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Introduction to Software Testing 
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Main Sources 

•  A. Mathur, Foundations of Software
 Testing, Pearson Education, 2008 

•  M. Pezze and M. Young, Software
 Analysis and Software Testing,
 Wiley, 2007 

•  P. Ammann and J Offutt,
 Introduction to Software Testing,
 Cambridge Press, 2007 
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Examples of Software Failures 
•  Communications: Loss or corruption of 

communication media, non delivery of data. 
•  Space Applications: Lost lives, launch delays, 

e.g., European Ariane 5 shuttle, 1996:  
–  From the official disaster report: “Due 

to a malfunction in the control software, 
the rocket veered off its flight path 37 
seconds after launch.” 

•  Defense and Warfare: Misidentification of 
friend or foe. 

•  Transportation: Deaths, delays, sudden 
acceleration, inability to brake. 

•  Electric Power: Death, injuries, power 
outages, long-term health hazards 
(radiation). 
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•  Money Management:  Fraud, violation of privacy, 
shutdown of stock exchanges and banks, negative 
interest rates. 

•  Control of Elections: Wrong results (intentional or non-
intentional). 

•  Control of Jails: Technology-aided escape attempts and 
successes, failures in software-controlled locks. 

•  Law Enforcement: False arrests and imprisonments. 
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On June 4, 1996, the flight of
 the Ariane 5 launcher ended
 in a failure. 

Only about 40 seconds after 
initiation of the flight 
sequence, at an altitude of 
about 3,700 m, the launcher 
veered off its flight path, 
broke up and exploded. 
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•  Source: ARIANE 5 Flight 501 Failure, Report by the 
Inquiry Board 

 A program segment for converting a floating point number to a 
signed 16 bit integer was executed with an input data value outside 
the range representable by a signed 16-bit integer.  

 This run time error (out of range, overflow), which arose in both the 
active and the backup computers at about the same time, was 
detected and both computers shut themselves down.  

 This resulted in the total loss of attitude control. The Ariane 5 
turned uncontrollably and aerodynamic forces broke the vehicle 
apart.  

 This breakup was detected by an on-board monitor which ignited the 
explosive charges to destroy the vehicle in the air. Ironically, the 
result of this format conversion was no longer needed after lift off. 
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•  Adequate exception handling and redundancy 
strategies (real function of a backup system, 
degraded modes?) 

•  Clear, complete, documented specifications (e.g., 
preconditions, post-conditions) 

•  But perhaps more importantly: usage-based 
testing (based on operational profiles), in this 
case actual Ariane 5 trajectories 

•  Note this was not a complex, computing problem, 
but a deficiency of the software engineering 
practices in place … 
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F-18 crash 
•  An F-18 crashed because of a missing exception 

condition:   
 An if ... then  ... block without the else clause 
that was thought could not possibly arise. 

•  In simulation, an F-16 program bug caused the 
virtual plane to flip over whenever it crossed the 
equator, as a result of a missing minus sign to 
indicate south latitude. 
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Fatal Therac-25 Radiation 
•  In 1986, a man in Texas received between 

16,500-25,000 radiations in less than 10 
sec, over an area of about 1 cm.   

•  He lost his left arm, and died of 
complications 5 months later. 



© Lionel Briand 2011 
11 

Affected 10 million 
people in Ontario, 

Canada 

Affected 40 
million people in 8 

US states 

Financial losses of 
$6 Billion USD 

508 generating units 
and 256 power plants 

shut down 

The alarm system in the energy management system failed 
due to a software error and operators were not informed of 

the power overload in the system 

Power Shutdown in 2003 
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Testing 
Definitions & Objectives 
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Basic Definitions 

•  Test case: A set of test data and test programs
 (test scripts) and their expected results. A test
 case validates one or more system requirements
 and generates a pass or fail. 

•  Test suite: A collection of test cases that are
 related or that cooperate with each other to
 achieve an objective. 

•  Test oracle / verdict: A source to determine
 expected results to compare with the actual
 result of the software under test.  
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Test Stubs and Drivers 
•  Test Stub: Partial implementation of a component on which a unit 

under test depends.  

•  Test Driver: Partial implementation of a component that depends on 
a unit under test.  

•  Test stubs and drivers enable components to be isolated from the 
rest of the system for testing.  

Component a Component b

Under Test

Test Stub

Depends
Component j Component k

Under Test

Test Driver

Depends

Component a Component b

Under Test

Test Stub

Depends
Component j Component k

Under Test

Test Driver

Depends



© Lionel Briand 2011 
15 

Summary of Definitions 

is caused by	

*	
 *	


Test case	


Failure	
 Error 

Test suite	


is caused by	


*	

*	


Correction	
Component	


Test stub	


Test driver	


exercises	
 is revised by	


finds	

repairs	
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*	
 *	


*	


*	
 *	
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*	


*	


Fault 
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Motivations 
•  No matter how rigorous 

we are, software is going 
to be faulty 

•  Testing represent a 
substantial percentage of 
software development 
costs and time to market 

•  Impossible to test under 
all operating conditions – 
based on incomplete 
testing, we must gain 
confidence that the 
system has the desired 
behavior 

•  Testing large systems is 
complex – it requires 
strategy and technology- 
and is often done 
inefficiently in practice 

Limited resources 

Time 
Money People 

Expertise 
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The Testing Dilemma 

Potentially 
thousands  
of items  
to test 

 Software System 
functionality 

Available  
testing  

resources 

Faulty functionality 
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Testing Process Overview 

SW Representation 
(e.g., models, requirements) 

SW Code 

Derive Test cases 

Execute Test cases 

Compare 

Expected 
Results or properties 

Get Test Results 

Test Oracle 
[Test Result==Oracle] 

[Test Result!=Oracle] 
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Types of Testing 
•  Functional Testing: testing functional requirements.  

–  Functional requirements specify specific behavior or functions of
 a software. 

–  Functional testing is thus checking the correct functionality of a
 system. 

•  Non-functional Testing: testing non-functional requirements.  
–  Non-functional requirements: 

•  Specify criteria that can be used to judge the operation of a
 system, rather than specific behaviors.  

•  Typical non-functional requirements are performance,
 reliability, scalability, and cost.  

•  Non-functional requirements are often called the -ilities of a
 system.  

•  Examples next… 
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Non-functional SW Requirements 

•  Accessibility  
•  Availability 
•  Efficiency (resource consumption

 for given load)  
•  Effectiveness (resulting

 performance in relation to effort)  
•  Extensibility 
•  Maintainability  
•  Performance / Response time 

  Resource constraints (required 
processor speed, memory, disk 
space, network bandwidth, etc.) 

  Reliability (e.g. Mean Time Between 
Failures - MTBF)   

  Robustness  
  Safety  
  Scalability 
  Security  
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Qualities of Testing 

•  Effective at uncovering faults 
•  Help locate faults for debugging 
•  Repeatable so that a precise understanding of the 

fault can be gained and the correction can be 
verified 

•  Automated so as to lower the cost and timescale 
•  Systematic so as to be predictable in terms of its 

effect on dependability 
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•  Problem: Test a bridge ability to sustain 
a certain weight 

•  Continuity Property: If a bridge can 
sustain a weight equal to W1, then it will 
sustain any weight W2 <= W1 

•  Essentially, continuity property= small 
differences in operating conditions 
should not result in dramatically 
different behavior 

•  BUT, the same testing property cannot be applied when testing 
software, why? 

•  In software, small differences in operating conditions can result 
in dramatically different behavior (e.g., value boundaries) 

•  Thus, the continuity property is not applicable to software 
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Subtleties of Software Dependability 

•  Dependability: Correctness, reliability, safety, 
robustness 

•  A program is correct if it obeys its specification. 
•  Reliability is a way of statistically approximating 

correctness. 
•  Safety implies that the software must always 

display a safe behavior, under any condition. 
•  A system is robust if it acts reasonably in severe, 

unusual or illegal conditions. 
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Subtleties of Software Dependability 
II 

•  Correct but not safe or robust: the 
specification is inadequate 

•  Reliable but not correct: failures rarely 
happen  

•  Safe but not correct: annoying failures may 
happen 

•  Reliable and robust but not safe: 
catastrophic failures are possible 
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•  Correctness, Reliability: 
The system should let traffic pass
 according to the correct pattern and
 central scheduling on a continuous basis. 
•  Robustness: 
The system should provide degraded
 functionality in the presence of
 abnormalities: default traffic pattern 
•  Safety: 
It should never signal conflicting greens. 

An example degraded function: the line to
 central controlling is cut-off and a default
 pattern is then used by local controller. 



© Lionel Briand 2011 
26 

Dependability Needs Vary 

•  Safety-critical applications 
–  flight control systems have strict safety requirements 
–  telecommunication systems have strict robustness 

requirements 
•  Mass-market products 

–  dependability is less important than time to market  
•  Can vary within the same class of products: 

–  reliability and robustness are key issues for multi-user 
operating systems (e.g., UNIX) less important for single 
users operating systems (e.g., Windows or MacOS) 
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Fundamental Principles 
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Exhaustive Testing 

•  Exhaustive testing, i.e., testing a software system 
using all the possible inputs, is most of the time 
impossible. 

•  Examples: 
–  A program that computes the factorial function (n!=n.(n-1).

(n-2)…1) 
•  Exhaustive testing = running the program with 0, 1, 2, …, 

100, … as an input! 
–  A compiler (e.g., javac) 

•  Exhaustive testing = running the (Java) compiler with 
any possible (Java) program (i.e., source code) 
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Input Equivalence Classes 

 General principle to reduce the number of 
inputs  
-  Testing criteria group input elements into 

(equivalence) classes 
–  One input in selected in each class (notion of 

test coverage) Input
 Domain 

tc1 

tc2 

tc3 
tc6 

tc4 tc5 
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Test Coverage 

Software Representation 
(Model) Associated Criteria 

Test Data 

Test cases must cover  
all the … in the model 

Representation of  
•  the specification ⇒ Black-Box Testing 

•  the implementation ⇒ White-Box Testing 
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Complete Coverage: White-Box 

if x > y then 
 Max := x; 

else 
 Max :=x ;  // fault! 

end if; 

{x=3, y=2; x=2, y=3} can detect the error, more “coverage” 
{x=3, y=2; x=4, y=3; x=5, y=1} is larger but cannot detect it 

•  Testing criteria group input domain elements into 
(equivalence) classes (control flow paths here) 

•  Complete coverage attempts to run test cases from each 
class 



© Lionel Briand 2011 
32 

Complete Coverage: Black-Box 

•  Specification of Compute Factorial Number: If the input value n is < 0, 
then an appropriate error message must be printed. If 0 <= n < 20, then the 
exact value of n! must be printed. If 20 <= n < 200, then an approximate 
value of n! must be printed in floating point format, e.g., using some 
approximate method of numerical calculus. The admissible error is 0.1% of 
the exact value. Finally, if n>=200, the input can be rejected by printing an 
appropriate error message.  

•  Because of expected variations in behavior, it is quite 
natural to divide the input domain into the classes {n<0}, {0<= 
n <20}, {20 <= n < 200}, {n >= 200}. We can use one or more 
test cases from each class in each test set. Correct results 
from one such test set support the assertion that the 
program will behave correctly for any other class value, but 
there is no guarantee! 
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Black vs. White Box Testing 

Specification 

System 

Implementation 

Missing functionality:  
Cannot be revealed by white-box 
techniques 

Unexpected functionality:  
Cannot be revealed by black-box 
techniques 
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•  Black-box 
  Check conformance with

 specifications 
  It scales up (different

 techniques at different
 granularity levels) 

  It depends on the
 specification notation and
 degree of detail 

  Do not ‘exactly’ know how
 much of the system is
 being tested 

  Do not detect unspecified
 task. 

•  White-box 
  It allows you to be

 confident about test
 coverage 

  It is based on control or
 data flow coverage 

  It does not scale up (mostly
 applicable at unit and
 integration testing levels) 

  Unlike black-box
 techniques, it cannot reveal
 missing functionalities
 (part of the specification
 that is not implemented) 
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Theoretical Foundations of Testing: 
Formal definitions 

•  Let P be a program 
•  Let D and R denote its input domain and range  

–  P is a function: D→R 
•  Let OR denote the expected output values (ORacle) 
•  P is said to be correct for all d ∈ D if P(d) satisfies OR;

 if not, we have a failure 
•  A test case is an element d of D and the expected value

 of P in OR given d 
•  A test set (a.k.a. suite) T is a finite set of test cases 
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Theoretical Foundations of Testing:  
Test Adequacy Criterion 

•  A test adequacy criterion C how “much” of D we should target by our
 test set. 

•  Example: Defining a criterion C for a program model M 
–  M: the Control Flow Graph (CFG) of a function  
–  C: the set of all the edges in the CFG  

•  Formally: A test adequacy criterion C is a subset of PD, where PD is
 the set of all finite subsets of D that we could target when devising
 test sets (note the two levels of subsets). (Recall: D denotes the
 input domain of P).  

•  The coverage ratio of a test set T is the proportion of the elements
 in M defined by C covered by the given test set T. 

•  A test set T is said to be adequate for C, or simply C-adequate, when
 the coverage ratio achieves 100% for criterion C. 

•  We will have examples soon… 
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Greatest common divisor (GCD) program 

read(x); 

read(y); 

while x ≠ y loop 
 if x>y then 

  x := x – y; 

 else 

  y := y – x; 

 end if; 
end loop; 

gcd := x; 

x<=y x > y 
x = y 

x ≠ y 



© Lionel Briand 2011 
38 

Theoretical Foundations of Testing:  
Hierarchy of Adequacy Criteria 

•  Example: Consider criteria all-transitions and
 all-paths for finite state machines:  
–  all-paths subsumes all-transitions 

•  If C1 subsumes C2, we assume: 
–  Satisfying C1 is more “expensive” (e.g., #

 of test cases) than satisfying C2 
–  C1 allows the detection of more faults (on

 average) than C2 

  Let us define a subsumption relationship between different test 
criteria associated with a program model  

  Given a model M, and two criteria C1 and C2 for that model: 
C1 subsumes C2 if any C1-adequate test set is also C2-adequate. 
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Theoretical Foundations of Testing 
Ideal Test Set 

•  A test set T is said to be ideal if, whenever P is
 incorrect, there exists a d ∈ T such that P is incorrect
 for d, i.e., P(d) does not satisfy OR. 

•  If T is an ideal test set and T is successful for P, then P
 is correct 

•  T satisfies a test adequacy criterion C if its input values
 belong to C. 
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Theoretical Foundations of Testing:  
 Test Consistency and Completeness 

•  A test adequacy criterion C is consistent if, for any pair
 of test sets T1 and T2, both satisfying C, T1 is
 successful if and only T2 is.  

•  A test adequacy criterion C is complete if, whenever P is
 incorrect, there is an unsuccessful test set that
 satisfies C.  

•  If C is consistent and complete, any test set T satisfying
 C is ideal and could be used to decide P’s correctness.  

•  The problem is that it is not possible in general to derive
 algorithms that helps determine whether a criterion, a
 test set, or a program has any of the above mentioned
 properties … they are undecidable problems  
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Theoretical Foundations of Testing:  
Empirical Testing Principle 

•  As we discussed, it is impossible to determine (find)
 consistent and complete test criteria from the
 theoretical standpoint 

•  Also, exhaustive testing cannot be performed in practice 
•  Therefore, we need test strategies that have been

 empirically investigated 
•  A significant test case is a test case with high error

 detection probability – its execution increases our
 confidence in the program correctness 

•  The goal is to run a sufficient number of significant test
 cases – and that number should be as small as possible
 (to save time and $$) 
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Practical Aspects 
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Many Causes of Failures 

•  The specification may be wrong or 
incomplete 

•  The specification may contain a 
requirement that is impossible to 
implement given the prescribed 
software and hardware 

•  The system design may contain a fault 
•  The program code may be wrong 
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Test Organization 

•  Many different potential causes of failure, 
Large systems -> testing involves several 
stages 

•  Module, component, or unit testing 
•  Integration testing 
•  Function test 
•  Performance test 
•  Acceptance test 
•  Installation test 
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Pfleeger, 1998 
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Unit Testing 

•  (Usually) performed by each developer. 
•  Scope: Ensure that each module (i.e., class, subprogram) 

has been implemented correctly.  
•  Often based on White-box testing. 

•  A unit is the smallest testable part of an application.  
•  In procedural programming, a unit may be an individual 

subprogram, function, procedure, etc.  
•  In object-oriented programming, the smallest unit is a 

method; which may belong to a base/super class, 
abstract class or derived/child class. 

Test 
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Integration/Interface Testing 

•  Performed by a small team. 
•  Scope: Ensure that the interfaces between components 

(which individual developers could not test) have been 
implemented correctly, e.g., consistency of parameters, 
file format   

•  Test cases have to be planned, documented, and 
reviewed. 

•  Performed in a relatively small time-frame 

Test 
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Integration Testing Failures 

Integration of well tested components may lead to 
failure due to: 

•  Bad use of the interfaces (bad interface 
specifications / implementation) 

•  Wrong hypothesis on the behavior/state of 
related modules (bad functional specification / 
implementation), e.g., wrong assumption about 
return value 

•  Use of poor drivers/stubs: a module may behave 
correctly with (simple) drivers/stubs, but result in 
failures when integrated with actual (complex) 
modules. 
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System Testing 
•  Performed by a separate group within the organization 

(Most of the times). 
•  Scope: Pretend we are the end-users of the product.  
•  Focus is on functionality, but may also perform many 

other types of non-functional tests (e.g., recovery, 
performance). 

•  Black-box form of testing, but code coverage can be monitored. 
•  Test case specification driven by system’s use-cases. 

Test 
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Differences among Testing Activities 

Unit Testing 

From module 
specifications 

Visibility 
of code details 

Complex 
scaffolding 

Behavior of 
single modules 

Integration Testing 

From interface 
specifications 

Visibility 
of integr. Struct. 

Some 
scaffolding 

Interactions 
among modules 

System Testing 

From requirements 
specs 

No visibility of 
code 

No drivers/
stubs 

System 
functionalities 

Pezze and Young, 2007 
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System vs. Acceptance Testing 
•  System testing 

–  The software is compared with the requirements 
specifications (verification) 

–  Usually performed by the developers, who know the 
system 

•  Acceptance testing 
–  The software is compared with the end-user 

requirements (validation) 
–  Usually performed by the customer (buyer), who knows 

the environment where the system is to be used 
–  Sometime distinguished between α - β-testing for 

general purpose products 
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•  Much of the life-cycle development artifacts provides a rich
 source of test data 

•  Identifying test requirements and test cases early helps shorten
 the development time 

•  They may help reveal faults 
•  It may also help identify early low testability specifications or

 design 

Design Implementation Testing 
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Even here! 
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Types of testing 

C1: Source of test case generation.   

C2: Lifecycle phase in which testing takes place 

C3:  Goal of a specific testing activity 

C4: Characteristics of the artifact under test 

One possible classification  is based on the following 
four classifiers: 
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©Aditya P. 
Mathur 2009 

C1: Source of test generation 
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©Aditya P. Mathur 2009 

C2: Lifecycle phase in which testing 
takes place 
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C3: Goal of specific testing activity 
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©Aditya P. Mathur 2009 

C4: Artifact under test 
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Testing Activities BEFORE Coding 

• Testing is a time consuming activity 
•  Devising a test strategy and identify the test 

requirements represent a substantial part of it 
•  Planning is essential 
•  Testing activities undergo huge pressure as it is is 

run towards the end of the project 
•  In order to shorten time-to-market and ensure a 

certain level of quality, a lot of QA-related 
activities (including testing) must take place early 
in the development life cycle  
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Testing takes creativity 

•  Many jobs out there in test automation 
•  To develop an effective test, one must have: 

•  Detailed understanding of the system  
•  Knowledge of testing techniques 
•  Skill to apply these techniques in an 

effective and efficient manner (e.g., tools) 
•  Testing is done best by independent testers 
•  Programmer often stick to the data set that 

makes the program work  
•  A program often does not work when tried by 

somebody else. 


