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Black-Box, Functional 
Testing 
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Introduction 
•  Based on the definition of what a program’s 

specification, as opposed to its structure 
•  Does the implementation correctly implement the 

functionality as per the given system 
specifications? 

•  The notion of coverage can also be applied to 
functional testing 

•  Rigorous specifications have another benefit, they 
help functional testing, e.g., categorize inputs, 
derive expected outputs 

•  In other words, they help test case generation and 
test oracles 
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Outline 

•  Equivalence Class Partitioning 
•  Boundary-Value Analysis 
•  Category-Partition 
•  Decision tables 
•  Cause-Effect Graphs 
•  Logic Functions 
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Equivalence Class Testing 
•  Motivation: we would like to have a sense of complete testing

 and we would hope to avoid test redundancy 
•  Equivalence classes: partitions of the input set in which input

 data have the same effect on the program (e.g., the result in
 the same output) 

•  Entire input set is covered: completeness 

•  Disjoint classes: to avoid redundancy 
•  Test cases: one element of each equivalence class 
•  But equivalence classes have to be chosen wisely … 
•  Guessing the likely system behavior is needed A SUT’s 

input set 

tc1 
tc2 

tc3 
tc6 

tc4 tc5 
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Weak/Strong Equivalence
 Class Testing 

•  For an example SUT, suppose there are three input
 variables from three domains: A, B, C 

•  A = A1 ∪ A2 ∪ A3 ∪ … ∪ Am where ai∈Ai 
•  B = B1 ∪ B2 ∪ B3 ∪ … ∪ Bn where bi∈Bi 
•  C = C1 ∪ C2 ∪ C3 ∪ … ∪ Co where ci∈Ci 
•  Weak Equivalence Class Testing: Choosing one variable

 value from each equivalence class (one ai, bi, and ci)
 such that all classes are covered. # of test cases? 
–  max (|A|, |B|, |C|) 

•  Strong Equivalence Class Testing: Is based on the
 Cartesian product of the partition subsets (A×B×C),
 i.e., testing all interactions of all equivalence classes.  
 # of test cases? 

–  |A| x |B| x |C| 
•  Examples next… 

A 

B 

C 
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Example of Weak Equivalence Class Testing (WECT) 

Test Case! A! B! C!

WETC1! a1! b1! c1!

WETC2! a2! b2! c2!

WETC3! a3! b3! c1!

WETC4! a1! b4! c2!

  Number of WETCs needed=Max number of equivalence classes 
among {A, B, C} 

  4 WETCs are enough.  
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Example of Strong Equivalence Class Testing (SECT) 

Test Case! A! B! C!
SETC1! a1! b1! c1!
SETC2! a1! b1! c2!
SETC3! a1! b2! c1!
SETC4! a1! b2! c2!
SETC5! a1! b3! c1!
SETC6! a1! b3! c2!
SETC7! a1! b4! c1!
SETC8! a1! b4! c2!
SETC9! a2! b1! c1!

SETC10! a2! b1! c2!
SETC11! a2! b2! c1!
SETC12! a2! b2! c2!
SETC13! a2! b3! c1!
SETC14! a2! b3! c2!
SETC15! a2! b4! c1!
SETC16! a2! b4! c2!
SETC17! a3! b1! c1!
SETC18! a3! b1! c2!
SETC19! a3! b2! c1!
SETC20! a3! b2! c2!
SETC21! a3! b3! c1!
SETC22! a3! b3! c2!
SETC23! a3! b4! c1!
SETC24! a3! b4! c2!

  |A| = 3 

  |B| = 4 

  |C| = 2 

  # of test cases=3x4x2=24 
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NextDate Example 
•  NextDate is a function with three variables: 
month, day, year. It returns the date of the 
day after the input date. Limitation: 1812-2012 

•  Treatment Summary: if it is not the last day of 
the month, the next date function will simply 
increment the day value. At the end of a month, 
the next day is 1 and the month is incremented. At 
the end of the year, both the day and the month 
are reset to 1, and the year incremented. Finally, 
the problem of leap year makes determining the 
last day of a month interesting.  
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NextDate Equivalence 
Classes 

•  M1 = { month: month has 30 days} 
•  M2 = { month: month has 31 days} 
•  M3 = { month: month is February} 

•  D1 = {day: 1<= day <= 28} 
•  D2 = {day: day = 29} 
•  D3 = {day: day = 30} 
•  D4 = {day: day = 31} 

•  Y1 = {year: year = 1900} 
•  Y2 = {year: 1812 <= year <= 2012 AND (year != 1900) AND     

   (year mod 4 = 0)} 
•  Y3 = {year: (1812 <= year <= 2012 AND year mod 4 != 0 )} 
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•  #WECT test cases=maximum partition size (D)=4 

Test Case ID! Month! Day! Year! Output!
WETC1! 6! 14! 1900! 6/15/1900!
WETC2! 7! 29! 1912! 7/30/1912!
WETC3! 2! 30! 1913! Invalid Input

 date (not
 possible)!

WETC4! 6! 31! 1900! Invalid Input
 date!



© Lionel Briand 2011 
11 

Test 
Case 

ID!

Month! Day! Year! Expected Output!

SE1! 6! 14! 1900! 6/15/1900!
SE2! 6! 14! 1912! 6/15/1912!
SE3! 6! 14! 1913! 6/15/1913!
SE4! 6! 29! 1900! 6/30/1900!
SE5! 6! 29! 1912! 6/30/1912!
SE6! 6! 29! 1913! 6/30/1913!
SE7! 6! 30! 1900! 7/1/1900!
SE8! 6! 30! 1912! 7/1/1912!
SE9! 6! 30! 1913! 7/1/1913!

SE10! 6! 31! 1900! ERROR!
SE11! 6! 31! 1912! ERROR!
SE12! 6! 31! 1913! ERROR!
SE13! 7! 14! 1900! 7/15/1900!
SE14! 7! 14! 1912! 7/15/1912!
SE15! 7! 14! 1913! 7/15/1913!
SE16! 7! 29! 1900! 7/30/1900!
SE17! 7! 29! 1912! 7/30/1912!

SE18! 7! 29! 1913! 7/30/1913!
SE19! 7! 30! 1900! 7/31/1900!
SE20! 7! 30! 1912! 7/31/1912!
SE21! 7! 30! 1913! 7/31/1913!
SE22! 7! 31! 1900! 8/1/1900!
SE23! 7! 31! 1912! 8/1/1912!
SE24! 7! 31! 1913! 8/1/1913!
SE25! 2! 14! 1900! 2/15/1900!
SE26! 2! 14! 1912! 2/15/1912!
SE27! 2! 14! 1913! 2/15/1913!
SE28! 2! 29! 1900! ERROR!
SE29! 2! 29! 1912! 3/1/1912!
SE30! 2! 29! 1913! ERROR!
SE31! 2! 30! 1900! ERROR!
SE32! 2! 30! 1912! ERROR!
SE33! 2! 30! 1913! ERROR!
SE34! 2! 31! 1900! ERROR!
SE35! 2! 31! 1912! ERROR!
SE36! 2! 31! 1913! ERROR!

  #SECT test cases= partition size (D) x partition size (M) x partition size 
(Y) = 3x4x3=36 test cases"
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Discussion 
•  If error conditions are a high priority, we should extend 

strong equivalence class testing to include both valid (E) 
and invalid inputs (U) 
•  E.g., year | year < 1812 or year > 2012 

•  ECT is appropriate when input data defined in terms of 
ranges and sets of discrete values 

•  SECT makes the assumption that the variables are 
independent – dependencies will generate “error” test 
cases 

•  Possibly too many of them … 
•  See the category-partition and decision table techniques 

next to address this issue 
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Boundary Value Testing 
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Motivations 
•  We have partitioned input domains into 

suitable classes, on the assumption that 
the behavior of the program is “similar” 

•  Some typical programming errors happen to 
be at the boundary between different 
classes 

•  This is what boundary value testing focuses 
on 

•  Simpler but complementary to previous 
techniques 
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Errors at the boundaries 
•  Experience indicates that programmers make 

mistakes in processing values at and near the 
boundaries of equivalence classes. 

•  For example, suppose that  method M  is
 required to compute a function f1 when x≤ 0
 is true and function f2 otherwise. However,
 M has an error due to which it computes f1
 for x<0 and f2 otherwise.  

•  Obviously, this fault is revealed, though not
 necessarily, when M is tested against x=0 
 but not if the input test set is, for example,
 {-4, 7} derived using equivalence partitioning.
 In  this example, the value x=0, lies at the
 boundary of the equivalence classes x≤0 and
 x>0. 



© Lionel Briand 2011 
16 

Boundary Value Analysis 
•  Boundary value analysis is a test selection 

technique that targets faults in applications at the 
boundaries of equivalence classes. 

•  While equivalence partitioning selects tests from 
within equivalence classes, boundary value analysis 
focuses on  tests at and near the boundaries of 
equivalence classes. 

•  Certainly, tests derived using either of the two
 techniques may overlap. 
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Example: 1. Create 
equivalence classes 

Function findPrice() has two parameters:  an item code must be in
 the range  99..999 and quantity in the range 1..100,  

Equivalence classes for code: 
E1: Values less than 99. 
E2: Values in the range. 
E3: Values greater than 999. 

Equivalence classes for qty: 
E4: Values less than 1. 
E5: Values in the range.  
E6: Values greater than 100. 
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E1 
E2 

E3 

98 100 998 1000 

99 999 
x x * * * * 

Example: 2. Identify 
boundaries 

Equivalence classes and boundaries for findPrice. Boundaries are
 indicated with an x. Points near the boundary are marked *. 

E4 
E5 

E6 

0 2 99 101 

1 100 
x x * * * * 
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Example: 3. Construct test 
set 

Test selection based on the boundary value analysis
 technique requires that tests must include, for each
 variable, values at and around the boundary. Consider
 the following test set: 

T={  t1: (code=98, qty=0),  
 t2: (code=99, qty=1),  
 t3: (code=100, qty=2),  
 t4: (code=998, qty=99),  
 t5: (code=999, qty=100),  
 t6: (code=1000, qty=101) 

} 

Illegal values of code
 and qty included. 
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Principles 

•  Input variable values (within a class) 
at their minimum, just above the 
minimum, a nominal value, just below 
their maximum, and at their maximum. 

•  Convention: min, min+, nom, max-, max 
•  Hold the values of all but one variable 

at their nominal values, letting one 
variable assume its extreme value 
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Input Domain of Function F 

a b 

d 

c 

X1 

X2 
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Boundary Analysis 
Test Cases 

•  Test set ={<x1nom, x2min>, <x1nom, x2min+>, <x1nom, 
x2nom>, <x1nom, x2max->, <x1nom, x2max>, <x1min, x2nom,>, 
<x1min+, x2nom,>, <x1max-, x2nom>, <x1max, x2nom>} 

a b 

d 

c 

X1 

X2 
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General Case and Limitations 

•  A function with n variables will 
require 4n + 1 test cases 

•  Works well with variables that 
represent bounded physical quantities 

•  No consideration of the nature of the 
function and the meaning of variables 

•  Rudimentary technique that is 
amenable to robustness testing 
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Robustness Testing 

d 

c 

X1 

X2 

a b 
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Worst Case Testing (WCT) 
•  Boundary value analysis makes the common assumption that 

failures, most of the time, originate from one fault related 
to an extreme value 

•  What happens when more than one variable has an extreme 
value? 

•  Idea comes from electronics in circuit analysis 
•  Cartesian product of {min, min+, nom, max-, max} 
•  Clearly more thorough than boundary value analysis, but 

much more effort: 5n test cases 
•  Good strategy when physical variables have numerous 

interactions, and where failure is costly 
•  Even further: Robust Worst Case Testing 
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WCT for 2 variables 

d 

c 

X1 

X2 

a b 
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Robust WCT for 2 variables 

d 

c 

X1 

X2 

a b 
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Category-Partition Testing 
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Steps 
•  Extends and combine ECT, boundary value analysis.  
•  The system is divided into individual “functions” (use cases) 

that can be independently tested 
•  The method identifies the parameters of each “function” 

and, for each parameter, identifies distinct categories 
•  Besides parameters, environment characteristics, under 

which the function operates (characteristics of system 
state), can also be considered, e.g., versions of libraries.  

•  Categories are major properties or characteristics 
•   The categories are further subdivided into choices in the 

same way as equivalence partitioning is applied (value 
subdomains) 
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Small Example 

•  Function: Sorting an array 
•  Characteristics:  

–  Length of array (Len) 
–  Type of elements 
–  Max value 
–  Min value 
–  Position of max value (Max pos) 
–  Position of min value 

•  Choices for Max pos: {1, 2..Len-1, Len} 
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Steps (II) 
•  The constraints operating between choices 

are then identified, I.e., how the 
occurrence of one choice can affect the 
existence of another 
–  E.g., in the array sorting example, if Len = 0, 

then the rest does not matter 
•  Test frames are generated which consist 

of the allowable combinations of choices in 
the categories (test specifications) 

•  Test frames are then converted into test 
data 
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Constraints 
•  Properties, Selectors associated with 

choices 

Category A 
ChoiceA1  [property X, Y, Z] 
ChoiceA2 

Category B 
ChoiceB1 
ChoiceB2  [if X and Z] 

Special annotation: [Error], [Single] 
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Trivial Example 
•  Specification: The program prompts the 

user for a positive integer in the range 1 to 
20 and then for a string of characters of 
that length. The program then prompts for 
a character and returns the position in the 
string at which the character was first 
found or a message indicating that the 
character was not present in the string. 
The user has the option to search for more 
characters.  
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Parameters and Categories 
•  Three parameters: integer x (length), the 

string a, and the character c 
•  For x the categories are “in-range” (1-20) 

or “out-of-range” 
•  Categories for a: minimal, maximal, 

intermediate length 
•  Categories for c: character appears at the 

beginning, middle, end of string, or does 
not occur in the string 
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Choices 

•  Integer x, out-of-range: 0, 21 
•  Integer x, in-range: 1, 2-19, 20 
•  String a: 1, 2-19, 20 
•  Character c: first, middle, last, does 

not occur 
•  Combined boundary analysis, 

robustness and equivalence class 
partitioning  
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Formal Test Specifications 
x: 
1)  0     [error] 
2)  1     [property stringok, length1] 
3)  2-19    [property stringok, midlength] 
4)  20    [property stringok, length20] 
5)  21     [error] 
a: 
1)  Length 1    [if stringok and length1] 
2)  Length 2-19   [if stringok and midlength] 
3)  Length 20    [if stringok and length20] 
c: 
1)  At first position in string  [if stringok] 
2)  At last position in string  [if stringok and not length1] 
3)  In middle of string   [if stringok and not length1] 
4)  Not in string   [if stringok] 
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Test Frames and Cases 
x 1   x = 0 
x 2a1c1   x = 1, a = ‘A’, c = ‘A’ 
x 2a1c4  x = 1, a = ‘A’, c = ‘B’ 
x 3a2c1  x = 7, a = ‘ABCDEFG’, c = ‘A’ 
x 3a2c2  x = 7, a = ‘ABCDEFG’, c = ‘G’ 
x 3a2c3  x = 7, a = ‘ABCDEFG’, c = ‘D’ 
x 3a2c4  x = 7, a = ‘ABCDEFG’, c = ‘X’ 
x 4a3c1  x = 20, a = ‘ABCDEFGHIJKLMNOPQRST’, c = ‘A’ 
x 4a3c2  x = 20, a = ‘ABCDEFGHIJKLMNOPQRST’, c = ‘T’ 
x 4a3c3  x = 20, a = ‘ABCDEFGHIJKLMNOPQRST’, c = ‘J’ 
x 4a3c4  x = 20, a = ‘ABCDEFGHIJKLMNOPQRST’, c = ‘X’ 
x 5   x = 21 
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Criteria Using Choices 
•  All Combinations (AC): This is what was shown in the previous 

example, what is typically done when using category-partition. One 
value for every choice of every parameter must be used with one 
value of every (possible) choice of every other category.  

•  Each choice (EC): This is a weaker criterion. One value from each 
choice for each category must be used at least in one test case. 

•  Base Choice (BC): This criterion is a compromise. A base choice is 
chosen for each category, and a first base test is formed by using 
the base choice for each category. Subsequent tests are chosen by 
holding all but one base choice constant (I.e., we select a non-base 
choice for one category) and forming choice combinations by 
covering all non-base choices of the selected category. This 
procedure is repeated for each category.  

•  The base choice can be the simplest, smallest, first in some 
ordering, or most likely from an end-user point of view, e.g.,  in the 
previous example, character c occurs in the middle of the string, 
length x is within 2-19. 
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Conclusions 
•  Identifying parameters and environments 

conditions, and categories, is heavily relying on the 
experience of the tester 

•  Makes testing decisions explicit (e.g., constraints), 
open for review 

•  Combine boundary analysis, robustness testing, 
and equivalence class partitioning 

•  Once the first step is completed, the technique is 
straightforward and can be automated 

•  Techniques for test case reduction makes it useful 
for practical testing 
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Decision Tables 
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Motivations 
•  Help express test requirements in a directly 

usable form 
•  Easy to understand and support the systematic 

derivation of tests 
•  Support automated or manual generation of test 

cases 
•  A particular response or response subset is to be 

selected by evaluating many related conditions 
•  Ideal for describing situations in which a number 

of combinations of actions are taken under varying 
sets of conditions, e.g., control systems 
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Table Example 
                                     

Equilateral Isosceles Scalene 

a b 

c 
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Structure 
•  Condition section lists conditions and combinations 

thereof 
•  Condition expressed relationship among  decision 

variables 
•  Action section list responses to be produced when 

corresponding combinations of conditions are true 
•  Limitations: Resultant actions are determined by 

the current values of decision variables! 
•  Actions are independent of input order and the 

order in which conditions are evaluated 
•  Actions may appear more than once but each 

combination of conditions is unique 
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Table Structure 
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Truth Table 
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Test Cases 
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Ideal Usage Conditions 
•  One of several distinct responses is to be selected 

according to distinct cases of input variables 
•  These cases can be modeled by mutually exclusive 

Boolean expressions on the input variables 
•  The response to be produced does not depend on 

the order in which input variables are set or 
evaluated (e.g., events are received) 

•  The response does not depend on prior inputs or 
outputs 
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Scale 
•  For n conditions, there may be at most 2n variants 

(unique combinations of conditions and actions) 
•  But, fortunately, there are usually much fewer 

explicit variants … 
•  “Don’t care” values in decision tables help reduce 

the number of variants 
•  “Don’t care” can correspond to several cases:  

–  The inputs are necessary but have no effect 
–  The inputs may be omitted 
–  Mutually exclusive cases (type-safe exclusions) 
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Special Cases 
•  “can’t happen” : reflect some assumption that some 

inputs are mutually exclusive, or that they cannot 
be produced in the environment, e.g., an insurance 
policy be issued to a person older than 100. 

•  A chronic source of bugs, e.g., Ariane 5 
•  “can’t happen” do occur because of programming 

errors and unexpected change effects 
•  “don’t know” condition reflect an incomplete model, 

e.g., due to incomplete documentation 
•  Most of the time, they are specification bugs 
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Cause-Effect Graphs 
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Definition 
•  Graphical technique that helps derive decision 

tables 
•  Aim at supporting interaction with domain experts 

and the reverse engineering of specifications, for 
the purpose of testing. 

•  Identify causes (conditions on inputs, stimuli) and 
effects (outputs, changes in system state) 

•  Causes have to be stated in such a way to be 
either true or false (Boolean expression) 

•  Specifies explicitly (environmental, external) 
constraints on causes and effects 

•  Help select more “significant” subset of input-
output combinations and build smaller decision 
tables 
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Structure of Cause-Effect 
Graphs 

•  A node is drawn for each cause and effect 
•  Nodes placed on opposite side of a sheet 
•  A line from a cause to an effect indicates that the cause is a 

necessary condition for the effect 
•  If a single effect has two or more causes, the logical 

relationship of the causes is annotated by symbols for logical 
and (^) and logical or (∨) placed between lines 

•  A cause whose negation is necessary is shown by a logical not 
(~) 

•  A single cause may be necessary for many effects; a single 
effect may have many necessary causes.  

•  Intermediate nodes may be used to simplify the graph and 
its construction 
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Notation 

B A 

C 

A 

B 

C 

A 

B 

C 

A 

B 

C 

A 

B 

B A If A then B 

AND:  If (A and B) then C 

OR:  If (A or B) then C 

NAND:  If not (A and B) then C 

NOR:  If (neither A nor B) then C 

NOT:  If (not A) then B 



© Lionel Briand 2011 
54 

Insurance Renewal Example 
25- 

26+ 

0 Claims 

1 Claim 

2-4 Claims 

5+ Claims 

$25 

$50 

$100 

$200 

$400 

Cancel 

Warning 



© Lionel Briand 2011 
55 

Another Table Example 
Insurance Renewal 

Condition Section Action Section 

Variant Claims Age Premium 
Increase $ 

Send 
Warning 

Cancel 

1 0 25- 50 No No 

2 0 26+ 25 No No 

3 1 25- 100 Yes No 

4 1 26+ 50 No No 

5 2 to 4 25- 400 Yes No 

6 2 to 4 26+ 200 Yes No 

7 5+ Any 0 No Yes 
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Additional Constraints 
A 

B 

A 

B E 
A 

B I 
A 

B 
M 

A 

B 

EXACTLY ONE of A and B 
must be true 

AT MOST ONE of A and B 
may be true 

AT LEAST ONE of A and B  
must be true 

A MASKS B, I.e., A => NOT B 

A REQUIRES B, I.e., A => B R 

O 
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Another Example 
•  Input: The syntax of the function is LEVEL(A,B) where A is 

the height in meters of the water behind the dam and B is 
the number of centimeters of rain in the last 24-hour 
period.  

•  Processing: The function calculates whether the water level 
is (1) within a normal range, (2) too high, (3) too low 

•  Outputs: one of the following messages 
–  LEVEL = SAFE (for normal and low) 
–  LEVEL = HIGH 
–  INVALID PARAMETERS 
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Identifying Causes 
1.  The value of A is within acceptable range 
2.  The value of B is within acceptable range 
3.  The parameter A and B are real numbers such 

that the water level is calculated to be LOW 
4.  The parameter A and B are real numbers such 

that the water level is calculated to be NORMAL 
5.  The parameter A and B are real numbers such 

that the water level is calculated to be HIGH 
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Identifying Effects 

1.  “LEVEL = SAFE” is displayed on 
screen 

2.  “LEVEL = HIGH” is displayed on 
screen 

3.  “INVALID PARAMETERS” is printed 
out 
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Cause-Effect Graph for LEVEL 
3 

4 

1 

2 

1 3 

2 5 

O 
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Deriving a Decision Table 
•  A row for each cause or effect 
•  The columns correspond to test cases (variants) 
•  Examine each effect and listing all combinations 

(conjunctions) of causes (subject to constraints) 
that can lead to that effect 

•  Create a column for each possible combination of 
causes 

•  For each combination, determine the state of 
other effects  

•  Two separate lines flow into effect E3, each 
corresponding to a test case, four lines flow into 
E1 but correspond to only two combinations 
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LEVEL Decision Table 
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Process 
•  The specification is divided into workable 

pieces 
•  The causes and effects are identified from 

the specification 
•  Causes are linked to effects 
•  The graph is annotated with constraints 

describing impossible combinations of 
causes and/or effects 

•  The graph is used to generate a limited-
entry decision table 

•  The columns of the table are converted 
into test cases 
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Discussion 
•  Aids in selecting , in a systematic way, a high yield of test 

cases 
•  The cause-Effect graph can be used to identify all possible 

combinations of causes and checking whether the effect 
corresponds to the specification 

•  It provides a test oracle and specifies constraints on 
outputs (effects), helping detecting wrong system states 
and output/action combinations 

•  If the graph is too large, for each admissible combination of 
effects, find some combinations of causes that cause that 
combination of effects by tracing back through the graph, 
e.g., we merged LOW and NORMAL effects in LEVEL(A,B) 

•  Because of additional constraints on graph, can be more 
restrictive than straight decision tables 

•  A beneficial side effect is that it points out incompleteness 
and ambiguities in the specifications 
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Testing Logic Functions or 
Predicates 



© Lionel Briand 2011 
66 

Definitions 
•  A predicate (or logic function) is an expression 

that evaluates to a boolean value 
•  Predicates may contain boolean variables, non-

boolean variables that are compared with the 
comparator operators {>, <, =, …}, and function calls 
(return Boolean value) 

•  The internal predicate structure is created by 
logical operators {not, and, or, …} 

•  A clause is a predicate that does not contain any 
of the logical operators, e.g., (a<b), boolean 
variable 

•  Predicates may be written in different, logically 
equivalent ways (Boolean algebra) 
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Definitions II 
•  A logic function (predicate) maps from n boolean 

input variables (clauses) to 1 boolean output 
variable 

•  To make expressions easier to read we will use 
adjacency for the and operator, + for the or 
operator, and a ~ for the negation operator.  

•  Example: Enable or disable the ignition of a boiler 
based on four input variables 
–  NormalPressure (A): pressure within safe operating limit? 
–  CallForHeat (B): ambient temperature below set point? 
–  DamperShut (C): exhaust duct is closed? 
–  ManualMode (D): manual operation selected? 

•  Logic Function: Z = A(B~C+D) ~> Truth table 
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Boiler Truth Table I 
Input 
Vector 
Number 

Normal 
Pressure 

CallFor
Heat 

Damper
Shut 

Manual
Mode 

Ignition 

A B C D Z 
0 0 0 0 0 0 
1 0 0 0 1 0 
2 0 0 1 0 0 
3 0 0 1 1 0 
4 0 1 0 0 0 
5 0 1 0 1 0 
6 0 1 1 0 0 
7 0 1 1 1 0 
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Boiler Truth Table II 
Input 
Vector 
Number 

Normal 
Pressure 

CallFor
Heat 

Damper
Shut 

Manual
Mode 

Ignition 

A B C D Z 
8 1 0 0 0 0 
9 1 0 0 1 1 
10 1 0 1 0 0 
11 1 0 1 1 1 
12 1 1 0 0 1 
13 1 1 0 1 1 
14 1 1 1 0 0 
15 1 1 1 1 1 
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Elements of Boolean Expressions 
•  Boolean space: The n-dimensional space formed by 

the input variables 
•  Product term or conjunctive clause: String of 

clauses related by the and operator 
•  Sum-of-products or disjunctive normal form 

(DNF): Product terms related by the or operator 
•  Implicant: Each term of a sum-of-products 

expression – sufficient condition to fulfill for True 
output of that expression 

•  Prime implicants: An implicant such that no subset 
(proper subterm) is also an implicant 

•  Logic minimization: Deriving compact (irredundant) 
but equivalent boolean expressions, using boolean 
algebra 
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Boiler Example 

•  Logic function: Z=A(B~C+D)  
•  Sum-of-Product Form (DNF): Z=A

(B~C+D) = AB~C+AD 
•  Implicants: AB~C, AD 
•  Prime implicant: AB~C = TTFx = 

{TTFT, TTFF}, AD=TxxT={TFFT, 
TFTT, TTFT, TTTT} => both terms 
are prime implicants 
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From Graph to Logic 
Function 

•  Once a cause-effect graph is reviewed and considered 
correct, we want to derive a logic function for the purpose 
of deriving test requirements (in the form of a decision 
table) 

•  One function (predicate, truth table) exists for each effect 
(output variable) 

•  If several effects are present, then the resulting decision 
table is a composite of several truth tables that happen to 
share decision/input variables and actions/effects 

•  Easier to derive a function for each effect separately 
•  Derive a Boolean function from the graph in a systematic 

way 
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Example 
A 

B 

C 

D 

E 

F 

G 

H 

Q 

S 

R 

P 

Z 
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Generate a Logic Function 
•  Generate an initial function 

–  Start from effect node 
–  Backtrack through the graph 
–  Substitute higher level clauses with lower level clauses 

and boolean expressions, until you reach cause nodes 
•  Transform into minimal, DNF form 

–  Use boolean algebra laws to reduce boolean expressions 
–  Re-express in sum-of-products form (disjunctive normal 

form) 
–  There exist algorithms to do that automatically 

(Schneeweiss, Boolean Functions with Engineering 
Applications and Computer Programs, 1989) 
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Example 
•  Z = PR (effect) 
•  P = A + ~Q (intermediate) 
•  Q = BC (intermediate) 
•  R = D + ~E + S (intermediate) 
•  S = F + G + H (intermediate) 
•  Z = (A + ~(BC)) (D + ~E + (F+G+H)) (substitution) 
•  Z=(A+~B+~C)(D+~E+F+G+H) (De Morgan’s law) 
•  Z = AD + A~E + AF + AG + AH + ~BD + ~B~E + ~BF 

+ ~BG + ~BH + ~CD + ~C~E + ~CF + ~CG + ~CH 
(Distributive law is used to obtain sum-of-
products) 
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Laws of Boolean Algebra 
•  Associative 

–  (A+B)+C = A+(B+C), (AB)C = A(BC) 
•  Distributive 

–  A+(BC) = (A+B)(A+C), A(B+C) = AB+AC 
•  De Morgan’s laws 

–  ~(A+B)=~A~B, ~(AB)=~A+~B 
•  Absorption 

–  A + AB = A 
–  A(A+B) = A 
–  A+(~AB) = A+B, A(~A+B) = AB 
–  AB+A~B = A 
–  (A+B)(A+~B) = A 
–  AB+AC+B~C = AC+B~C 
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Fault Model for Logic-based 
Testing 

•  Expression Negation Fault (ENF): The logic function is 
implemented as its negation 

•  Clause Negation Fault (CNF): A clause in a particular term is 
replaced by its negation 

•  Term Omission Fault (TOF): A particular term in the logic 
function is omitted. 

•  Operator Reference Fault (ORF): A binary operator or in the 
logic function is implemented as and or vice-versa 

•  Clause Omission Fault (COF): A clause in a particular term of 
the logic function is omitted 

•  Clause Insertion Fault (CIF): A clause not appearing in a 
particular term of a logic function is inserted in that term 

•  Clause Reference Fault (CRF): A clause in a particular term 
of a logic function is replaced by another clause not 
appearing in the term 
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Basic Test Criteria 
•  The goal is to test an implementation and make 

sure it is consistent with its specification, as 
modeled by the predicate (or graph) 

•  There exist a number of test coverage criteria 
that do not assume a disjunctive normal form for 
predicates: 
–  Predicate coverage 
–  Clause coverage 
–  Combinatorial coverage 
–  (in)active clause coverage 

•  Notation: P is set of predicates, C is set of clauses 
in P, Cp is the set of clauses in predicate p 
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Predicate Coverage 
•  Predicate coverage: For each p ∈ P, we 

have two test requirements: p evaluates to 
true, and p evaluates to false. 

•  For A(B~C+D) two test that satisfy 
Predicate Coverage are (1) (A=true, 
B=false, C=true, D=true), (2) (A=false, 
B=false, C=true, D=true),  

•  Problem: Individual clauses are not 
exercised 
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Clause Coverage 
•  Clause coverage: For each c ∈ C, we have 

two test requirements: c evaluates to true, 
and c evaluates to false. 

•  For (A+B)C, two tests that satisfy Clause 
Coverage: (1) (A=true, B=true, C=false), (2) 
(A=false, B=false, C=true),  

•  Note: Clause coverage does not subsume 
predicate coverage or vice-versa. 
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Example 
•  Z = A+B 
•  t1 = (A = true; B = true) => Z  
•  t2 = (A = true; B = false) => Z  
•  t3 = (A = false; B = true) => Z  
•  t4 = (A = false; B = false) => ~Z  
•  If we choose the pair of test cases T1 = {t1; t2}, it satisfies 

neither Clause Coverage (because A is never false) nor 
Predicate Coverage (because Z is never false).  

•  Test set T2 = {t2; t3} satisfies Clause Coverage, but not 
Predicate Coverage (because Z is never false).  

•  Test set T3 = {t2; t4} satisfies Predicate Coverage, but not 
Clause Coverage (because B is never true).  

•  Test set T4 = {t1; t4} is the only pair that satisfies both 
Clause Coverage and Predicate Coverage. 
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Combinatorial Coverage 
•  Combinatorial coverage: For each p∈ P, we 

have test requirements for clauses in Cp to 
evaluate each possible combination of truth 
values 

•  Subsumes predicate coverage 
•  There are 2|Cp| possible assignments of 

truth values  
•  Problem: Impractical for predicates with 

more than a few clauses 
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Masking Effects 
•  When we introduce tests at the clause 

level, we want to have an effect on the 
predicate 

•  Logical expressions (clauses) can mask each 
others 

•  In the predicate AB, if B = false, B can be 
said to mask A, because no matter what 
value A has, AB will still be false. 

•  We need to consider circumstances under 
which a clause affects the value of a 
predicate, to detect possible 
implementation failures 
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Determination 
•  Determination: Given a clause ci in predicate p, 

called the major clause, we say that ci determines 
p if the remaining minor clauses cj∈ p, j <> i have 
values so that changing the truth value of ci 
changes the truth value of p. 

•  We would like to test each clause under 
circumstances where it determines the predicate 

•  Test set T4 in previous slide satisfied both 
predicate and clause coverage but does not test 
neither A nor B effectively.  
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Active Clause Coverage 
•  Active Clause Coverage (ACC): For each p∈P and each 

major clause ci ∈ Cp, choose minor clauses cj, j <> i so that ci determines p. We have two test requirements for each ci: ci 
evaluates to true and ci evaluates to false. 

•  For example, for Z=A+B, we end up with a total of four test 
requirements, two for clause A and two for clause B.  

•  For clause A, A determines Z if and only if B is false. So we 
have the two test requirements {(A = true; B =false); (A = 
false; B = false)}.  

•  For clause B, B determines Z if and only if A is false. So we 
have the two test requirements {(A = false; B = true); (A = 
false; B = false)}, the latter in common with A. 

•  ACC almost identical to MCDC in code coverage 
•  The most important questions are whether (1) ACC should 

subsume PC, (2) the minor clauses cj need to have the same 
values when the major clause ci is true as when ci is false. 
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Correlated ACC (CACC) 
•  For each p ∈ P and each major clause ci ∈ 

Cp, choose minor clauses cj, j <> i so that ci 
determines p. There are two test 
requirements for each ci: ci evaluates to 
true and ci evaluates to false. The values 
chosen for the minor clauses cj must cause 
p to be true for one value of the major 
clause ci and false for the other, that is, it 
is required that p(ci = true) < > p(ci = false). 

•  CACC is subsumed by combinatorial clause 
coverage and subsumes clause/predicate 
coverage 
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Restricted ACC (RACC) 
•  For each p ∈ P and each major clause ci ∈ Cp, choose minor 

clauses cj, j <> i so that ci determines p. There are two test 
requirements for each ci : ci evaluates to true and ci 
evaluates to false. The values chosen for the minor clauses cj 
must be the same when ci is true as when ci is false, that is, 
it is required that cj(ci = true) = cj(ci = false) for all cj . 

•  RACC makes it easier than CACC to determine the cause of 
the problem, if one is detected: major clause 

•  But is it common in specification to have constraints 
between clauses, making RACC impossible to achieve.  

•  This corresponds to MCDC for code coverage 
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Example 
•  Z=A(B+C) 
•  It would be possible to satisfy Correlated 

Active Clause Coverage with respect to 
clause A with the two test requirements:  

   {(A = true; B = true; C = false);  
     (A = false; B =false; C = true)} 
•  But it does not satisfy RACC: 
   {(A = true; B = true; C = false);  
     (A = false; B = true; C = false)} 
•  This case is easy … 
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Inactive Clause Coverage 
•  The Active Clause Coverage Criteria focus on 

making sure the major clauses do affect their 
predicates. A complementary criterion to Active 
Clause Coverage ensures that changing a major 
clause that should not affect the predicate does 
not, in fact, affect the predicate. 

•  Inactive Clause Coverage (ICC): For each p ∈ P 
and each major clause ci ∈ Cp, choose minor 
clauses cj , j <> i so that ci does not determine p. 
There are four test requirements for ci under 
these circumstances: (1) ci evaluates to true with p 
true, (2) ci evaluates to false with p true, (3) ci evaluates to true with p false, and (4) ci evaluates 
to false with p false. 

•  ICC is subsumed by combinatorial clause coverage 
and subsumes clause/predicate coverage 
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Disjunctive Normal Form  
Coverage Criteria 

•  Here criteria assume the predicates have 
been re-expressed in a disjunctive normal 
form (DNF).  

•  What is interesting with DNF are the 
criteria that go with it.  

•  Criteria: 
–  Implicant coverage 
–  Prime implicant coverage 
–  Variable negation strategy 
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Implicant Coverage (IC) 
•  IC: Given DNF representations of a predicate p 

and its negation ~p, for each implicant, a test 
requirement is that the implicant evaluates to 
true. 

•  This tests different situations in which an action 
should (not) be taken (e.g., a boiler turned on) 

•  p: AB+B~C 
•  ~p (one representation): ~B+~AC 
•  Four implicants: {AB, B~C, ~B, ~AC} 
•  Many test sets can satisfy this criterion, e.g., for 

ABC, respectively, we can use {TTF, FFT} 
•  IC subsumes predicate coverage, but not 

necessarily Active Clause Criteria. 
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Problems with IC 
•  A problem with IC is that tests might be 

chosen so that a single test satisfies 
multiple implicants. (see previous example) 

•  Although this lets testers minimize the 
size of test suites, it is a bad thing from 
the perspective of testing the unique 
contributions that each implicant might 
bring to a predicate.  

•  Thus we introduce a method to force a kind 
of “independence" of the implicants. 
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Prime Implicants 
•  The first step is to obtain a DNF form where each 

implicant can be satisfied without satisfying any 
other implicant.  

•  Fortunately, standard approaches already exist 
that can be used. A proper subterm of an implicant 
is the implicant with one or more clauses omitted.  

•  A prime implicant is an implicant such that no 
proper subterm of the implicant is also an 
implicant. 

•  Example: ABC+AB~C+B~C 
•  ABC is not a prime implicant because a proper 

subterm (AB) is also an implicant 
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Prime Implicant Coverage 
(PIC) 

•  Let us assume our DNF predicate only 
contains prime implicants  

•  An implicant is redundant if it can be 
omitted without changing the value (truth 
table) of the predicate. 

•  In AB+AC+B~C, AB is redundant 
•  PIC: Given nonredundant, prime-implicant 

DNF representations of a predicate p and 
its negation ~p, for each implicant, a test 
requirement is that the implicant evaluates 
to true, while all other implicants evaluate 
to false. 
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PIC Example & Discussion 
•  p: AB+B~C 
•  ~p: ~B+~AC 
•  Both are nonredundant, prime implicant 

representations 
•  The following test set satisfies PIC: {TTT, FTF, 

FFF, FTT} 
•  PIC is a powerful coverage criteria: none of the 

clause coverage criteria subsume PIC 
•  Though up to 2n-1 prime implicants, many 

predicates generate a modest number of tests for 
PIC 

•  It is an open question whether PIC subsumes any 
of the clause coverage criteria. 
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Variable Negation Strategy 
•  Goes even further than PIC 
•  Unique true points: variants that makes one and only one 

product term true 
–  E.g., (TTFF) for the first product term in the boiler 

example (AB~C), AD is false 
•  Near false points: variants for each product term where one 

clause is negated such that the overall logic function 
evaluates to false 
–  E.g., (TTTF) for AB~C where ~C is negated 

•  Such variants constitute Test Candidate Sets (TCS) 
•  Generate TCS for each product term in logic function 
•  The test suite is formed by selecting the smallest suite that 

covers all TCSs 
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Boiler Example 
•  Makes AB~C true but not AD: one unique true point is 

(TTFF), or (1100) in binary form, or {12} in decimal form 
•  Makes AD true but not AB~C: set of unique true points {9, 

11, 15} 
•  Near false points for AB~C: {14}, {8}, {4,5} for negating ~C, 

B, and A, respectively 
•  Near false points for AD: {1, 3, 5, 7}, {8, 10, 14} for negating 

A and D, respectively 
•  Generate the variant set matrix and select test suite by 

covering all candidate sets {*} above 
•  Because one variant may belong to more than one candidate 

set, the number of tests required can be less than the 
cumulative number from candidate test sets 
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Variant 
Set 

Matrix 

Var 1 2 3 4 5 6 7 TCS 
0 
1 x 
2 
3 x 
4 x 
5 x x S 
6 
7 x 
8 x x S 
9 x 
10 x 
11 x S 
12 x S 
13 
14 x x S 
15 x 
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Discussion 
•  If one product term implementation does not evaluate to 

true when it should - implying that at least one clause in that 
product term does not evaluate to true when expected - test 
cases from the TCS (unique true points ) corresponding to 
the term will be able to detect it, without masking effect 
from other clauses or terms 

•  If one product term implementation does not evaluate to 
false when it should, that is the negation of (at least) a 
clause has not the effect expected on the logic function 
(false), test cases from the TCS (near false points ) 
corresponding to the negated clause will be able to detect it, 
without masking effect from other clauses or terms 

•  In a study by Weyuker et al, roughly 6 percent of the All-
Variant test suite (2 n) is needed to meet the variable 
negation criteria 
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VN Strategy versus Faults 
•  Expression Negation Fault (ENF): Any point in the Boolean 

space 
•  Clause Negation Fault (CNF): Any unique true point or near 

false point for the faulty term and clause negated 
•  Term Omission Fault (TOF): Any unique true point for the 

faulty term 
•  Operator Reference Fault (ORF):  

–  or implemented as and: Any unique true point of one of the two 
terms 

–  and implemented as or: any near false point of one of the two 
terms 

•  Clause Omission Fault (COF): Any near false point for the 
faulty term and clause omitted 

•  Clause Insertion Fault (CIF): All near false points and unique 
true points for the faulty term 

•  Clause Reference Fault (CRF): All near false points and 
unique true points for the faulty term 
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TCASII Study 
•  Weyuker and Goradia, May 1994, IEEE Transactions on 

Software Engineering 
•  TCASII, aircraft collision avoidance system 
•  20 predicates/logic functions formed the specifications (in 

modified statechart notation) 
•  On average 10 distinct clauses per expression 
•  Five mutation operators, defined for boolean expressions, 

were used to seed faults in the specifications 
•  Random selection of test cases (same size) leads to an 

average mutation score of 42.7% 
•  The variable negation strategy is therefore doing much 

better with an average of 97.9% 
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Summary of BB Testing 
•  All techniques see a program as a mathematical 

function that maps inputs onto its outputs 
•  By order of sophistication: (1) boundary value 

analysis, (2) equivalence class testing, (3) 
Category-partition (4) Cause-effect graphs 

•  (1) Mechanical, (2) devise equivalence classes, (3) 
partitions, categories, and logical dependencies (4) 
logical dependencies between causes themselves, 
and causes and effects 

•  Less test cases with (3) or (4) 
•  Trade-off between test identification and test 

execution effort 


