
© Lionel Briand 2011
1

Software Verification and Validation

Prof. Lionel Briand
Ph.D., IEEE Fellow

© Lionel Briand 2011
2

Lionel’s background

•  Worked in industry, academia, and industry-oriented research
institutions

•  France, USA, Germany, Canada, Norway
•  Scientist in a NASA GSFC lab, Maryland, USA
•  Worked with ESA on Ariane launcher SW testing processes
•  Head of the SW quality engineering department at a Fraunhofer

Institute in Germany (Siemens, Bosch, Daimler)
•  Professor and Canada Research Chair in software quality engineering

(collaborated with IBM, Siemens, Nortel)
•  Moved to Simula Research Laboratory in July 2007 to build a new area

of expertise: Software Testing, Verification, and Validation
•  Founded the first IEEE conference on software verification and

validation (ICST)
•  On the editorial board of Software Testing, Verification, and Reliability

(STVR) journal, Wiley
•  Leading a new research center on software V&V at Simula

© Lionel Briand 2011
3

V&V Definitions
•  Verification and Validation (V&V) is the process of checking

 that a software system meets specifications and that it
 fulfils its intended purpose.

•  Verification is a Quality control process that is used to
 evaluate whether or not a product, service, or system
 complies with regulations, specifications, or conditions
 imposed at the start of a development phase. This is often
 an internal process.

•  Validation is a Quality assurance process of establishing
 evidence that provides a high degree of assurance that a
 product, service, or system accomplishes its intended
 requirements. This often involves acceptance of fitness for
 purpose with end users and other product stakeholders.

•  "Are you building the right thing?" versus "Are you building
 it right?"

© Lionel Briand 2011
4

Course Introduction

© Lionel Briand 2011
5

Course Objectives

•  Foundations of software verification and
 validation (V&V)

•  Mostly a practical perspective
•  Emphasis on testing (many kinds)
•  Most important V&V technique in practice
•  But also safety analysis, fault tolerance, model

 checking, requirements quality assurance, etc
•  More basic coverage of other aspects
•  No emphasis on tools as this will change (quickly)

 over time
•  But, in the future, you’ll be able to assess how

 useful a tool is …

© Lionel Briand 2011
6

Main Sources

•  A. Mathur, Foundations of Software
 Testing, Pearson Education, 2008

•  M. Pezze and M. Young, Software
 Analysis and Software Testing,
 Wiley, 2007

•  P. Ammann and J Offutt,
 Introduction to Software Testing,
 Cambridge Press, 2007

© Lionel Briand 2011
7

Other Sources

1.  B. Beizer, “Software Testing Techniques”, Van Nostrand Reinhold, New York,
 2nd Ed., 1990

2.  B. Marick, “The Craft of Software Testing”, Prentice Hall, 1995
3.  M. Roper, “Software Testing”, McGraw-Hill, 1995
4.  Bashir and Goel. “Testing Object-oriented Software”, Springer, 2000
5.  Jorgensen, “Software Testing”, A Craftman’s Approach”, CRC Press, 1995
6.  R. V. Binder, “Testing Object-Oriented Systems - Models, Patterns, and Tools”,

 Addison-Wesley, 1999

© Lionel Briand 2011
8

Software has become prevalent in all aspects of our lives

© Lionel Briand 2011
9

•  Development, not production
•  Human intensive
•  Engineering, but also social process
•  Increasingly complex software systems
•  Pervasive in an increasing number of industries

© Lionel Briand 2011
10

Errors

Errors are a part of our daily life.

Humans make errors in their thoughts, actions,
and in the products that might result from
their actions.

Errors occur wherever humans are involved in
taking actions and making decisions.

These fundamental facts of
human existence make testing an
essential activity.

© Lionel Briand 2011
11

Software Error,
faults, failures

©Aditya P.
Mathur 2009

© Lionel Briand 2011
12

Everywhere …

© Lionel Briand 2011
13

•  Incident: Yahoo! mail doesn’t let me log in
•  Failure: The user account cannot be accessed in the user

 database.
•  Fault: The user database can not be reached.
•  Error: There was no backup user database in the system.

© Lionel Briand 2011
14

•  Fatal Therac-25 X-ray Radiation
•  In 1986, a man in Texas received between

 16,500-25,000 radiations in less than 10 sec, over an
 area of about 1 cm.

•  He passed away 5 months later.
•  The root cause of the incident was a SW failure

  Incident: A patient passed away
  Failure: The device applied higher frequency of radiations than what was safe. Safety

range: [1…10,000 Hz].
  Fault: The software controller of the device did not have a conditional block (if …. else

statements) to perform range checking on the frequency of the radiation to be applied.
  (2) Errors:

1.  The SW developer of the device controller system had forgotten to include a range
checking conditional block on the frequency of the radiation to be applied.

2.  The device operator was NOT supposed to enter anything outside [1…10,000 Hz]
range.

© Lionel Briand 2011
15

Dealing with SW Faults

Testing	

Fault Handling	

Fault Avoidance	
 Fault Tolerance	
Fault Detection	

Debugging	

Component	

Testing	

Integration	

Testing	

System	

Testing	

Design 	

Methodology	

Automated 	

Verification	

Atomic	

Transactions	

Modular	

Redundancy	

Correctness	

Debugging	

Performance	

Debugging	

Inspections	
Requirements 	

Engineering	

© Lionel Briand 2011
16

Software Quality

© Lionel Briand 2011
17

Software quality attributes

Static quality attributes: structured,
maintainable, testable code as well as the
availability of correct and complete
documentation.

Dynamic quality attributes: software reliability,
correctness, completeness, consistency, usability,
and performance

© Lionel Briand 2011
18

Software quality (contd.)

Completeness refers to the availability of all
features listed in the requirements, or in the user
manual. An incomplete software is one that does not
fully implement all features required.

Consistency refers to adherence to a common set of
conventions and assumptions. For example, all
buttons in the user interface might follow a common
color coding convention. An other example of
inconsistency regarding data confidentiality would be
when a database application displays the date of
birth of a person in the database.

© Lionel Briand 2011
19

Software quality attributes (contd.)

Usability refers to the ease with which an
application can be used. This is an area in itself and
there exist techniques for usability testing.
Psychology plays an important role in the design of
techniques for usability testing.
Performance refers to the time the application
takes to perform a requested task. It is considered
as a non-functional requirement. It is specified in
terms such as ``This task must be performed at the
rate of X units of activity in one second on a machine
running at speed Y, having Z gigabytes of memory."

© Lionel Briand 2011
20

ISO 9126: Evaluation of Software
Quality

•  Functionality - A set of attributes that bear on
 the existence of a set of functions and their
 specified properties. The functions are those
 that satisfy stated or implied needs.

–  Suitability
–  Accuracy
–  Interoperability
–  Compliance
–  Security

•  Reliability - A set of attributes that bear on the
 capability of software to maintain its level of
 performance under stated conditions for a
 stated period of time.

–  Maturity
–  Recoverability
–  Fault Tolerance

•  Usability - A set of attributes that bear on the
 effort needed for use, and on the individual
 assessment of such use, by a stated or implied
 set of users.

–  Learnability
–  Understandability
–  Operability

•  Efficiency - A set of attributes that bear on the
 relationship between the level of performance of
 the software and the amount of resources used,
 under stated conditions.

–  Time Behaviour
–  Resource Behaviour

•  Maintainability - A set of attributes that bear on
 the effort needed to make specified
 modifications. Stability

–  Analyzability
–  Changeability
–  Testability

•  Portability - A set of attributes that bear on the
 ability of software to be transferred from one
 environment to another.

–  Installability
–  Replaceability
–  Adaptability
–  Conformance (similar to compliance, above,

 but here related specifically to portability,
 e.g. conformance to a particular database
 standard)

© Lionel Briand 2011
21

Pervasive Problems

•  Software is commonly delivered late, way over
 budget, and of unsatisfactory quality

•  Software validation and verification are rarely
 systematic and are usually not based on sound,
 well-defined techniques

•  Software development processes are commonly
 unstable and uncontrolled

•  Software quality is poorly measured, monitored,
 and controlled.

•  Software failure examples: http:/
/www.cse.lehigh.edu/~gtan/bug/softwarebug.html

© Lionel Briand 2011
22

Consequences of Poor Quality

•  Standish Group surveyed 350 companies, over
8000 projects, in 1995

•  31% cancelled before completed, 9-16% were
delivered within cost and budget

•  US study (1995): 81 billion US$ spent per year for
failing software development projects

•  http://www.it-cortex.com/Stat_Failure_Rate.htm
•  NIST study (2002): bugs cost $ 59.5 billion a

year. Earlier detection could save $22 billion.

© Lionel Briand 2011
23

Definitions: Software Engineering
•  Software engineering (SE) is the application of a

 systematic, disciplined, quantifiable approach to the
 development, operation, and maintenance of software.

•  The discipline of software engineering encompasses
 knowledge, tools, and methods for defining software
 requirements, and performing software design, software
 construction, software testing, and software
 maintenance tasks.

•  Software engineering draws on knowledge from fields
 such as computer engineering, computer science,
 management, mathematics, project management, quality
 management, software ergonomics, and systems
 engineering.

•  The term software engineering was popularized during
 the 1968 NATO Software Engineering Conference (held
 in Garmisch, Germany).

© Lionel Briand 2011
24

V&V Definitions

•  SW quality Engineering: The discipline of
 specifying, assuring, and controlling the quality of
 software products

•  SW management: The discipline of managing
 projects to achieve quality within time constraints
 and budget

•  SW verification: The goal is to find as many latent
 defects as possible before delivery

•  SW validation: The goal is to gain confidence in
 the software, shows it meets its specifications

© Lionel Briand 2011
25

•  SW Testing: Techniques to execute programs
 with the intent of finding as many defects
 as possible and/or gaining sufficient
 confidence in the software system under
 test.
–  “Program testing can show the presence

 of bugs, never their absence” (Dijkstra)

•  SW Inspections: Techniques aimed at
 systematically verifying non-executable
 software artifacts with the intent of finding
 as many defects as possible, as early as
 possible

© Lionel Briand 2011
26

Course Project

•  Project: Apply some of the testing
 techniques to actual software,
 quantitatively compare techniques,
 assess drawbacks and advantages

•  Short initial plan + final report
•  Guidelines for plan and report

© Lionel Briand 2011
27

•  Students should apply the software testing
 techniques learned in the course to a case study
 software system of their choice

•  http://sourceforge.net/
•  You should use software testing tools:

–  10 commercial tools can be downloaded with an
 academic license or a trial version

–  Many open source test tools on:
 http://www.opensourcetesting.org

–  Study systems can be provided. You can also
 select your own case study system (but it
 should be reasonably complex)!

•  Note that you must try one or several techniques
 discussed in the course with the tool(s) of your
 choice.

Tool
Vendor: Parasoft
Parasoft Jtest
Parasoft C++test
Parasoft .TEST
Vendor: IBM Rational
IBM Rational Functional Tester
IBM Rational Manual Tester
IBM Rational Test RealTime
IBM Rational Performance Tester
IBM Rational TestManager
Others vendors
JUnit
JMeter	

© Lionel Briand 2011
28

Expectations

•  Thorough review of literature (journals and conferences)
•  Integration and synthesis of state-of-the art material
•  Application and comparison of techniques on case studies
•  When relevant, report on practical experience (e.g., tools)
•  Clear, well-structured report
•  Start thinking right away of what you want to do and get out

 of the course
•  Start reading ASAP!

© Lionel Briand 2011
29

Report Evaluation

•  Coverage and depth of material in report
•  Thoroughness of gained understanding on

 selected topic
•  Completeness of analysis and results
•  Capability to synthesize and structure the

 discussion
•  Quality of presentation

© Lionel Briand 2011
30

Deadlines

•  To be investigated
•  Depends on when must grades be

 provided to the university
•  Submissions are made through email

 to my attention
•  Expect acknowledgement of

 submission

© Lionel Briand 2011
31

Advice

•  Review on a regular basis the course
 notes, go through the examples

•  Start project thinking early on
•  Ask questions in class

© Lionel Briand 2011
32

Additional Books

1.  SafeWare: system safety and computers, N.
 Leveson, Addison-Wesley. 1995

2.  Handbook of Software Reliability, McGraw-Hill,
 M. Lyu, editor. 1995

3.  Software fault tolerance, M. Lyu, Chichester,
 England, Wiley. 1995

4.  Metrics and models in software quality
 engineering, 2nd edition, S. Kan, Addison-Wesley.
 2003

5.  N. E. Fenton, S. L. Pfleeger; 1996; Software
 Metrics: A Rigorous and Practical Approach; 2nd
 Ed.; International Thomson Computer Press;
 U.K.

© Lionel Briand 2011
33

General Software Engineering

•  If needed you have to refresh your
 SE knowledge (UML, etc.)

1.  Object-Oriented Software
 Engineering, Bruegge and Dutoit,
 Prentice-Hall 2000

2.  Software engineering, I.
 Sommerville, Addison-Wesley

3.  An many others all available at the
 library …

© Lionel Briand 2011
34

Journals

•  IEEE Transactions on Software
 Engineering

•  ACM Transactions on Software Engineering
 and Methodology

•  Software Testing, Verification, and
 Reliability (Wiley)

•  Journal of Systems and Software
 (Elsevier)

•  Journal of Software Practice and
 Experience (Wiley)

•  Empirical Software Engineering (Springer)

© Lionel Briand 2011
35

Conferences

•  IEEE International Conference on
 Software Testing, Verification, and
 Validation (ICST)

•  IEEE International Symposium on
 Software Reliability Engineering (ISSRE)

•  ACM International Symposium on Software
 Testing and Analysis (ISSTA)

•  International Conference on Software
 Engineering (ICSE)

