
© Lionel Briand 2011
1

Black-Box, Functional
Testing

© Lionel Briand 2011
2

Introduction
•  Based on the definition of what a program’s

specification, as opposed to its structure
•  Does the implementation correctly implement the

functionality as per the given system
specifications?

•  The notion of coverage can also be applied to
functional testing

•  Rigorous specifications have another benefit, they
help functional testing, e.g., categorize inputs,
derive expected outputs

•  In other words, they help test case generation and
test oracles

© Lionel Briand 2011
3

Outline

•  Equivalence Class Partitioning
•  Boundary-Value Analysis
•  Category-Partition
•  Decision tables
•  Cause-Effect Graphs
•  Logic Functions

© Lionel Briand 2011
4

Equivalence Class Testing
•  Motivation: we would like to have a sense of complete testing

 and we would hope to avoid test redundancy
•  Equivalence classes: partitions of the input set in which input

 data have the same effect on the program (e.g., the result in
 the same output)

•  Entire input set is covered: completeness

•  Disjoint classes: to avoid redundancy
•  Test cases: one element of each equivalence class
•  But equivalence classes have to be chosen wisely …
•  Guessing the likely system behavior is needed A SUT’s

input set

tc1
tc2

tc3
tc6

tc4 tc5

© Lionel Briand 2011
5

Weak/Strong Equivalence
 Class Testing

•  For an example SUT, suppose there are three input
 variables from three domains: A, B, C

•  A = A1 ∪ A2 ∪ A3 ∪ … ∪ Am where ai∈Ai
•  B = B1 ∪ B2 ∪ B3 ∪ … ∪ Bn where bi∈Bi
•  C = C1 ∪ C2 ∪ C3 ∪ … ∪ Co where ci∈Ci
•  Weak Equivalence Class Testing: Choosing one variable

 value from each equivalence class (one ai, bi, and ci)
 such that all classes are covered. # of test cases?
–  max (|A|, |B|, |C|)

•  Strong Equivalence Class Testing: Is based on the
 Cartesian product of the partition subsets (A×B×C),
 i.e., testing all interactions of all equivalence classes.
 # of test cases?

–  |A| x |B| x |C|
•  Examples next…

A

B

C

© Lionel Briand 2011
6

Example of Weak Equivalence Class Testing (WECT)

Test Case! A! B! C!

WETC1! a1! b1! c1!

WETC2! a2! b2! c2!

WETC3! a3! b3! c1!

WETC4! a1! b4! c2!

  Number of WETCs needed=Max number of equivalence classes
among {A, B, C}

  4 WETCs are enough.

© Lionel Briand 2011
7

Example of Strong Equivalence Class Testing (SECT)

Test Case! A! B! C!
SETC1! a1! b1! c1!
SETC2! a1! b1! c2!
SETC3! a1! b2! c1!
SETC4! a1! b2! c2!
SETC5! a1! b3! c1!
SETC6! a1! b3! c2!
SETC7! a1! b4! c1!
SETC8! a1! b4! c2!
SETC9! a2! b1! c1!

SETC10! a2! b1! c2!
SETC11! a2! b2! c1!
SETC12! a2! b2! c2!
SETC13! a2! b3! c1!
SETC14! a2! b3! c2!
SETC15! a2! b4! c1!
SETC16! a2! b4! c2!
SETC17! a3! b1! c1!
SETC18! a3! b1! c2!
SETC19! a3! b2! c1!
SETC20! a3! b2! c2!
SETC21! a3! b3! c1!
SETC22! a3! b3! c2!
SETC23! a3! b4! c1!
SETC24! a3! b4! c2!

  |A| = 3

  |B| = 4

  |C| = 2

  # of test cases=3x4x2=24

© Lionel Briand 2011
8

NextDate Example
•  NextDate is a function with three variables:
month, day, year. It returns the date of the
day after the input date. Limitation: 1812-2012

•  Treatment Summary: if it is not the last day of
the month, the next date function will simply
increment the day value. At the end of a month,
the next day is 1 and the month is incremented. At
the end of the year, both the day and the month
are reset to 1, and the year incremented. Finally,
the problem of leap year makes determining the
last day of a month interesting.

© Lionel Briand 2011
9

NextDate Equivalence
Classes

•  M1 = { month: month has 30 days}
•  M2 = { month: month has 31 days}
•  M3 = { month: month is February}

•  D1 = {day: 1<= day <= 28}
•  D2 = {day: day = 29}
•  D3 = {day: day = 30}
•  D4 = {day: day = 31}

•  Y1 = {year: year = 1900}
•  Y2 = {year: 1812 <= year <= 2012 AND (year != 1900) AND

 (year mod 4 = 0)}
•  Y3 = {year: (1812 <= year <= 2012 AND year mod 4 != 0)}

© Lionel Briand 2011
10

•  #WECT test cases=maximum partition size (D)=4

Test Case ID! Month! Day! Year! Output!
WETC1! 6! 14! 1900! 6/15/1900!
WETC2! 7! 29! 1912! 7/30/1912!
WETC3! 2! 30! 1913! Invalid Input

 date (not
 possible)!

WETC4! 6! 31! 1900! Invalid Input
 date!

© Lionel Briand 2011
11

Test
Case

ID!

Month! Day! Year! Expected Output!

SE1! 6! 14! 1900! 6/15/1900!
SE2! 6! 14! 1912! 6/15/1912!
SE3! 6! 14! 1913! 6/15/1913!
SE4! 6! 29! 1900! 6/30/1900!
SE5! 6! 29! 1912! 6/30/1912!
SE6! 6! 29! 1913! 6/30/1913!
SE7! 6! 30! 1900! 7/1/1900!
SE8! 6! 30! 1912! 7/1/1912!
SE9! 6! 30! 1913! 7/1/1913!

SE10! 6! 31! 1900! ERROR!
SE11! 6! 31! 1912! ERROR!
SE12! 6! 31! 1913! ERROR!
SE13! 7! 14! 1900! 7/15/1900!
SE14! 7! 14! 1912! 7/15/1912!
SE15! 7! 14! 1913! 7/15/1913!
SE16! 7! 29! 1900! 7/30/1900!
SE17! 7! 29! 1912! 7/30/1912!

SE18! 7! 29! 1913! 7/30/1913!
SE19! 7! 30! 1900! 7/31/1900!
SE20! 7! 30! 1912! 7/31/1912!
SE21! 7! 30! 1913! 7/31/1913!
SE22! 7! 31! 1900! 8/1/1900!
SE23! 7! 31! 1912! 8/1/1912!
SE24! 7! 31! 1913! 8/1/1913!
SE25! 2! 14! 1900! 2/15/1900!
SE26! 2! 14! 1912! 2/15/1912!
SE27! 2! 14! 1913! 2/15/1913!
SE28! 2! 29! 1900! ERROR!
SE29! 2! 29! 1912! 3/1/1912!
SE30! 2! 29! 1913! ERROR!
SE31! 2! 30! 1900! ERROR!
SE32! 2! 30! 1912! ERROR!
SE33! 2! 30! 1913! ERROR!
SE34! 2! 31! 1900! ERROR!
SE35! 2! 31! 1912! ERROR!
SE36! 2! 31! 1913! ERROR!

  #SECT test cases= partition size (D) x partition size (M) x partition size
(Y) = 3x4x3=36 test cases"

© Lionel Briand 2011
12

Discussion
•  If error conditions are a high priority, we should extend

strong equivalence class testing to include both valid (E)
and invalid inputs (U)
•  E.g., year | year < 1812 or year > 2012

•  ECT is appropriate when input data defined in terms of
ranges and sets of discrete values

•  SECT makes the assumption that the variables are
independent – dependencies will generate “error” test
cases

•  Possibly too many of them …
•  See the category-partition and decision table techniques

next to address this issue

© Lionel Briand 2011
13

Boundary Value Testing

© Lionel Briand 2011
14

Motivations
•  We have partitioned input domains into

suitable classes, on the assumption that
the behavior of the program is “similar”

•  Some typical programming errors happen to
be at the boundary between different
classes

•  This is what boundary value testing focuses
on

•  Simpler but complementary to previous
techniques

© Lionel Briand 2011
15

Errors at the boundaries
•  Experience indicates that programmers make

mistakes in processing values at and near the
boundaries of equivalence classes.

•  For example, suppose that method M is
 required to compute a function f1 when x≤ 0
 is true and function f2 otherwise. However,
 M has an error due to which it computes f1
 for x<0 and f2 otherwise.

•  Obviously, this fault is revealed, though not
 necessarily, when M is tested against x=0
 but not if the input test set is, for example,
 {-4, 7} derived using equivalence partitioning.
 In this example, the value x=0, lies at the
 boundary of the equivalence classes x≤0 and
 x>0.

© Lionel Briand 2011
16

Boundary Value Analysis
•  Boundary value analysis is a test selection

technique that targets faults in applications at the
boundaries of equivalence classes.

•  While equivalence partitioning selects tests from
within equivalence classes, boundary value analysis
focuses on tests at and near the boundaries of
equivalence classes.

•  Certainly, tests derived using either of the two
 techniques may overlap.

© Lionel Briand 2011
17

Example: 1. Create
equivalence classes

Function findPrice() has two parameters: an item code must be in
 the range 99..999 and quantity in the range 1..100,

Equivalence classes for code:
E1: Values less than 99.
E2: Values in the range.
E3: Values greater than 999.

Equivalence classes for qty:
E4: Values less than 1.
E5: Values in the range.
E6: Values greater than 100.

© Lionel Briand 2011
18

E1
E2

E3

98 100 998 1000

99 999
x x * * * *

Example: 2. Identify
boundaries

Equivalence classes and boundaries for findPrice. Boundaries are
 indicated with an x. Points near the boundary are marked *.

E4
E5

E6

0 2 99 101

1 100
x x * * * *

© Lionel Briand 2011
19

Example: 3. Construct test
set

Test selection based on the boundary value analysis
 technique requires that tests must include, for each
 variable, values at and around the boundary. Consider
 the following test set:

T={ t1: (code=98, qty=0),
 t2: (code=99, qty=1),
 t3: (code=100, qty=2),
 t4: (code=998, qty=99),
 t5: (code=999, qty=100),
 t6: (code=1000, qty=101)

}

Illegal values of code
 and qty included.

© Lionel Briand 2011
20

Principles

•  Input variable values (within a class)
at their minimum, just above the
minimum, a nominal value, just below
their maximum, and at their maximum.

•  Convention: min, min+, nom, max-, max
•  Hold the values of all but one variable

at their nominal values, letting one
variable assume its extreme value

© Lionel Briand 2011
21

Input Domain of Function F

a b

d

c

X1

X2

© Lionel Briand 2011
22

Boundary Analysis
Test Cases

•  Test set ={<x1nom, x2min>, <x1nom, x2min+>, <x1nom,
x2nom>, <x1nom, x2max->, <x1nom, x2max>, <x1min, x2nom,>,
<x1min+, x2nom,>, <x1max-, x2nom>, <x1max, x2nom>}

a b

d

c

X1

X2

© Lionel Briand 2011
23

General Case and Limitations

•  A function with n variables will
require 4n + 1 test cases

•  Works well with variables that
represent bounded physical quantities

•  No consideration of the nature of the
function and the meaning of variables

•  Rudimentary technique that is
amenable to robustness testing

© Lionel Briand 2011
24

Robustness Testing

d

c

X1

X2

a b

© Lionel Briand 2011
25

Worst Case Testing (WCT)
•  Boundary value analysis makes the common assumption that

failures, most of the time, originate from one fault related
to an extreme value

•  What happens when more than one variable has an extreme
value?

•  Idea comes from electronics in circuit analysis
•  Cartesian product of {min, min+, nom, max-, max}
•  Clearly more thorough than boundary value analysis, but

much more effort: 5n test cases
•  Good strategy when physical variables have numerous

interactions, and where failure is costly
•  Even further: Robust Worst Case Testing

© Lionel Briand 2011
26

WCT for 2 variables

d

c

X1

X2

a b

© Lionel Briand 2011
27

Robust WCT for 2 variables

d

c

X1

X2

a b

© Lionel Briand 2011
28

Category-Partition Testing

© Lionel Briand 2011
29

Steps
•  Extends and combine ECT, boundary value analysis.
•  The system is divided into individual “functions” (use cases)

that can be independently tested
•  The method identifies the parameters of each “function”

and, for each parameter, identifies distinct categories
•  Besides parameters, environment characteristics, under

which the function operates (characteristics of system
state), can also be considered, e.g., versions of libraries.

•  Categories are major properties or characteristics
•  The categories are further subdivided into choices in the

same way as equivalence partitioning is applied (value
subdomains)

© Lionel Briand 2011
30

Small Example

•  Function: Sorting an array
•  Characteristics:

–  Length of array (Len)
–  Type of elements
–  Max value
–  Min value
–  Position of max value (Max pos)
–  Position of min value

•  Choices for Max pos: {1, 2..Len-1, Len}

© Lionel Briand 2011
31

Steps (II)
•  The constraints operating between choices

are then identified, I.e., how the
occurrence of one choice can affect the
existence of another
–  E.g., in the array sorting example, if Len = 0,

then the rest does not matter
•  Test frames are generated which consist

of the allowable combinations of choices in
the categories (test specifications)

•  Test frames are then converted into test
data

© Lionel Briand 2011
32

Constraints
•  Properties, Selectors associated with

choices

Category A
ChoiceA1 [property X, Y, Z]
ChoiceA2

Category B
ChoiceB1
ChoiceB2 [if X and Z]

Special annotation: [Error], [Single]

© Lionel Briand 2011
33

Trivial Example
•  Specification: The program prompts the

user for a positive integer in the range 1 to
20 and then for a string of characters of
that length. The program then prompts for
a character and returns the position in the
string at which the character was first
found or a message indicating that the
character was not present in the string.
The user has the option to search for more
characters.

© Lionel Briand 2011
34

Parameters and Categories
•  Three parameters: integer x (length), the

string a, and the character c
•  For x the categories are “in-range” (1-20)

or “out-of-range”
•  Categories for a: minimal, maximal,

intermediate length
•  Categories for c: character appears at the

beginning, middle, end of string, or does
not occur in the string

© Lionel Briand 2011
35

Choices

•  Integer x, out-of-range: 0, 21
•  Integer x, in-range: 1, 2-19, 20
•  String a: 1, 2-19, 20
•  Character c: first, middle, last, does

not occur
•  Combined boundary analysis,

robustness and equivalence class
partitioning

© Lionel Briand 2011
36

Formal Test Specifications
x:
1) 0 [error]
2) 1 [property stringok, length1]
3) 2-19 [property stringok, midlength]
4) 20 [property stringok, length20]
5) 21 [error]
a:
1)  Length 1 [if stringok and length1]
2)  Length 2-19 [if stringok and midlength]
3)  Length 20 [if stringok and length20]
c:
1)  At first position in string [if stringok]
2)  At last position in string [if stringok and not length1]
3) In middle of string [if stringok and not length1]
4) Not in string [if stringok]

© Lionel Briand 2011
37

Test Frames and Cases
x 1 x = 0
x 2a1c1 x = 1, a = ‘A’, c = ‘A’
x 2a1c4 x = 1, a = ‘A’, c = ‘B’
x 3a2c1 x = 7, a = ‘ABCDEFG’, c = ‘A’
x 3a2c2 x = 7, a = ‘ABCDEFG’, c = ‘G’
x 3a2c3 x = 7, a = ‘ABCDEFG’, c = ‘D’
x 3a2c4 x = 7, a = ‘ABCDEFG’, c = ‘X’
x 4a3c1 x = 20, a = ‘ABCDEFGHIJKLMNOPQRST’, c = ‘A’
x 4a3c2 x = 20, a = ‘ABCDEFGHIJKLMNOPQRST’, c = ‘T’
x 4a3c3 x = 20, a = ‘ABCDEFGHIJKLMNOPQRST’, c = ‘J’
x 4a3c4 x = 20, a = ‘ABCDEFGHIJKLMNOPQRST’, c = ‘X’
x 5 x = 21

© Lionel Briand 2011
38

Criteria Using Choices
•  All Combinations (AC): This is what was shown in the previous

example, what is typically done when using category-partition. One
value for every choice of every parameter must be used with one
value of every (possible) choice of every other category.

•  Each choice (EC): This is a weaker criterion. One value from each
choice for each category must be used at least in one test case.

•  Base Choice (BC): This criterion is a compromise. A base choice is
chosen for each category, and a first base test is formed by using
the base choice for each category. Subsequent tests are chosen by
holding all but one base choice constant (I.e., we select a non-base
choice for one category) and forming choice combinations by
covering all non-base choices of the selected category. This
procedure is repeated for each category.

•  The base choice can be the simplest, smallest, first in some
ordering, or most likely from an end-user point of view, e.g., in the
previous example, character c occurs in the middle of the string,
length x is within 2-19.

© Lionel Briand 2011
39

Conclusions
•  Identifying parameters and environments

conditions, and categories, is heavily relying on the
experience of the tester

•  Makes testing decisions explicit (e.g., constraints),
open for review

•  Combine boundary analysis, robustness testing,
and equivalence class partitioning

•  Once the first step is completed, the technique is
straightforward and can be automated

•  Techniques for test case reduction makes it useful
for practical testing

© Lionel Briand 2011
40

Decision Tables

© Lionel Briand 2011
41

Motivations
•  Help express test requirements in a directly

usable form
•  Easy to understand and support the systematic

derivation of tests
•  Support automated or manual generation of test

cases
•  A particular response or response subset is to be

selected by evaluating many related conditions
•  Ideal for describing situations in which a number

of combinations of actions are taken under varying
sets of conditions, e.g., control systems

© Lionel Briand 2011
42

Table Example

Equilateral Isosceles Scalene

a b

c

© Lionel Briand 2011
43

Structure
•  Condition section lists conditions and combinations

thereof
•  Condition expressed relationship among decision

variables
•  Action section list responses to be produced when

corresponding combinations of conditions are true
•  Limitations: Resultant actions are determined by

the current values of decision variables!
•  Actions are independent of input order and the

order in which conditions are evaluated
•  Actions may appear more than once but each

combination of conditions is unique

© Lionel Briand 2011
44

Table Structure

© Lionel Briand 2011
45

Truth Table

© Lionel Briand 2011
46

Test Cases

© Lionel Briand 2011
47

Ideal Usage Conditions
•  One of several distinct responses is to be selected

according to distinct cases of input variables
•  These cases can be modeled by mutually exclusive

Boolean expressions on the input variables
•  The response to be produced does not depend on

the order in which input variables are set or
evaluated (e.g., events are received)

•  The response does not depend on prior inputs or
outputs

© Lionel Briand 2011
48

Scale
•  For n conditions, there may be at most 2n variants

(unique combinations of conditions and actions)
•  But, fortunately, there are usually much fewer

explicit variants …
•  “Don’t care” values in decision tables help reduce

the number of variants
•  “Don’t care” can correspond to several cases:

–  The inputs are necessary but have no effect
–  The inputs may be omitted
–  Mutually exclusive cases (type-safe exclusions)

© Lionel Briand 2011
49

Special Cases
•  “can’t happen” : reflect some assumption that some

inputs are mutually exclusive, or that they cannot
be produced in the environment, e.g., an insurance
policy be issued to a person older than 100.

•  A chronic source of bugs, e.g., Ariane 5
•  “can’t happen” do occur because of programming

errors and unexpected change effects
•  “don’t know” condition reflect an incomplete model,

e.g., due to incomplete documentation
•  Most of the time, they are specification bugs

© Lionel Briand 2011
50

Cause-Effect Graphs

© Lionel Briand 2011
51

Definition
•  Graphical technique that helps derive decision

tables
•  Aim at supporting interaction with domain experts

and the reverse engineering of specifications, for
the purpose of testing.

•  Identify causes (conditions on inputs, stimuli) and
effects (outputs, changes in system state)

•  Causes have to be stated in such a way to be
either true or false (Boolean expression)

•  Specifies explicitly (environmental, external)
constraints on causes and effects

•  Help select more “significant” subset of input-
output combinations and build smaller decision
tables

© Lionel Briand 2011
52

Structure of Cause-Effect
Graphs

•  A node is drawn for each cause and effect
•  Nodes placed on opposite side of a sheet
•  A line from a cause to an effect indicates that the cause is a

necessary condition for the effect
•  If a single effect has two or more causes, the logical

relationship of the causes is annotated by symbols for logical
and (^) and logical or (∨) placed between lines

•  A cause whose negation is necessary is shown by a logical not
(~)

•  A single cause may be necessary for many effects; a single
effect may have many necessary causes.

•  Intermediate nodes may be used to simplify the graph and
its construction

© Lionel Briand 2011
53

Notation

B A

C

A

B

C

A

B

C

A

B

C

A

B

B A If A then B

AND: If (A and B) then C

OR: If (A or B) then C

NAND: If not (A and B) then C

NOR: If (neither A nor B) then C

NOT: If (not A) then B

© Lionel Briand 2011
54

Insurance Renewal Example
25-

26+

0 Claims

1 Claim

2-4 Claims

5+ Claims

$25

$50

$100

$200

$400

Cancel

Warning

© Lionel Briand 2011
55

Another Table Example
Insurance Renewal

Condition Section Action Section

Variant Claims Age Premium
Increase $

Send
Warning

Cancel

1 0 25- 50 No No

2 0 26+ 25 No No

3 1 25- 100 Yes No

4 1 26+ 50 No No

5 2 to 4 25- 400 Yes No

6 2 to 4 26+ 200 Yes No

7 5+ Any 0 No Yes

© Lionel Briand 2011
56

Additional Constraints
A

B

A

B E
A

B I
A

B
M

A

B

EXACTLY ONE of A and B
must be true

AT MOST ONE of A and B
may be true

AT LEAST ONE of A and B
must be true

A MASKS B, I.e., A => NOT B

A REQUIRES B, I.e., A => B R

O

© Lionel Briand 2011
57

Another Example
•  Input: The syntax of the function is LEVEL(A,B) where A is

the height in meters of the water behind the dam and B is
the number of centimeters of rain in the last 24-hour
period.

•  Processing: The function calculates whether the water level
is (1) within a normal range, (2) too high, (3) too low

•  Outputs: one of the following messages
–  LEVEL = SAFE (for normal and low)
–  LEVEL = HIGH
–  INVALID PARAMETERS

© Lionel Briand 2011
58

Identifying Causes
1.  The value of A is within acceptable range
2.  The value of B is within acceptable range
3.  The parameter A and B are real numbers such

that the water level is calculated to be LOW
4.  The parameter A and B are real numbers such

that the water level is calculated to be NORMAL
5.  The parameter A and B are real numbers such

that the water level is calculated to be HIGH

© Lionel Briand 2011
59

Identifying Effects

1.  “LEVEL = SAFE” is displayed on
screen

2.  “LEVEL = HIGH” is displayed on
screen

3.  “INVALID PARAMETERS” is printed
out

© Lionel Briand 2011
60

Cause-Effect Graph for LEVEL
3

4

1

2

1 3

2 5

O

© Lionel Briand 2011
61

Deriving a Decision Table
•  A row for each cause or effect
•  The columns correspond to test cases (variants)
•  Examine each effect and listing all combinations

(conjunctions) of causes (subject to constraints)
that can lead to that effect

•  Create a column for each possible combination of
causes

•  For each combination, determine the state of
other effects

•  Two separate lines flow into effect E3, each
corresponding to a test case, four lines flow into
E1 but correspond to only two combinations

© Lionel Briand 2011
62

LEVEL Decision Table

© Lionel Briand 2011
63

Process
•  The specification is divided into workable

pieces
•  The causes and effects are identified from

the specification
•  Causes are linked to effects
•  The graph is annotated with constraints

describing impossible combinations of
causes and/or effects

•  The graph is used to generate a limited-
entry decision table

•  The columns of the table are converted
into test cases

© Lionel Briand 2011
64

Discussion
•  Aids in selecting , in a systematic way, a high yield of test

cases
•  The cause-Effect graph can be used to identify all possible

combinations of causes and checking whether the effect
corresponds to the specification

•  It provides a test oracle and specifies constraints on
outputs (effects), helping detecting wrong system states
and output/action combinations

•  If the graph is too large, for each admissible combination of
effects, find some combinations of causes that cause that
combination of effects by tracing back through the graph,
e.g., we merged LOW and NORMAL effects in LEVEL(A,B)

•  Because of additional constraints on graph, can be more
restrictive than straight decision tables

•  A beneficial side effect is that it points out incompleteness
and ambiguities in the specifications

© Lionel Briand 2011
65

Testing Logic Functions or
Predicates

© Lionel Briand 2011
66

Definitions
•  A predicate (or logic function) is an expression

that evaluates to a boolean value
•  Predicates may contain boolean variables, non-

boolean variables that are compared with the
comparator operators {>, <, =, …}, and function calls
(return Boolean value)

•  The internal predicate structure is created by
logical operators {not, and, or, …}

•  A clause is a predicate that does not contain any
of the logical operators, e.g., (a<b), boolean
variable

•  Predicates may be written in different, logically
equivalent ways (Boolean algebra)

© Lionel Briand 2011
67

Definitions II
•  A logic function (predicate) maps from n boolean

input variables (clauses) to 1 boolean output
variable

•  To make expressions easier to read we will use
adjacency for the and operator, + for the or
operator, and a ~ for the negation operator.

•  Example: Enable or disable the ignition of a boiler
based on four input variables
–  NormalPressure (A): pressure within safe operating limit?
–  CallForHeat (B): ambient temperature below set point?
–  DamperShut (C): exhaust duct is closed?
–  ManualMode (D): manual operation selected?

•  Logic Function: Z = A(B~C+D) ~> Truth table

© Lionel Briand 2011
68

Boiler Truth Table I
Input
Vector
Number

Normal
Pressure

CallFor
Heat

Damper
Shut

Manual
Mode

Ignition

A B C D Z
0 0 0 0 0 0
1 0 0 0 1 0
2 0 0 1 0 0
3 0 0 1 1 0
4 0 1 0 0 0
5 0 1 0 1 0
6 0 1 1 0 0
7 0 1 1 1 0

© Lionel Briand 2011
69

Boiler Truth Table II
Input
Vector
Number

Normal
Pressure

CallFor
Heat

Damper
Shut

Manual
Mode

Ignition

A B C D Z
8 1 0 0 0 0
9 1 0 0 1 1
10 1 0 1 0 0
11 1 0 1 1 1
12 1 1 0 0 1
13 1 1 0 1 1
14 1 1 1 0 0
15 1 1 1 1 1

© Lionel Briand 2011
70

Elements of Boolean Expressions
•  Boolean space: The n-dimensional space formed by

the input variables
•  Product term or conjunctive clause: String of

clauses related by the and operator
•  Sum-of-products or disjunctive normal form

(DNF): Product terms related by the or operator
•  Implicant: Each term of a sum-of-products

expression – sufficient condition to fulfill for True
output of that expression

•  Prime implicants: An implicant such that no subset
(proper subterm) is also an implicant

•  Logic minimization: Deriving compact (irredundant)
but equivalent boolean expressions, using boolean
algebra

© Lionel Briand 2011
71

Boiler Example

•  Logic function: Z=A(B~C+D)
•  Sum-of-Product Form (DNF): Z=A

(B~C+D) = AB~C+AD
•  Implicants: AB~C, AD
•  Prime implicant: AB~C = TTFx =

{TTFT, TTFF}, AD=TxxT={TFFT,
TFTT, TTFT, TTTT} => both terms
are prime implicants

© Lionel Briand 2011
72

From Graph to Logic
Function

•  Once a cause-effect graph is reviewed and considered
correct, we want to derive a logic function for the purpose
of deriving test requirements (in the form of a decision
table)

•  One function (predicate, truth table) exists for each effect
(output variable)

•  If several effects are present, then the resulting decision
table is a composite of several truth tables that happen to
share decision/input variables and actions/effects

•  Easier to derive a function for each effect separately
•  Derive a Boolean function from the graph in a systematic

way

© Lionel Briand 2011
73

Example
A

B

C

D

E

F

G

H

Q

S

R

P

Z

© Lionel Briand 2011
74

Generate a Logic Function
•  Generate an initial function

–  Start from effect node
–  Backtrack through the graph
–  Substitute higher level clauses with lower level clauses

and boolean expressions, until you reach cause nodes
•  Transform into minimal, DNF form

–  Use boolean algebra laws to reduce boolean expressions
–  Re-express in sum-of-products form (disjunctive normal

form)
–  There exist algorithms to do that automatically

(Schneeweiss, Boolean Functions with Engineering
Applications and Computer Programs, 1989)

© Lionel Briand 2011
75

Example
•  Z = PR (effect)
•  P = A + ~Q (intermediate)
•  Q = BC (intermediate)
•  R = D + ~E + S (intermediate)
•  S = F + G + H (intermediate)
•  Z = (A + ~(BC)) (D + ~E + (F+G+H)) (substitution)
•  Z=(A+~B+~C)(D+~E+F+G+H) (De Morgan’s law)
•  Z = AD + A~E + AF + AG + AH + ~BD + ~B~E + ~BF

+ ~BG + ~BH + ~CD + ~C~E + ~CF + ~CG + ~CH
(Distributive law is used to obtain sum-of-
products)

© Lionel Briand 2011
76

Laws of Boolean Algebra
•  Associative

–  (A+B)+C = A+(B+C), (AB)C = A(BC)
•  Distributive

–  A+(BC) = (A+B)(A+C), A(B+C) = AB+AC
•  De Morgan’s laws

–  ~(A+B)=~A~B, ~(AB)=~A+~B
•  Absorption

–  A + AB = A
–  A(A+B) = A
–  A+(~AB) = A+B, A(~A+B) = AB
–  AB+A~B = A
–  (A+B)(A+~B) = A
–  AB+AC+B~C = AC+B~C

© Lionel Briand 2011
77

Fault Model for Logic-based
Testing

•  Expression Negation Fault (ENF): The logic function is
implemented as its negation

•  Clause Negation Fault (CNF): A clause in a particular term is
replaced by its negation

•  Term Omission Fault (TOF): A particular term in the logic
function is omitted.

•  Operator Reference Fault (ORF): A binary operator or in the
logic function is implemented as and or vice-versa

•  Clause Omission Fault (COF): A clause in a particular term of
the logic function is omitted

•  Clause Insertion Fault (CIF): A clause not appearing in a
particular term of a logic function is inserted in that term

•  Clause Reference Fault (CRF): A clause in a particular term
of a logic function is replaced by another clause not
appearing in the term

© Lionel Briand 2011
78

Basic Test Criteria
•  The goal is to test an implementation and make

sure it is consistent with its specification, as
modeled by the predicate (or graph)

•  There exist a number of test coverage criteria
that do not assume a disjunctive normal form for
predicates:
–  Predicate coverage
–  Clause coverage
–  Combinatorial coverage
–  (in)active clause coverage

•  Notation: P is set of predicates, C is set of clauses
in P, Cp is the set of clauses in predicate p

© Lionel Briand 2011
79

Predicate Coverage
•  Predicate coverage: For each p ∈ P, we

have two test requirements: p evaluates to
true, and p evaluates to false.

•  For A(B~C+D) two test that satisfy
Predicate Coverage are (1) (A=true,
B=false, C=true, D=true), (2) (A=false,
B=false, C=true, D=true),

•  Problem: Individual clauses are not
exercised

© Lionel Briand 2011
80

Clause Coverage
•  Clause coverage: For each c ∈ C, we have

two test requirements: c evaluates to true,
and c evaluates to false.

•  For (A+B)C, two tests that satisfy Clause
Coverage: (1) (A=true, B=true, C=false), (2)
(A=false, B=false, C=true),

•  Note: Clause coverage does not subsume
predicate coverage or vice-versa.

© Lionel Briand 2011
81

Example
•  Z = A+B
•  t1 = (A = true; B = true) => Z
•  t2 = (A = true; B = false) => Z
•  t3 = (A = false; B = true) => Z
•  t4 = (A = false; B = false) => ~Z
•  If we choose the pair of test cases T1 = {t1; t2}, it satisfies

neither Clause Coverage (because A is never false) nor
Predicate Coverage (because Z is never false).

•  Test set T2 = {t2; t3} satisfies Clause Coverage, but not
Predicate Coverage (because Z is never false).

•  Test set T3 = {t2; t4} satisfies Predicate Coverage, but not
Clause Coverage (because B is never true).

•  Test set T4 = {t1; t4} is the only pair that satisfies both
Clause Coverage and Predicate Coverage.

© Lionel Briand 2011
82

Combinatorial Coverage
•  Combinatorial coverage: For each p∈ P, we

have test requirements for clauses in Cp to
evaluate each possible combination of truth
values

•  Subsumes predicate coverage
•  There are 2|Cp| possible assignments of

truth values
•  Problem: Impractical for predicates with

more than a few clauses

© Lionel Briand 2011
83

Masking Effects
•  When we introduce tests at the clause

level, we want to have an effect on the
predicate

•  Logical expressions (clauses) can mask each
others

•  In the predicate AB, if B = false, B can be
said to mask A, because no matter what
value A has, AB will still be false.

•  We need to consider circumstances under
which a clause affects the value of a
predicate, to detect possible
implementation failures

© Lionel Briand 2011
84

Determination
•  Determination: Given a clause ci in predicate p,

called the major clause, we say that ci determines
p if the remaining minor clauses cj∈ p, j <> i have
values so that changing the truth value of ci
changes the truth value of p.

•  We would like to test each clause under
circumstances where it determines the predicate

•  Test set T4 in previous slide satisfied both
predicate and clause coverage but does not test
neither A nor B effectively.

© Lionel Briand 2011
85

Active Clause Coverage
•  Active Clause Coverage (ACC): For each p∈P and each

major clause ci ∈ Cp, choose minor clauses cj, j <> i so that ci determines p. We have two test requirements for each ci: ci
evaluates to true and ci evaluates to false.

•  For example, for Z=A+B, we end up with a total of four test
requirements, two for clause A and two for clause B.

•  For clause A, A determines Z if and only if B is false. So we
have the two test requirements {(A = true; B =false); (A =
false; B = false)}.

•  For clause B, B determines Z if and only if A is false. So we
have the two test requirements {(A = false; B = true); (A =
false; B = false)}, the latter in common with A.

•  ACC almost identical to MCDC in code coverage
•  The most important questions are whether (1) ACC should

subsume PC, (2) the minor clauses cj need to have the same
values when the major clause ci is true as when ci is false.

© Lionel Briand 2011
86

Correlated ACC (CACC)
•  For each p ∈ P and each major clause ci ∈

Cp, choose minor clauses cj, j <> i so that ci
determines p. There are two test
requirements for each ci: ci evaluates to
true and ci evaluates to false. The values
chosen for the minor clauses cj must cause
p to be true for one value of the major
clause ci and false for the other, that is, it
is required that p(ci = true) < > p(ci = false).

•  CACC is subsumed by combinatorial clause
coverage and subsumes clause/predicate
coverage

© Lionel Briand 2011
87

Restricted ACC (RACC)
•  For each p ∈ P and each major clause ci ∈ Cp, choose minor

clauses cj, j <> i so that ci determines p. There are two test
requirements for each ci : ci evaluates to true and ci
evaluates to false. The values chosen for the minor clauses cj
must be the same when ci is true as when ci is false, that is,
it is required that cj(ci = true) = cj(ci = false) for all cj .

•  RACC makes it easier than CACC to determine the cause of
the problem, if one is detected: major clause

•  But is it common in specification to have constraints
between clauses, making RACC impossible to achieve.

•  This corresponds to MCDC for code coverage

© Lionel Briand 2011
88

Example
•  Z=A(B+C)
•  It would be possible to satisfy Correlated

Active Clause Coverage with respect to
clause A with the two test requirements:

 {(A = true; B = true; C = false);
 (A = false; B =false; C = true)}
•  But it does not satisfy RACC:
 {(A = true; B = true; C = false);
 (A = false; B = true; C = false)}
•  This case is easy …

© Lionel Briand 2011
89

Inactive Clause Coverage
•  The Active Clause Coverage Criteria focus on

making sure the major clauses do affect their
predicates. A complementary criterion to Active
Clause Coverage ensures that changing a major
clause that should not affect the predicate does
not, in fact, affect the predicate.

•  Inactive Clause Coverage (ICC): For each p ∈ P
and each major clause ci ∈ Cp, choose minor
clauses cj , j <> i so that ci does not determine p.
There are four test requirements for ci under
these circumstances: (1) ci evaluates to true with p
true, (2) ci evaluates to false with p true, (3) ci evaluates to true with p false, and (4) ci evaluates
to false with p false.

•  ICC is subsumed by combinatorial clause coverage
and subsumes clause/predicate coverage

© Lionel Briand 2011
90

Disjunctive Normal Form
Coverage Criteria

•  Here criteria assume the predicates have
been re-expressed in a disjunctive normal
form (DNF).

•  What is interesting with DNF are the
criteria that go with it.

•  Criteria:
–  Implicant coverage
–  Prime implicant coverage
–  Variable negation strategy

© Lionel Briand 2011
91

Implicant Coverage (IC)
•  IC: Given DNF representations of a predicate p

and its negation ~p, for each implicant, a test
requirement is that the implicant evaluates to
true.

•  This tests different situations in which an action
should (not) be taken (e.g., a boiler turned on)

•  p: AB+B~C
•  ~p (one representation): ~B+~AC
•  Four implicants: {AB, B~C, ~B, ~AC}
•  Many test sets can satisfy this criterion, e.g., for

ABC, respectively, we can use {TTF, FFT}
•  IC subsumes predicate coverage, but not

necessarily Active Clause Criteria.

© Lionel Briand 2011
92

Problems with IC
•  A problem with IC is that tests might be

chosen so that a single test satisfies
multiple implicants. (see previous example)

•  Although this lets testers minimize the
size of test suites, it is a bad thing from
the perspective of testing the unique
contributions that each implicant might
bring to a predicate.

•  Thus we introduce a method to force a kind
of “independence" of the implicants.

© Lionel Briand 2011
93

Prime Implicants
•  The first step is to obtain a DNF form where each

implicant can be satisfied without satisfying any
other implicant.

•  Fortunately, standard approaches already exist
that can be used. A proper subterm of an implicant
is the implicant with one or more clauses omitted.

•  A prime implicant is an implicant such that no
proper subterm of the implicant is also an
implicant.

•  Example: ABC+AB~C+B~C
•  ABC is not a prime implicant because a proper

subterm (AB) is also an implicant

© Lionel Briand 2011
94

Prime Implicant Coverage
(PIC)

•  Let us assume our DNF predicate only
contains prime implicants

•  An implicant is redundant if it can be
omitted without changing the value (truth
table) of the predicate.

•  In AB+AC+B~C, AB is redundant
•  PIC: Given nonredundant, prime-implicant

DNF representations of a predicate p and
its negation ~p, for each implicant, a test
requirement is that the implicant evaluates
to true, while all other implicants evaluate
to false.

© Lionel Briand 2011
95

PIC Example & Discussion
•  p: AB+B~C
•  ~p: ~B+~AC
•  Both are nonredundant, prime implicant

representations
•  The following test set satisfies PIC: {TTT, FTF,

FFF, FTT}
•  PIC is a powerful coverage criteria: none of the

clause coverage criteria subsume PIC
•  Though up to 2n-1 prime implicants, many

predicates generate a modest number of tests for
PIC

•  It is an open question whether PIC subsumes any
of the clause coverage criteria.

© Lionel Briand 2011
96

Variable Negation Strategy
•  Goes even further than PIC
•  Unique true points: variants that makes one and only one

product term true
–  E.g., (TTFF) for the first product term in the boiler

example (AB~C), AD is false
•  Near false points: variants for each product term where one

clause is negated such that the overall logic function
evaluates to false
–  E.g., (TTTF) for AB~C where ~C is negated

•  Such variants constitute Test Candidate Sets (TCS)
•  Generate TCS for each product term in logic function
•  The test suite is formed by selecting the smallest suite that

covers all TCSs

© Lionel Briand 2011
97

Boiler Example
•  Makes AB~C true but not AD: one unique true point is

(TTFF), or (1100) in binary form, or {12} in decimal form
•  Makes AD true but not AB~C: set of unique true points {9,

11, 15}
•  Near false points for AB~C: {14}, {8}, {4,5} for negating ~C,

B, and A, respectively
•  Near false points for AD: {1, 3, 5, 7}, {8, 10, 14} for negating

A and D, respectively
•  Generate the variant set matrix and select test suite by

covering all candidate sets {*} above
•  Because one variant may belong to more than one candidate

set, the number of tests required can be less than the
cumulative number from candidate test sets

© Lionel Briand 2011
98

Variant
Set

Matrix

Var 1 2 3 4 5 6 7 TCS
0
1 x
2
3 x
4 x
5 x x S
6
7 x
8 x x S
9 x
10 x
11 x S
12 x S
13
14 x x S
15 x

© Lionel Briand 2011
99

Discussion
•  If one product term implementation does not evaluate to

true when it should - implying that at least one clause in that
product term does not evaluate to true when expected - test
cases from the TCS (unique true points) corresponding to
the term will be able to detect it, without masking effect
from other clauses or terms

•  If one product term implementation does not evaluate to
false when it should, that is the negation of (at least) a
clause has not the effect expected on the logic function
(false), test cases from the TCS (near false points)
corresponding to the negated clause will be able to detect it,
without masking effect from other clauses or terms

•  In a study by Weyuker et al, roughly 6 percent of the All-
Variant test suite (2 n) is needed to meet the variable
negation criteria

© Lionel Briand 2011
100

VN Strategy versus Faults
•  Expression Negation Fault (ENF): Any point in the Boolean

space
•  Clause Negation Fault (CNF): Any unique true point or near

false point for the faulty term and clause negated
•  Term Omission Fault (TOF): Any unique true point for the

faulty term
•  Operator Reference Fault (ORF):

–  or implemented as and: Any unique true point of one of the two
terms

–  and implemented as or: any near false point of one of the two
terms

•  Clause Omission Fault (COF): Any near false point for the
faulty term and clause omitted

•  Clause Insertion Fault (CIF): All near false points and unique
true points for the faulty term

•  Clause Reference Fault (CRF): All near false points and
unique true points for the faulty term

© Lionel Briand 2011
101

TCASII Study
•  Weyuker and Goradia, May 1994, IEEE Transactions on

Software Engineering
•  TCASII, aircraft collision avoidance system
•  20 predicates/logic functions formed the specifications (in

modified statechart notation)
•  On average 10 distinct clauses per expression
•  Five mutation operators, defined for boolean expressions,

were used to seed faults in the specifications
•  Random selection of test cases (same size) leads to an

average mutation score of 42.7%
•  The variable negation strategy is therefore doing much

better with an average of 97.9%

© Lionel Briand 2011
102

Summary of BB Testing
•  All techniques see a program as a mathematical

function that maps inputs onto its outputs
•  By order of sophistication: (1) boundary value

analysis, (2) equivalence class testing, (3)
Category-partition (4) Cause-effect graphs

•  (1) Mechanical, (2) devise equivalence classes, (3)
partitions, categories, and logical dependencies (4)
logical dependencies between causes themselves,
and causes and effects

•  Less test cases with (3) or (4)
•  Trade-off between test identification and test

execution effort

