x = y + z defines variable x and uses
 variables y and z
Statement scanf (“%d %d”, &x, &y) defines
 variables x and y
Statement printf (“Output: %d \n”, x+y)
 uses variables x and y

A parameter x passed as call-by-value to a function,
 is considered as a use of (or a reference to) x

A parameter x passed as call-by-reference,
can serve as a definition and use of x

© Lionel Briand 2010
36

Definitions and uses: Pointers

Consider the following sequence of statements that use pointers.

• The first of the above statements defines a pointer variable z
• the second defines y and uses z
• the third defines x through the pointer variable z, and
• the last defines y and uses x accessed through the pointer
 variable z

Variable z is a pointer pointing to variable x and
contains the memory address of variable x.
*z retrieves the value at the memory address pointed
 by variable z. Consequently, *z = 25 is to assign 25 to
 the memory address pointed by variable z. That is, to
 assign 25 to variable x.

y=*z+1 is to define as the sum of 1 and
the value at the memory address pointed
by variable z, i.e., the value of x

© Lionel Briand 2010
37

Definitions and uses: Arrays

Arrays are also tricky. Consider the following declaration
 and two statements in C:

The first statement defines variable A.
The second statement defines A and uses i , x, and y.

Alternate: second statement defines A[i] and not the entire
 array A.
The choice of whether to consider the entire array A as
 defined or the specific element depends upon how stringent is
 the requirement for coverage analysis.

© Lionel Briand 2010
38

c-use

Uses of a variable that occurs within an expression as part
 of an assignment statement, in an output statement, as a
 parameter within a function call, and in subscript
 expressions, are classified as c-use, where the “c” in c-use
 stands for computational.

How many c-uses of x can you find in the following
 statements?

© Lionel Briand 2010
39

p-use

The occurrence of a variable in an expression used as a
 condition in a branch statement such as an if and a while, is
 considered as a p-use. The “p” in p-use stands for
 predicate.

How many p-uses of z and x can you find in the following
 statements?

© Lionel Briand 2010
40

p-use: possible confusion

Consider the statement:

The use of A is clearly a p-use.

Is the use of x in the subscript, a c-use or a p-use?

© Lionel Briand 2010
41

c-uses within a basic block

While there are two definitions of p in this block, only the
 second definition will propagate to the next block. The first
 definition of p is considered local to the block while the
 second definition is global.
We are concerned with global definitions, and uses.

Consider the basic block

Note that y and z are global uses; their definitions flow into this
 block from some other block.

© Lionel Briand 2010
42

Data Flow Analysis - FACTORIAL
 Example

1. public int factorial(int n){
2.  int i, result = 1;
3.  for (i=2; i<=n; i++) {
4.  result = result * i;
5.  }
6.  return result;
7. }

Variable Definition
line

Use line

n 1 3 (Predicate)

result 2 4
(Computation)

result 2 6
result 4 4
result 4 6
i 3 3
i 3 4

© Lionel Briand 2010
43

Data Flow Analysis
Basic Formal Definitions

•  Definition (defining) node: Node n ∈ CFG(P) is a defining
 node of the variable v ∈ V, written as DEF(v, n), iff (if
 and only if) the value of the variable v is defined in the
 statement corresponding to node n

•  Usage (use) node: Node n ∈ CFG(P) is a usage node of the
 variable v ∈ V, written as USE(v, n), iff the value of the
 variable v is used in the statement corresponding to
 node n

•  Predicate and Computation use: A usage node USE(v, n) is
 a predicate use (denoted as P-Use) iff the statement n
 is a predicate statement, otherwise USE(v, n) is a
 computation use (denoted as C-use)

© Lionel Briand 2010
44

Data Flow Analysis - Basic Definitions
 II

•  PATHS(P): the set of all CFPs in program P
•  definition-use (du)-path: A definition-use path with

 respect to a variable v (denoted du-path) is a path in
 PATHS(P) such that, for some v ∈ V, there are
 definition and usage nodes DEF(v, m) and USE(v, n) such
 that m and n are initial and final nodes of the path.

•  definition-clear (dc)-path: A definition-clear path with
 respect to a variable v (denoted dc-path) is a definition
-use path in PATH(P) with initial and final nodes DEF(v,
 m) and USE(v, n) such that no other node in the path is a
 defining node of v.

•  Examples next…

© Lionel Briand 2010
45

Simple Example

if (max>0)

max=len
copy()

Definition of len, max, save[],
including max=0 and len=getLine()

len=getLine()

if (len>=max)

while (len>0)

end

print

definition
of max

definition
of len

p-use
of len

p-use
of max

c-use
of len

6

5

4

2

3

1

8

7

1-2, 1-2-3, 1-2-3-4, 5-2, 5-2-3, 1-2-3-4-5-2 are du-paths wrt variable len.
They are, except for 1-2-3-4-5-2, definition-clear wrt variable len.

© Lionel Briand 2010
46

Data flow graph

• A data-flow graph of a program, denoted as def-use
 graph, captures the flow of definitions (denotes as defs)
 and uses across basic blocks in a program.
• It is similar to a control flow graph of a program in that
 the nodes, edges, and all paths in the control flow graph
 are preserved in the data flow graph.
• Attach defs, c-use and p-use to each node in the graph.
Label each edge with the condition which when true causes
 the edge to be taken.
• We use di(x) to refer to the definition of variable x at
 node i. Similarly, ui(x) refers to the use of variable x at
 node i.

© Lionel Briand 2010
47

Data flow graph: Example

© Lionel Briand 2010
48

Def-clear path

Any path starting from a node at
 which variable x is defined and
 ending at a node at which x is used,
 without redefining x anywhere else
 along the path, is a def-clear path
 for x.

Path 2-5 is def-clear for variable z
 defined at node 2 and used at node
 5. Path 1-2-5 is NOT def-clear for
 variable z defined at node 1 and
 used at node 5.

Thus definition of z at node 2 is live at
 node 5 while that at node 1 is not live
 at node 5.

© Lionel Briand 2010
49

Def-use pairs

• Def of a variable at line l1 and its use at line l2 constitute a
 def-use pair. l1 and l2 can be the same.
• dcu (di (x)) or dcu(x, i) denotes the set of all nodes where
 the definition of x at node i is live and used.
• dpu (di (x)) or dpu(x,i) denotes the set of all edges (k, l)
 such that there is a def-clear path from node i to edge (k,
 l) and x is used at node k.

We say that a def-use pair (di(x), uj(x)) is covered when a
 def-clear path that includes nodes i to node j is executed.

If uj(x) is a p-use then all edges of the kind (j, k) must also
 be taken during some executions for the def-use pair to be
 covered.

© Lionel Briand 2010
50

Def-use pairs (example)

© Lionel Briand 2010
51

Data Flow Analysis – Data Flow Coverage Criteria (I)

•  all-Definitions criterion: The test set T satisfies the all-Definitions
 criterion for the program P iff for every variable v ∈ V, T contains
 definition-clear paths from every defining node of v to a use of v.

•  all-Uses criterion: The test set T satisfies the all-Uses criterion for
 the program P iff for every variable v ∈V, T contains at least one
 definition-clear path from every defining node of v to every
 reachable use of v.

•  all-P-Uses/Some C-Uses criterion: The test set T satisfies the all-P
-Uses/Some C-Uses criterion for the program P iff for every
 variable v ∈V, T contains at least one definition clear path from
 every defining node of v to every predicate use of v, and if a
 definition of v has no P-Uses, there is a definition-clear path to at
 least one computation use.

© Lionel Briand 2010
52

Data Flow Analysis – Data Flow Coverage Criteria
 (II)

•  all-C-Uses/Some P-Uses criterion: The test set T satisfies the all-C
-Uses/Some P-Uses criterion for the program P iff for every
 variable v ∈V, T contains at least one definition-clear path from
 every defining node of v to every computation use of v, and if a
 definition of v has no C-Uses, there is a definition-clear path to at
 least one predicate use.

•  all-DU-Paths criterion: The test set T satisfies the all-DU-Paths
 criterion for the program P iff for every variable v ∈V, T contains
 all definition-clear paths from every defining node of v to every
 reachable use of v, and that these paths are either single loops
 traversals, or they are cycle free.

© Lionel Briand 2010
53

POWER Example

1

2

3 4

5

6

read(X,Y)
W=abs(Y)
Z=1

Z=Z*X
W=W-1

W≠0 W=0

Y<0
Y≥0 Z=1/Z

print(Z)

© Lionel Briand 2010
54

Data Flow Analysis (DFA) – Discussion

•  In DFA, we generate test data according to the way data
 is manipulated in the program

•  DFA can help us define intermediary CFA criteria
 between all-nodes testing (possibly too weak) and all
-paths testing (often impossible)

•  But we need effective tool support for DFA if we want
 to use it extensively.

© Lionel Briand 2010
55

The subsumption relationships
All paths

All definition-use paths

All uses

All computational/
some predicate uses

All computational uses
All definitions

All predicate/
some computational uses

All predicate uses

Edge (Branch)

Statement
(possibly too weak)

(possibly too tough. Often impossible)

© Lionel Briand 2010
56

Data Flow Analysis - Measuring Code
 Coverage

•  One advantage of structural criteria is that their
 coverage can be measured automatically

•  To control testing progress
•  To assess testing completeness in terms of remaining

 faults and reliability
•  High coverage is not a guarantee of fault-free software,

 just an element of information to increase our
 confidence -> statistical models

© Lionel Briand 2010
57

Analysis of test coverage data
Test Productivity

© Lionel Briand 2010
58

Coverage %

Fault
Detection
score %

0

100

100

Criterion 1

Criterion 2

© Lionel Briand 2010
59

•  Hutchins, Foster, Goradia, Ostrand, “Experiments on the Effectiveness of
 Dataflow- and Control flow-Based Test Adequacy Criteria”, proceedings of
 the International Conference on Software Engineering, 1994

•  The All-Edges and All-DU coverage criteria were applied to 130 faulty
 versions of 7 C programs (141-512 LOC) by seeding realistic faults

•  The 130 faults were created by 10 different people, mostly without
 knowledge of each other’s work; their goal was to be as realistic as possible.

•  The test generation procedure was designed to produce a wide range both
 of test size and test coverage percentages, i.e., at least 30 test sets for
 each 2% coverage interval for each program

•  They examined the relationship between fault detection and test set
 coverage / size

© Lionel Briand 2010
60

© Lionel Briand 2010
61

Analysis of test coverage data
Results of Hutchins et al.’s work

•  Both coverage criteria performed better than random
 test selection – especially DU-coverage

•  Significant improvements occurred as coverage increased
 from 90% to 100%

•  100% coverage alone is not a reliable indicator of the
 effectiveness of a test set – especially edge coverage

•  Wide variation in test effectiveness for a given coverage
 criteria

•  As expected, on average, achieving all-DU coverage
 required significantly larger test sets with all-Edge
 coverage

© Lionel Briand 2010
62

A short Background on Eclipse, and
 JUnit

•  Eclipse is a very popular Integrated Development
 Environment (IDE) written primarily in and intended for
 Java.

•  But it is now used for developing in many other languages
 too, phpUnit, NUnit, .

•  If you go to the SW industry, you are most probably
 going to see/use it!

•  JUnit is a unit testing framework for Java.
•  It is extremely popular in the SW industry.
•  Check the web:

–  en.wikipedia.org/wiki/List_of_unit_testing_frameworks
–  www.junit.org
–  en.wikipedia.org/wiki/JUnit

© Lionel Briand 2010
63

A short Background on CodeCover

•  CodeCover is an open-source code coverage tool for Java
 under Eclipse.

•  It can be used inside Eclipse.
•  http://www.codecover.org

•  There are many other code coverage tool out there, but
 this is one of the lightest and powerful ones.

•  See the list @ http://java-source.net/open-source/code
-coverage

© Lionel Briand 2010
64

Demo of Eclipse and JUnit

•  T={t1: <x=2, y=3, return=5>, t2: <x=3, y=1, return=3>}
•  T = {sumTestCase, productTestCase}

