
© Lionel Briand 2011
1

Software Verification and Validation

Prof. Lionel Briand
Ph.D., IEEE Fellow

© Lionel Briand 2011
2

Introduction to Software Testing

© Lionel Briand 2011
3

Main Sources

•  A. Mathur, Foundations of Software
 Testing, Pearson Education, 2008

•  M. Pezze and M. Young, Software
 Analysis and Software Testing,
 Wiley, 2007

•  P. Ammann and J Offutt,
 Introduction to Software Testing,
 Cambridge Press, 2007

© Lionel Briand 2011
4

Examples of Software Failures
•  Communications: Loss or corruption of

communication media, non delivery of data.
•  Space Applications: Lost lives, launch delays,

e.g., European Ariane 5 shuttle, 1996:
–  From the official disaster report: “Due

to a malfunction in the control software,
the rocket veered off its flight path 37
seconds after launch.”

•  Defense and Warfare: Misidentification of
friend or foe.

•  Transportation: Deaths, delays, sudden
acceleration, inability to brake.

•  Electric Power: Death, injuries, power
outages, long-term health hazards
(radiation).

© Lionel Briand 2011
5

•  Money Management: Fraud, violation of privacy,
shutdown of stock exchanges and banks, negative
interest rates.

•  Control of Elections: Wrong results (intentional or non-
intentional).

•  Control of Jails: Technology-aided escape attempts and
successes, failures in software-controlled locks.

•  Law Enforcement: False arrests and imprisonments.

© Lionel Briand 2011
6

On June 4, 1996, the flight of
 the Ariane 5 launcher ended
 in a failure.

Only about 40 seconds after
initiation of the flight
sequence, at an altitude of
about 3,700 m, the launcher
veered off its flight path,
broke up and exploded.

© Lionel Briand 2011
7

•  Source: ARIANE 5 Flight 501 Failure, Report by the
Inquiry Board

 A program segment for converting a floating point number to a
signed 16 bit integer was executed with an input data value outside
the range representable by a signed 16-bit integer.

 This run time error (out of range, overflow), which arose in both the
active and the backup computers at about the same time, was
detected and both computers shut themselves down.

 This resulted in the total loss of attitude control. The Ariane 5
turned uncontrollably and aerodynamic forces broke the vehicle
apart.

 This breakup was detected by an on-board monitor which ignited the
explosive charges to destroy the vehicle in the air. Ironically, the
result of this format conversion was no longer needed after lift off.

© Lionel Briand 2011
8

•  Adequate exception handling and redundancy
strategies (real function of a backup system,
degraded modes?)

•  Clear, complete, documented specifications (e.g.,
preconditions, post-conditions)

•  But perhaps more importantly: usage-based
testing (based on operational profiles), in this
case actual Ariane 5 trajectories

•  Note this was not a complex, computing problem,
but a deficiency of the software engineering
practices in place …

© Lionel Briand 2011
9

F-18 crash
•  An F-18 crashed because of a missing exception

condition:
 An if ... then ... block without the else clause
that was thought could not possibly arise.

•  In simulation, an F-16 program bug caused the
virtual plane to flip over whenever it crossed the
equator, as a result of a missing minus sign to
indicate south latitude.

© Lionel Briand 2011
10

Fatal Therac-25 Radiation
•  In 1986, a man in Texas received between

16,500-25,000 radiations in less than 10
sec, over an area of about 1 cm.

•  He lost his left arm, and died of
complications 5 months later.

© Lionel Briand 2011
11

Affected 10 million
people in Ontario,

Canada

Affected 40
million people in 8

US states

Financial losses of
$6 Billion USD

508 generating units
and 256 power plants

shut down

The alarm system in the energy management system failed
due to a software error and operators were not informed of

the power overload in the system

Power Shutdown in 2003

© Lionel Briand 2011
12

Testing
Definitions & Objectives

© Lionel Briand 2011
13

Basic Definitions

•  Test case: A set of test data and test programs
 (test scripts) and their expected results. A test
 case validates one or more system requirements
 and generates a pass or fail.

•  Test suite: A collection of test cases that are
 related or that cooperate with each other to
 achieve an objective.

•  Test oracle / verdict: A source to determine
 expected results to compare with the actual
 result of the software under test.

© Lionel Briand 2011
14

Test Stubs and Drivers
•  Test Stub: Partial implementation of a component on which a unit

under test depends.

•  Test Driver: Partial implementation of a component that depends on
a unit under test.

•  Test stubs and drivers enable components to be isolated from the
rest of the system for testing.

Component a Component b

Under Test

Test Stub

Depends
Component j Component k

Under Test

Test Driver

Depends

Component a Component b

Under Test

Test Stub

Depends
Component j Component k

Under Test

Test Driver

Depends

© Lionel Briand 2011
15

Summary of Definitions

is caused by	

*	
 *	

Test case	

Failure	
 Error

Test suite	

is caused by	

*	

*	

Correction	
Component	

Test stub	

Test driver	

exercises	
 is revised by	

finds	

repairs	

*	

*	
 *	

*	

*	
 *	
 1…n	

*	

*	

Fault

© Lionel Briand 2011
16

Motivations
•  No matter how rigorous

we are, software is going
to be faulty

•  Testing represent a
substantial percentage of
software development
costs and time to market

•  Impossible to test under
all operating conditions –
based on incomplete
testing, we must gain
confidence that the
system has the desired
behavior

•  Testing large systems is
complex – it requires
strategy and technology-
and is often done
inefficiently in practice

Limited resources

Time
Money People

Expertise

© Lionel Briand 2011
17

The Testing Dilemma

Potentially
thousands
of items
to test

 Software System
functionality

Available
testing

resources

Faulty functionality

© Lionel Briand 2011
18

Testing Process Overview

SW Representation
(e.g., models, requirements)

SW Code

Derive Test cases

Execute Test cases

Compare

Expected
Results or properties

Get Test Results

Test Oracle
[Test Result==Oracle]

[Test Result!=Oracle]

© Lionel Briand 2011
19

Types of Testing
•  Functional Testing: testing functional requirements.

–  Functional requirements specify specific behavior or functions of
 a software.

–  Functional testing is thus checking the correct functionality of a
 system.

•  Non-functional Testing: testing non-functional requirements.
–  Non-functional requirements:

•  Specify criteria that can be used to judge the operation of a
 system, rather than specific behaviors.

•  Typical non-functional requirements are performance,
 reliability, scalability, and cost.

•  Non-functional requirements are often called the -ilities of a
 system.

•  Examples next…

© Lionel Briand 2011
20

Non-functional SW Requirements

•  Accessibility
•  Availability
•  Efficiency (resource consumption

 for given load)
•  Effectiveness (resulting

 performance in relation to effort)
•  Extensibility
•  Maintainability
•  Performance / Response time

  Resource constraints (required
processor speed, memory, disk
space, network bandwidth, etc.)

  Reliability (e.g. Mean Time Between
Failures - MTBF)

  Robustness
  Safety
  Scalability
  Security

© Lionel Briand 2011
21

Qualities of Testing

•  Effective at uncovering faults
•  Help locate faults for debugging
•  Repeatable so that a precise understanding of the

fault can be gained and the correction can be
verified

•  Automated so as to lower the cost and timescale
•  Systematic so as to be predictable in terms of its

effect on dependability

© Lionel Briand 2011
22

•  Problem: Test a bridge ability to sustain
a certain weight

•  Continuity Property: If a bridge can
sustain a weight equal to W1, then it will
sustain any weight W2 <= W1

•  Essentially, continuity property= small
differences in operating conditions
should not result in dramatically
different behavior

•  BUT, the same testing property cannot be applied when testing
software, why?

•  In software, small differences in operating conditions can result
in dramatically different behavior (e.g., value boundaries)

•  Thus, the continuity property is not applicable to software

© Lionel Briand 2011
23

Subtleties of Software Dependability

•  Dependability: Correctness, reliability, safety,
robustness

•  A program is correct if it obeys its specification.
•  Reliability is a way of statistically approximating

correctness.
•  Safety implies that the software must always

display a safe behavior, under any condition.
•  A system is robust if it acts reasonably in severe,

unusual or illegal conditions.

© Lionel Briand 2011
24

Subtleties of Software Dependability
II

•  Correct but not safe or robust: the
specification is inadequate

•  Reliable but not correct: failures rarely
happen

•  Safe but not correct: annoying failures may
happen

•  Reliable and robust but not safe:
catastrophic failures are possible

© Lionel Briand 2011
25

•  Correctness, Reliability:
The system should let traffic pass
 according to the correct pattern and
 central scheduling on a continuous basis.
•  Robustness:
The system should provide degraded
 functionality in the presence of
 abnormalities: default traffic pattern
•  Safety:
It should never signal conflicting greens.

An example degraded function: the line to
 central controlling is cut-off and a default
 pattern is then used by local controller.

© Lionel Briand 2011
26

Dependability Needs Vary

•  Safety-critical applications
–  flight control systems have strict safety requirements
–  telecommunication systems have strict robustness

requirements
•  Mass-market products

–  dependability is less important than time to market
•  Can vary within the same class of products:

–  reliability and robustness are key issues for multi-user
operating systems (e.g., UNIX) less important for single
users operating systems (e.g., Windows or MacOS)

© Lionel Briand 2011
27

Fundamental Principles

© Lionel Briand 2011
28

Exhaustive Testing

•  Exhaustive testing, i.e., testing a software system
using all the possible inputs, is most of the time
impossible.

•  Examples:
–  A program that computes the factorial function (n!=n.(n-1).

(n-2)…1)
•  Exhaustive testing = running the program with 0, 1, 2, …,

100, … as an input!
–  A compiler (e.g., javac)

•  Exhaustive testing = running the (Java) compiler with
any possible (Java) program (i.e., source code)

© Lionel Briand 2011
29

Input Equivalence Classes

 General principle to reduce the number of
inputs
-  Testing criteria group input elements into

(equivalence) classes
–  One input in selected in each class (notion of

test coverage) Input
 Domain

tc1

tc2

tc3
tc6

tc4 tc5

© Lionel Briand 2011
30

Test Coverage

Software Representation
(Model) Associated Criteria

Test Data

Test cases must cover
all the … in the model

Representation of
•  the specification ⇒ Black-Box Testing

•  the implementation ⇒ White-Box Testing

© Lionel Briand 2011
31

Complete Coverage: White-Box

if x > y then
 Max := x;

else
 Max :=x ; // fault!

end if;

{x=3, y=2; x=2, y=3} can detect the error, more “coverage”
{x=3, y=2; x=4, y=3; x=5, y=1} is larger but cannot detect it

•  Testing criteria group input domain elements into
(equivalence) classes (control flow paths here)

•  Complete coverage attempts to run test cases from each
class

© Lionel Briand 2011
32

Complete Coverage: Black-Box

•  Specification of Compute Factorial Number: If the input value n is < 0,
then an appropriate error message must be printed. If 0 <= n < 20, then the
exact value of n! must be printed. If 20 <= n < 200, then an approximate
value of n! must be printed in floating point format, e.g., using some
approximate method of numerical calculus. The admissible error is 0.1% of
the exact value. Finally, if n>=200, the input can be rejected by printing an
appropriate error message.

•  Because of expected variations in behavior, it is quite
natural to divide the input domain into the classes {n<0}, {0<=
n <20}, {20 <= n < 200}, {n >= 200}. We can use one or more
test cases from each class in each test set. Correct results
from one such test set support the assertion that the
program will behave correctly for any other class value, but
there is no guarantee!

© Lionel Briand 2011
33

Black vs. White Box Testing

Specification

System

Implementation

Missing functionality:
Cannot be revealed by white-box
techniques

Unexpected functionality:
Cannot be revealed by black-box
techniques

© Lionel Briand 2011
34

•  Black-box
  Check conformance with

 specifications
  It scales up (different

 techniques at different
 granularity levels)

  It depends on the
 specification notation and
 degree of detail

  Do not ‘exactly’ know how
 much of the system is
 being tested

  Do not detect unspecified
 task.

•  White-box
  It allows you to be

 confident about test
 coverage

  It is based on control or
 data flow coverage

  It does not scale up (mostly
 applicable at unit and
 integration testing levels)

  Unlike black-box
 techniques, it cannot reveal
 missing functionalities
 (part of the specification
 that is not implemented)

© Lionel Briand 2011
35

Theoretical Foundations of Testing:
Formal definitions

•  Let P be a program
•  Let D and R denote its input domain and range

–  P is a function: D→R
•  Let OR denote the expected output values (ORacle)
•  P is said to be correct for all d ∈ D if P(d) satisfies OR;

 if not, we have a failure
•  A test case is an element d of D and the expected value

 of P in OR given d
•  A test set (a.k.a. suite) T is a finite set of test cases

© Lionel Briand 2011
36

Theoretical Foundations of Testing:
Test Adequacy Criterion

•  A test adequacy criterion C how “much” of D we should target by our
 test set.

•  Example: Defining a criterion C for a program model M
–  M: the Control Flow Graph (CFG) of a function
–  C: the set of all the edges in the CFG

•  Formally: A test adequacy criterion C is a subset of PD, where PD is
 the set of all finite subsets of D that we could target when devising
 test sets (note the two levels of subsets). (Recall: D denotes the
 input domain of P).

•  The coverage ratio of a test set T is the proportion of the elements
 in M defined by C covered by the given test set T.

•  A test set T is said to be adequate for C, or simply C-adequate, when
 the coverage ratio achieves 100% for criterion C.

•  We will have examples soon…

© Lionel Briand 2011
37

Greatest common divisor (GCD) program

read(x);

read(y);

while x ≠ y loop
 if x>y then

 x := x – y;

 else

 y := y – x;

 end if;
end loop;

gcd := x;

x<=y x > y
x = y

x ≠ y

© Lionel Briand 2011
38

Theoretical Foundations of Testing:
Hierarchy of Adequacy Criteria

•  Example: Consider criteria all-transitions and
 all-paths for finite state machines:
–  all-paths subsumes all-transitions

•  If C1 subsumes C2, we assume:
–  Satisfying C1 is more “expensive” (e.g., #

 of test cases) than satisfying C2
–  C1 allows the detection of more faults (on

 average) than C2

  Let us define a subsumption relationship between different test
criteria associated with a program model

  Given a model M, and two criteria C1 and C2 for that model:
C1 subsumes C2 if any C1-adequate test set is also C2-adequate.

© Lionel Briand 2011
39

Theoretical Foundations of Testing
Ideal Test Set

•  A test set T is said to be ideal if, whenever P is
 incorrect, there exists a d ∈ T such that P is incorrect
 for d, i.e., P(d) does not satisfy OR.

•  If T is an ideal test set and T is successful for P, then P
 is correct

•  T satisfies a test adequacy criterion C if its input values
 belong to C.

© Lionel Briand 2011
40

Theoretical Foundations of Testing:
 Test Consistency and Completeness

•  A test adequacy criterion C is consistent if, for any pair
 of test sets T1 and T2, both satisfying C, T1 is
 successful if and only T2 is.

•  A test adequacy criterion C is complete if, whenever P is
 incorrect, there is an unsuccessful test set that
 satisfies C.

•  If C is consistent and complete, any test set T satisfying
 C is ideal and could be used to decide P’s correctness.

•  The problem is that it is not possible in general to derive
 algorithms that helps determine whether a criterion, a
 test set, or a program has any of the above mentioned
 properties … they are undecidable problems

© Lionel Briand 2011
41

Theoretical Foundations of Testing:
Empirical Testing Principle

•  As we discussed, it is impossible to determine (find)
 consistent and complete test criteria from the
 theoretical standpoint

•  Also, exhaustive testing cannot be performed in practice
•  Therefore, we need test strategies that have been

 empirically investigated
•  A significant test case is a test case with high error

 detection probability – its execution increases our
 confidence in the program correctness

•  The goal is to run a sufficient number of significant test
 cases – and that number should be as small as possible
 (to save time and $$)

© Lionel Briand 2011
42

Practical Aspects

© Lionel Briand 2011
43

Many Causes of Failures

•  The specification may be wrong or
incomplete

•  The specification may contain a
requirement that is impossible to
implement given the prescribed
software and hardware

•  The system design may contain a fault
•  The program code may be wrong

© Lionel Briand 2011
44

Test Organization

•  Many different potential causes of failure,
Large systems -> testing involves several
stages

•  Module, component, or unit testing
•  Integration testing
•  Function test
•  Performance test
•  Acceptance test
•  Installation test

© Lionel Briand 2011
45

Unit
test

Unit
test

Unit
test

Integration
test

Function
test

Performance
test

Acceptance
test

Installation
test

Co
m

po
ne

nt
 c

od
e

Co
m

po
ne

nt
 c

od
e

Co
m

po
ne

nt
 c

od
e

.

.

.

Tested com
ponent

Te
st

ed
 c

om
po

ne
nt

Integrated
modules

Functioning
system

Verified,
validated
software

Accepted
system

SYSTEM
IN USE!

Design
descriptions

System
functional

specifications

Other
software

specifications
Customer

requirements

User
environment

Pfleeger, 1998

© Lionel Briand 2011
46

Unit Testing

•  (Usually) performed by each developer.
•  Scope: Ensure that each module (i.e., class, subprogram)

has been implemented correctly.
•  Often based on White-box testing.

•  A unit is the smallest testable part of an application.
•  In procedural programming, a unit may be an individual

subprogram, function, procedure, etc.
•  In object-oriented programming, the smallest unit is a

method; which may belong to a base/super class,
abstract class or derived/child class.

Test

© Lionel Briand 2011
47

Integration/Interface Testing

•  Performed by a small team.
•  Scope: Ensure that the interfaces between components

(which individual developers could not test) have been
implemented correctly, e.g., consistency of parameters,
file format

•  Test cases have to be planned, documented, and
reviewed.

•  Performed in a relatively small time-frame

Test

© Lionel Briand 2011
48

Integration Testing Failures

Integration of well tested components may lead to
failure due to:

•  Bad use of the interfaces (bad interface
specifications / implementation)

•  Wrong hypothesis on the behavior/state of
related modules (bad functional specification /
implementation), e.g., wrong assumption about
return value

•  Use of poor drivers/stubs: a module may behave
correctly with (simple) drivers/stubs, but result in
failures when integrated with actual (complex)
modules.

© Lionel Briand 2011
49

System Testing
•  Performed by a separate group within the organization

(Most of the times).
•  Scope: Pretend we are the end-users of the product.
•  Focus is on functionality, but may also perform many

other types of non-functional tests (e.g., recovery,
performance).

•  Black-box form of testing, but code coverage can be monitored.
•  Test case specification driven by system’s use-cases.

Test

© Lionel Briand 2011
50

Differences among Testing Activities

Unit Testing

From module
specifications

Visibility
of code details

Complex
scaffolding

Behavior of
single modules

Integration Testing

From interface
specifications

Visibility
of integr. Struct.

Some
scaffolding

Interactions
among modules

System Testing

From requirements
specs

No visibility of
code

No drivers/
stubs

System
functionalities

Pezze and Young, 2007

© Lionel Briand 2011
51

System vs. Acceptance Testing
•  System testing

–  The software is compared with the requirements
specifications (verification)

–  Usually performed by the developers, who know the
system

•  Acceptance testing
–  The software is compared with the end-user

requirements (validation)
–  Usually performed by the customer (buyer), who knows

the environment where the system is to be used
–  Sometime distinguished between α - β-testing for

general purpose products

© Lionel Briand 2011
52

•  Much of the life-cycle development artifacts provides a rich
 source of test data

•  Identifying test requirements and test cases early helps shorten
 the development time

•  They may help reveal faults
•  It may also help identify early low testability specifications or

 design

Design Implementation Testing

© Lionel Briand 2011
53

© Lionel Briand 2011
54

Even here!

© Lionel Briand 2011
55

© Lionel Briand 2011
56

Types of testing

C1: Source of test case generation.

C2: Lifecycle phase in which testing takes place

C3: Goal of a specific testing activity

C4: Characteristics of the artifact under test

One possible classification is based on the following
four classifiers:

© Lionel Briand 2011
57

©Aditya P.
Mathur 2009

C1: Source of test generation

© Lionel Briand 2011
58

©Aditya P. Mathur 2009

C2: Lifecycle phase in which testing
takes place

© Lionel Briand 2011
59 ©Aditya P. Mathur 2009

C3: Goal of specific testing activity

© Lionel Briand 2011
60

©Aditya P. Mathur 2009

C4: Artifact under test

© Lionel Briand 2011
61

Testing Activities BEFORE Coding

• Testing is a time consuming activity
•  Devising a test strategy and identify the test

requirements represent a substantial part of it
•  Planning is essential
•  Testing activities undergo huge pressure as it is is

run towards the end of the project
•  In order to shorten time-to-market and ensure a

certain level of quality, a lot of QA-related
activities (including testing) must take place early
in the development life cycle

© Lionel Briand 2011
62

Testing takes creativity

•  Many jobs out there in test automation
•  To develop an effective test, one must have:

•  Detailed understanding of the system
•  Knowledge of testing techniques
•  Skill to apply these techniques in an

effective and efficient manner (e.g., tools)
•  Testing is done best by independent testers
•  Programmer often stick to the data set that

makes the program work
•  A program often does not work when tried by

somebody else.

