
1

Software Quality Engineering

Exercises

Exercise 1
The following program computes the greatest common divisor of two natural numbers by
Euclid’s algorithm.

Begin
input(x,y);
While(x>0 and y>0) Do

If (x>y)
Then x:=x-y
Else y:=y-x

Endif
Endwhile
output(x+y);

End

Questions:

1. Build the corresponding control flow graph
2. Devise test sets (in the form of paths), and then test inputs (i.e., values for x

and y) in order to achieve:
a. statement coverage
b. edge coverage
c. condition coverage
d. path coverage

Exercise 2
Reuse the control flow built in Question 1, and devise test sets and test inputs in order to
achieve (each time you will first identify the elements you have to cover in the graph):

a. 100% all-uses
b. 100% all-definitions
c. 100% all-definition-uses

Exercise 3
Consider the following Boolean expression and use criterion Modified Condition
Coverage in order to devise inputs to be tested (recall that ∨ is the OR, ∧ the AND, and ¬
the NOT).

A ∨ (B ∧ C)

2

Exercise 4
Consider the following Boolean expression and use criterion Modified Condition
Coverage in order to devise inputs to be tested (recall that ∨ is the OR, ∧ the AND, and ¬
the NOT). Do you notice anything special?

A ∨ (A ∧ B)

Exercise 5
Consider the following Boolean expression and use criterion Modified Condition
Coverage in order to devise inputs to be tested (recall that ∨ is the OR, ∧ the AND, and ¬
the NOT). Use Boolean algebra to simply the expression.

A ∧ (B ∨ ¬(A ∧ (A ∨ ¬C)))

Exercise 6
Consider the following Boolean function: X = AB(CD+E)
Use the Variable Negation strategy to derive test cases for X.

Number of variants = 2 power 5 = 32

Exercise 7
A Java class, named OrdSetSimple, implements an ordered set of integers (upper
bounded, without duplicates). Among other things, it supports a basic sets operation,
named difference, which determines the difference between two sets: the difference
between sets s1 and s2 contains all the elements in s1 that are not in s2 (e.g.,
{1,3,4,5}-{2,3,4}={1,5}).
The upper bound of the set of integer is given as an argument of the constructor. Once
created with a given upper bound UB, if a client of OrdSetSimple tries to add more than
UB elements, the element is not added and an error message is written on the standard
output.

Apply Category-Partition and devise test cases (and test data) on the difference operation.
Clearly indicate what are the categories, choices, … when applying the technique. Note:
you may need up to 5 different categories.

Exercise 8
Below is the source code for operator difference, as well as additional explanations
(methods in class OrdSetSimple). Verify the structural coverage of your black-box test,
and update them if necessary (according to Marick’s principle), according to the
following white-box criteria:

- All-Uses
- All-Definitions
- All-DU

3

Class OrdSetSimple has two public methods, namely getSize() and
getElementAt() (names are self-explanatory), which are used in operator
difference. Operator difference also uses method binSearch(), which returns
the position of the element passed as an argument or –1 if the element cannot be found
(using a binary search algorithm). Last, the only mechanism provided by class
OrdSetSimple to add elements is named addElement() (see how it is used below).
This last method adds the element only if it is not already in the set, and writes an error
message on the standard output if the set is already full.

When a variable is a reference to an object and method calls are performed on that
reference: If the method modifies an attribute of the referenced object, consider this a
definition of the object reference, otherwise consider this a usage of the object reference.

1 public OrdSetSimple difference(OrdSetSimple s2) {
2 OrdSetSimple s1 = this;
3 int size1 = s1.getSize();
4 int size2 = s2.getSize();
5
6 OrdSetSimple set = new OrdSetSimple(size2);
7 // creating a new set for the result
8
9 int k; // for the visit of array s1
10
11 for(k = 0; k < size1; k++)
12 if (s2.binSearch(s1.getElementAt(k)) < 0)
13 set.addElement(s1.getElementAt(k));
14
15 return set;
16 }

Exercise 9
Next is a partial specification of an on-board software that controls the thrusters when an
aircraft is landing:

If the pilot selects the reverse-thrusters and either landing-gear is not down
or not locked then the reverse-thrusters command should be over-ruled. In
addition, if the landing-gear is down and locked, but the wheels are not
spinning or the spinning speed is below a threshold, then the reverse-
thruster command should also be over-ruled. Otherwise, the reverse-
thruster command should be accepted.

1. Analyze this specification and produce the corresponding cause-effect graph.
Clearly identify causes and effects (only consider the over-rule thruster
effect).

2. Derive a decision table from the cause-effect graph (recall to use “don’t care”
values), and provide test cases.

4

Exercise 10
Consider functions Main() and B()below. (For the purpose of this exercise these
functions use a specific Integer class, that is also provided.)
Build the control flow graphs for Main() and B(). In each of these control-flow graphs,
for the sake of clarity, add a node for the entry in the function and a node for the exit of
the function showing formal parameters and return variables (if they exist).
Derive control flow (sub-)paths and associated test data according to the all-uses
integration strategy described in class.

Main() {
Integer i,j;
Integer sum=new Integer(0);
read i, j;
while (i.getInt() < 10) {
B(i, j, sum);

}
System.out.println("Sum: "+sum);

}

void B(Integer x, Integer y, Integer z) {
…
if (y.getInt() >= 0) then {
z.setInt(z.getInt() + y.getInt());
read y;

}
x.setInt(x.getInt() + 1);

}

public class Integer {
private int i;
public Integer(int i) { this.i=i; }
public void setInt(int j) { i=j;}
public int getInt(){return i;}
public String toString(){return ""+i};

}

Exercise 11

Consider the (incomplete) description of classes Shape, Triangle and EquiTriangle
below.

You will assume that you can devise both black-box and white-box test suites for each
method in each class: e.g., you assume you have both black-box and white-box test suites
for methods in class Shape (though this is an abstract class), except for method area
which is the only abstract method (you only have a black-box test suite in this case).
In order to identify those test suites, use acronyms TS (Test suite from Specification) and
TP (Test suite from Program), and subscript these acronyms with numbers identifying
methods: e.g., TS1 and TP2 refer to a functional test suite for method
setPreferencePoint (this method is numbered 1) and a structural test suite for
method getReferencePoint (this method is numbered 2).

Apply the hierarchical incremental testing strategy we have seen in class and identify:

- For which of the test sets (functional and/or structural) defined for class
Shape:

(1) One needs to execute again in the context of class Triangle;
(2) One does not need to execute again in the context of class Triangle;

5

(3) One needs to define (new test sets) in the context of class Triangle.
- For which of the test sets (functional and/or structural) used for class

Triangle:
(1) One needs to execute again in the context of class EquiTriangle;
(2) One does not need to execute again in the context of class
EquiTriangle;
(3) One needs to define (new test sets) in the context of class
EquiTriangle.

Justify your answers.

public abstract class Shape {

private Point referencePoint;

public void setReferencePoint(Point p) { referencePoint = p; }
public Point getReferencePoint() { return referencePoint; }
public void moveTo(Point p) {…} // calls erase() and draw()
public void erase() {…} // calls draw()
public void draw() {…} // calls getReferencePoint()
public abstract float area() // abstract
public Shape(Point p) {…} // Constructor: sets the value of

// referencePoint and calls draw()
public Shape() {…} // Constructor: sets the value of

// referencePoint (default value)
and
// calls draw()

}

public class Triangle extends Shape {

private Point vertex2;
private Point vertex3;

public Point getVertex1() { return getReferencePoint(); }
public Point getVettex2() { return vertex2; }
public Point getVertex3() { return vertex3; }
public void setVertex1(Point p) { setReferencePoint(p); }
public void setVertex2(Point p) { vertex2 = p; }
public void setVertex3(Point p) { vertex3 = p; }
public void draw(); // new version
public float area(); // new version
public Triangle();
public Triangle(Point p1, Point p2, Point p3);

}

public class EquiTriangle extends Triangle {

public float area(); // new version
public EquiTriangle(Point p1, Point p2, Point p3);
public EquiTriangle();

}

6

Exercise 12
Consider a type IntBag, with operations to insert and remove elements, as well as all
the observers of IntSet. Bags are like sets except that elements can occur multiple times
in a bag.
Is IntBag a legitimate subtype of IntSet? Explain by arguing that either the Liskov
substitution principle is violated (for a non-subtype) or that it holds (for a subtype).

Exercise 13
Consider the source code for the CCoinBox class provided in the course slides
Apply Bashir&Goel technique for class testing. Add reporters where needed. Any
comment?

