
TUTORIAL ON UNIT TESTING
INF4290

Erik Arisholm
Daglig leder, Testify AS

Professor in software engineering, UiO

What we will cover
•  A practical introduction to (class-level) unit testing of OO

systems
•  Refactoring for testability
•  Isolation frameworks
•  State-based versus behavior-based unit testing
•  Test case specification and implementation
•  Guided by an example

•  Relatively simple ATM machine written in C#
•  Black box modeling: CTE-XL (similar to “category-partition”)
•  Unit testing tools: Visual Studio, NUnit, Ncover, Rhino Mocks
•  All of the techniques presented are directly applicable to Java and

most other OO languages as well, except for (minor) syntactical
differences

•  Complete working code will be posted on the course website, all
required tools are available as open source or trial/free versions

Properties of “good” unit tests
•  Isolation (a somewhat controversial opinion)

•  The tests of class X are not dependent on having implemented
collaborating classes, or tests for collaborating classes

•  The tests of class X should not fail due to faults in collaborating
classes.

=> Enables Test-Driven Development, “need-driven” testing, or “top-
down” testing

•  Completeness
•  A unit test should test all possible services within a class, also those

that are not currently in use by other classes

•  Independence
•  Each unit test should be self-contained and should “work”

independently of whatever other unit tests are executed
•  Simplicity

•  One test = one scenario
•  Strive for simple test fixtures
•  Tests should be fast, e.g., by avoiding calls to databases if possible

Example unit testing framework

Test-
class w/
Test
Fixture

Isolation:
Mocks/Stubs

Test driver

Class

 NUnit

 Rhino Mocks

 NCover

 CTE-XL

The ATM case study

Dependencies in the first version of the ATM

What a mess!! 

ATM case study - first unit tests…
•  Task 1

•  ATMRunner is a “top-level” class of the application
•  It first authenticates a user, and then lets the user perform one or more

transactions (account balance, withdraw, deposit) before exiting
•  Handling actual “transactions” is delegated to other control classes
•  We want to unit test the behavour of ATMRunner

•  But how? It is simply not testable (a typical situation)!
•  We need to control the class in order to execute the tests

•  currently this is not possible, as ATMRunner uses a Keypad class to get
input from a user, which in turn reads from standard input. Thus, ATMRunner
is controlled by indirect input from another class (Keypad)

•  We need to observe results of exercising the class methods, either in
terms of changes in state or observable outputs, and compare with
expected results
•  Currently we cannot easily observe results directly, as the results are

presented indirectly via the Screen class, which outputs text directly to
standard output (the console).

•  No state variables in ATMRunner available to observe state changes.

Simple classification of fake objects
•  Test Dummy

•  Just an object needed for execution of the class, but no control or
observation needed

•  Test Stub
•  Enables us to control what values are returned when the class under

test calls methods on a collaborating object

•  Test Mock
•  Enables us to observe what method calls (including any parameters)

that are made to a collaborating object from the class under test
•  This is also known as behavour verification (as opposed to state verification)

•  Other, more elaborate classifications exists
•  See for example the book xUnit Test Patterns (reference at the end of

the slides)

Refactoring the ATM to be more testable

• Extract an interface of Keypad (IKeypad) and Screen
(IScreen) to allow replacing underlying implementation
with stub/mock implementations that are used for testing
•  In our case, we need a stub for Keypad (to control) and a mock for

Screen (to observe)

• How to inject stub/mock implementations into a class
under test
•  Alt. 1: Dependency injection at the constructor level

•  E.g., ATMRunner(IKeypad myKeypadImpl, IScreen myScreenImpl)

•  Alt. 2: Dependency injection as a setter property/method.
•  E.g., ATMRunner::setKeypad(IKeypad myKeypadImpl),

 ATMRunner::setScreen(Iscreen myScreenImpl)

•  Alt. 3: Dependency injection using an object factory
•  E.g., myKeypad = ObjectFactory.CreateKeypad();

ATM v2 classes

Injecting stub and mock in ATMRunner

Interfaces instead of class instance

Returns “normal” or “fake”
implementation

The object factory

Here we can inject a Keypad test stub

Here we can inject a Screen test mock

Will return fake or real object

Will return fake or real object

Definition of the Keypad Test Stub
•  The test stub maintains

a list of inputs
•  array of int in this case

•  The test class
populates this list with
values before a test, to
control the return
values

•  Each time the GetInput
() method of the stub is
called, it returns the
next number from the
list, instead of actual
user input

Definition of the Screen Test Mock

•  The mock maintains a
list of calls made to its
public methods (array
of string in this case)

•  Whenever a method
is called, the call is
added to the list

•  After a test, the test
class can query the
list of calls stored in
the mock, to
determine if expected
calls were made by
the class under test

Nunit guidelines

• One test class for each application class under test

• One test package for each application package under test

• At least one test method for each public class method

• Naming conventions:
•  Test package: <Project>.Test

•  Example: “ATM.Test”

•  Test class: <Class>Test
•  For example “ATMRunnerTest”, “DepositTest”, “WithdrawTest”

•  Test method: <Class method name>_<Scenario>
•  Example: “Execute_positive_amount”

• Use [SetUp] and [TearDown] to reuse code across tests.

Example NUnit test of ATMRunner

Create fake objects (for keypad and screen)

Tell Object Factory to use them

Initiate the tests

Control the return values of Keypad::GetInput()

Execute the class under test

Compare expected
calls with actual calls

NUnit test results

• All tests pass, but it is not a complete test suite. It just
checks that user authentication works, then it exits

• We also need to test that the class behaves as
expected if a user chooses to perform one or more
transactions (withdrawal, deposit, balance inquiry)

Using NCover to assess test coverage

More isolation required…

• By creating “fake objects” for Keyboard (a Stub object)
and Screen (a Mock object), we can control the class
under test and observe the results of our tests

• But the dependencies of ATMRunner to all other classes
in the system results in our “unit tests” for handling
transactions by ATMRunner would become integration or
system function tests, not isolated unit tests!

•  Complicates test setup and test oracle implementations if we are to
write complete tests for the given class under test

•  Also, all other classes need to be implemented before we can complete
the tests.
•  Prevents early testing, results in slow tests, and dependencies to “external” or

hard to test units (hardware, databases, …)

More dependency injection

ATM class dependencies after refactoring

Object factory for all classes used by ATMRunner

Automating mocking and stubbing
•  In the examples so far, we have coded the Keypad test

stub and the Screen test mock by hand
•  Nice exercise to understand the underlying principles, but this is

too time consuming, limiting and error prone as a general approach
•  We need an isolation framework that can do the job for us!

• Many isolation frameworks exists
•  Rhino Mocks, Nmock, TypeMocks, Jmocks, EasyMock, Mockito, …
•  They have in common that they can create various kinds of fake

test objects (Mocks, Stubs, Dummy objects) based on existing
class or interface definitions.

•  Many of these tools use a Record-and-Replay metaphor as a
means to tell the test
•  what stubs should do when/if they are called
•  what mocks should expect to receive as method calls, and to verify that

the expected methods were indeed called

Setup of test fixtures with Rhino Mocks

Create fake objects (for ALL collaborators)

Tell Object Factory to use them

Initiate the tests

Create dummy objects

Black-box model of our tests with CTE-XL

A NUnit test with Rhino Mocks

Ncover after test of ATMRunner

Black box model of Deposit class

Setup of test fixture for Deposit

Example interaction based test for Deposit

Ncover after test of ATMRunner and Deposit

Traditional unit testing: state verification

• So far we have seen examples of unit tests that compare
expected behavior with actual behavior, as reflected by
method calls to collaborating classes
•  This is known as behavior-based, or interaction-based unit testing
•  Has become very popular in the TDD/agile test community because

you can fully isolate tests to only one class at the time by means of
mocks and stubs

•  However, critics believe that the tests are too close to the
implementation, and that as a result, the tests are too fragile
•  Small changes in the code may break the test
•  On the other hand, the oracle is very strong

•  The traditionalist approach: state verification
•  Will often require that a test queries collaborating objects for

changes in state as a result of running the class under test
•  Consequently, the tests become small integration tests

State-based test fixture for Deposit

Uses the real database, which
contains the state information

Now myScreen is a Dummy object

Example state-based test for Deposit

Verify state changes in
Collaborating object, not
behavior

Just controls the class, no Mocking

Coverage with state verification

And we found a fault in Deposit!

Recomended reading,
reflecting the «state of practice»

• Roy Osherove: The Art of Unit Testing - with examples
in .NET, Manning, ISBN: 978-1-933988-27-6

• Gerard Meszaros: xUnit Test Patterns: Refactoring Test
Code, Addison-Wesley, ISBN 0131495054

•  http://martinfowler.com/articles/mocksArentStubs.html

Thank you!

