
Thanh Ngoc Nguyen Building a tool for Category Partition automation

1

Building a tool for generating test frames automatically based on

Category Partition method and applying it to the organization

unit management module of DHIS2 software.

Thanh Ngoc Nguyen

University of Oslo

thanhng@ifi.uio.no

ABSTRACT

This project is to develop a tool to generate automatically test frames from the test specification based on the category

partition method. This tool has been applied to a real application, a module of open source software for health data collection

and processing.

KEYWORDS: black box testing, category partition method, dhis2, testing

mailto:thanhng@ifi.uio.no�

Thanh Ngoc Nguyen Building a tool for Category Partition automation

2

Table of Contents

ABSTRACT .. 1

KEYWORDS: black box testing, category partition method, dhis2, testing ... 1

1 introduction .. 5
1.1 Scope of project ... 5

1.2 Goals of project ... 5

1.3 Structure of the report .. 5

2 BACKGROUND .. 5

2.1 Why black box? ... 5

2.2 Why category partition? .. 6
2.3 Why test frame generator? ... 6

3 DESIGN OF THE CASE STUDY ... 7

3.1 Description of system under test (SUT) .. 7

3.2 The dhis-web-maintainance-organisationunit module ... 7

3.3 The requirement specification of the module ... 9
3.4 Building an automation tool for generating test frames based on test specification using CPM 12

3.4.1 Standardization of test specification language (TSL) .. 12

3.4.2 A revised TSL .. 12

3.4.3 Using Excel file as input/output ... 13

3.4.4 Building algorithm ... 13

3.5 Initial results .. 13
3.5.1 Organization unit functionalities .. 14

3.5.2 Organization unit group ... 19

3.5.3 Group set .. 22

3.5.4 Hierarchy operators .. 26

4 ANALYSIS OF THE RESULTS ... 27

4.1 Analyzing the results ... 27
4.1.1 Effectiveness of CPM: ... 27

4.1.2 Effectiveness of the tool:.. 27

4.1.3 Results of running the test set: ... 29

4.1.4 The relations between graphical user interface (GUI) design and CPM: ... 29

4.2 Summary of important results ... 30

5 LESSONS LEARNED AND OPEN ISSUES .. 30

Thanh Ngoc Nguyen Building a tool for Category Partition automation

3

5.1 Lesson learned ... 30

5.2 Practical and technical difficulties ... 30

5.3 Discussion, limitation, and future research .. 31
6 REFERENCES ... 32

7 APPENDICES.. 34

7.1 The source code of the tool developed in the project .. 34

7.2 Source code being tested ... 41

Thanh Ngoc Nguyen Building a tool for Category Partition automation

4

List of Tables

Table 1: Code layout of the SUT ... 8

Table 2: System specification .. 12
Table 3: Simplified TSL .. 13

Table 4: Test specification of adding organization unit ... 14

Table 5: Test frames of adding organization unit, generated by the tool ... 16

Table 6: Test specification of editing organization unit ... 17

Table 7: Test frames of editing organization unit, generated by the tool ... 18

Table 8: Test specification of deleting organization unit ... 18
Table 9: Test frames of deleting organization unit, generated by the tool ... 19

Table 10: Test specification of adding organization unit group ... 19

Table 11: Test frames of Test specification of adding organization unit group, generated by the tool 20

Table 12: Test specification of Test specification of updating organization unit group .. 20

Table 13: Test frames of Test specification of adding organization unit group, generated by the tool 21
Table 14: Test specification of deleting organization unit group ... 21

Table 15: Test frames of deleting organization unit group, generated by the tool ... 22

Table 16: Test specification of adding group set ... 22

Table 17: Test frames of group set, generated by the tool ... 23

Table 18: Test specification of editing group set ... 24

Table 19: Test frames of editing group set, generated by the tool ... 25
Table 20: Test specification of deleting group set ... 25

Table 21: Test frames of deleting group set, generated by the tool ... 26

Table 22: Test specification of hierarchy operators ... 26

Table 23: Test frames of hierarchy operators, generated by the tool ... 27

Table 24: Test frames generated before and after changing the properties .. 28

Table 25: Test frames generated before and after adding annotation Single to environment partition: name does not exist 28

List of abbreviation

HISP: Health Information System Program

DHIS2: District Health Information System

CPM: Category Partition Method

SUT: System Under Test

Thanh Ngoc Nguyen Building a tool for Category Partition automation

5

1 INTRODUCTION

1.1 Scope of project

This project aims to apply knowledge learned from the Software Verification and Validation given at University of Oslo,

Spring 2010 to a practical case: the DHIS2 software, a tool for supporting data collection and processing targeted at health

care sector. Testing is widely accepted as one of the most important activities to ensure quality of software (Mathur 2008).

Given the increasing penetration of business management applications into all sectors, in which health care is one example,

the need to have a proper and systematic approach to test those applications becomes very urgent.

1.2 Goals of project

DHIS2 has been used in many countries in Africa and Asia such as India, Tanzania, Serra Leon, and Vietnam. Hosted by

University of Oslo under the umbrella of Health Information Program, DHIS2 is an OSS developed by a heterogeneous team

with members coming from different domains: informatics and public health. At the beginning, testing was mainly done at

the unit level by developers, using JUnit framework. Functional testing is executed in a very ad-hoc manner. There are not

any documents related to test design. No one know how the functional test is done. Recently, as a response to the national

implementation in India, the system was tested more rigorously. However, in order to be accepted as national system, DHIS2

must be sent to an assigned authority for software verification and validation to test. This step costs lots of money.

This story is to emphasize the urgent need to have a more systematic approach to test DHIS2. Hence, this study has two

objectives: a) to develop a framework in order to build test sets systematically and thoroughly based on category partition

technique, b) to develop a tool for automating test frames generation step, c) run the test set.

1.3 Structure of the report

The rest of this report is organized as follows. In the next section, the choices on techniques, methods, tools, and related work

on black box testing are explained in section 2. Section 3 presents the system under test (SUT) while section 4 provide

analysis of the results. Section 5 discusses the results and limitations of the study, and other open issues.

2 BACKGROUND

Category partition, one of black box methods, was selected to carry out the study. The following discussion will explain this

choice.

2.1 Why black box?

Poon (2008) postulates that among those steps of software verification and validation, test case generation plays an

important role in effecting the chance of discovering software failures. According to him, black box approach is the

mainstream type of technique for test case generator. As based on information derived from system specification

documents, black box testing can be done without having the knowledge on how the system was built, therefore

source code is not needed (Ostrand and Balcer 1988, Poon 2008). Moreover, specification documents can help to

derive and generate test cases even before any code are written. As the aim of this study is to do functional testing,

black box approach appears to be an appropriate choice.

Thanh Ngoc Nguyen Building a tool for Category Partition automation

6

2.2 Why category partition?

So far, there are many techniques for black box testing that have been developed (Ostrand and Balcer 1988). For

example, the choice relation framework, the classification-tree methodology, domain testing and orthogonal arrays

(Poon, 2008) or condition table, equivalence partitioning, cause-effect graphs, revealing sub domain (Ostrand and

Balcer, 1988). Apart from this, Mathur (2008) also discusses boundary analysis and logical functions as the other

techniques for black box testing.

Poon (2008) argues that all the techniques are similar in term of the process in which tests case are generated: 1)

identify categories and choices 2) combine valid choices 3) build test cases based on valid combination.

However, category partition method (CPM) seems to be a better technique as it is “a systematic, specification based

method that uses partitioning to generate functional tests for complex software systems” (Ostrand and Balcer 1988,

p.677). CPM is a combination of the two techniques: equivalence partitioning and boundary analysis (Mathur 2008).

CPM has become a very popular methods, widely adopted, studied, and improved by vendors and researchers1

Cause effect graph (CEF) is not considered as a good method in practice as it is “replacing one complex

representation with another” (Ostrand and Balcer 1988, p.684) due to its complicated presentation and hard to verify

correctness.

.

Amla and Amman (1992) suggest a Z specification approach for CPM based on set theory and predicate calculus.

Chen et al (2003) develop a framework called choice relation for CPM, proposing a theoretical technique for

consistency check and automatically reducing the relations. Amman and Offutt (1994) construct a method for

deriving test frames in CPM by defining a minimal coverage criterion and supplying a general procedure for

specifying test cases that satisfy the criterion. Offutt and Irvine (1995) call for a re-consideration of traditional

methods for object-oriented software, arguing that CPM can be effective to uncover faults in object-oriented

software. Most recently, Lionel et al (2009) apply machine-learning approach to refine test specification and test

suites in CPM.

2

Classification tree (CTM) is also a frequently mentioned method which “is self-development

.

partly using and improving ideas from the category-partition method” (Grochtmann et al, 1993, p2). Grochtmann et

al (1993) discussed the application of CTM by an in-house developed tool called Classification Tree Editor.

However, this tool is still internal use and its commercialization is in plan.

2.3 Why test frame generator?

Large body of research related to CPM can be grouped into two approaches as the following:

1. Try to revise, improve, or adapt it in a particular domain

2. Try to develop or explore a tool for automating several steps involved in CPM

1 Indeed, Ostrand and Balcer 1988 has been cited more than 100 times
2 CEG is used by a number of companies, one of which has built a tool for intuitively making the graph (Moyorodi, 2003)
though it is a commercial product. http://benderrbt.com/bendersoftware.htm#over

Thanh Ngoc Nguyen Building a tool for Category Partition automation

7

According to my knowledge, there has not yet been a tool for transferring categories/choices into test frames though

it is considered as an easy task. This tool is supposed to read Test Specification, i.e. categories/choices/constraints,

from an input file (text, xml, or probably database), and then combine them to make a list of test frames given that

those test frames satisfy all the constraints defined in the input file. Poon (2008) carries out an empirical case study

in which three system specification are selected to be categorized/partitioned by 40 informatics students at both

undergraduate and graduate level. The result of the study shows that there are many mistakes in categories and

choices. The reason for this is easy to understand: system specification is written in natural language and selecting

categories/choices/constraints is dependent heavily on experience of test engineers.

As building categories and choices is very prone to error, the need for a tool to generate test frames based on test

specification becomes urgent.

3 DESIGN OF THE CASE STUDY

3.1 Description of system under test (SUT)

District Health Information System version 2 (DHIS2) is an open source software based on popular Java Enterprise

frameworks such as Spring, Hibernate, and Struts2, aiming to strengthen health information system in developing countries.

DHIS2 is a software for collection, processing, and analysis of health data. The core data model of DHIS2 includes major

classes as follows:

- Organization Unit: administrative unit or facility such as a country, province, district, hospital, and clinic

- Data Element: element to capture health problems or health services such as number of children who have BCG,

number of pregnant women, number of HIV cases.

- Period: an interval of time such as yearly, quarterly, or monthly.

- Data Value: number that keeps value of a data element for one organization unit within a particular period.

DHIS2 follows modular and layer design. It is organized in the three layers as follows:

- DHIS API: contains all data model classes and interface for services which are implemented in the service layer

- DHIS Service: implementation of the interfaces declared in the API layer

- DHIS Web: employs MVC (Model View Controller) design (Struts2). The web layer is structured into modules

(there are currently almost 20 web modules), which communicates through a common module called web-portal.

DHIS2 has more than 50 modules consisting thousands of classes. In this assignment, I plan to test only one of them. That is

the dhis-web-maintainance-organisationunit module.

3.2 The dhis-web-maintainance-organisationunit module

This web module provides functionalities to add, update, and delete organization units, group, and group set, and other

hierarchy operators such as moving organization unit. Several functionalities of the module are demonstrated in the following

screenshots:

Thanh Ngoc Nguyen Building a tool for Category Partition automation

8

Figure 1: Code layout of the SUT

The form to add new organization unit:

Figure 2: Form to add new organization unit

To add new unit group

Thanh Ngoc Nguyen Building a tool for Category Partition automation

9

Figure 3: Form to add a group

To move a unit

Figure 4: Form to do hierarchy operators

3.3 The requirement specification of the module

The detailed specification of the module is provided as follows:

Thanh Ngoc Nguyen Building a tool for Category Partition automation

10

Specification Name of functionalities Detailed description

Organization unit

 Add new organization The home page of the module show a list of units. User click

Add new organization link, a form will be showed with the

following fields and their constraints:

- Name: not null AND no space (blank) before and

after AND length of string name must be between 2

and 255 AND there is no unit with this name exists

in the system

- Short name: not null AND no space (blank) before

and after AND length of string name must be

between 2 and 25 AND there is no unit with this

short name exists in the system

- Code: any
- Opening date: not null AND must be a valid date

- Close date: can be null but if it is not null, it must

contain no child unit

- Comment: any

- Polygon coordinator: any

- Latitude: any

- Longitude: any

If all the above constraints are satisfied, the system will add

this unit into the database and return to the list of unit page. If

not, it will show a warning message telling users what

conditions are violated.

Before clicking the Add unit link, users shall select an unit on

the left hand side hierarchy tree, this selected unit would

become the parent unit of the to be added unit. If no unit is

selected, the newly added unit will be the root unit.

 Edit an organization unit In the unit listing page, each unit has different link for editing,

deleting, and showing detailed information. Users click on an

Edit link to edit the selected unit. The unit editing form will

be showed, in line with all properties of the unit.

Users update one or many of those properties and click update

to save. However, updated properties must fulfill the

Thanh Ngoc Nguyen Building a tool for Category Partition automation

11

requirement in the adding unit case.

 Delete an organization

unit

In the unit listing page, select the Delete link, the system shall

ask users whether they really want to delete the unit.

If users choose Yes, the unit is removed from the system and

return to the unit-listing page. If not, the page remains the

same

Unit is removable only if it contains no child.

Unit group

 Add unit group To add a new unit group, users need to give a name and select

a list of organization units. The name must be at least two

characters and less than 255 characters. Blank characters

before and after the name must be removed when storing. The

list of organization unit can be empty.

 Edit unit group Users have to fill a form which is similar to the add unit group

functionality. In the edit form, users can remove one/many

organization units from the list or add more one/many of

them.

 Delete unit group The program must ask users for confirmation. Unit group can

be removed only when it contains no organization unit

Group set (group of group)

 Add a group set To add a group set, users have to provide name, description,

and a property to classify the group set as a compulsory or

not. The length of name and description is between 2 and 255.

Compulsory property has a combo box with two predefined

value Yes and No.

If the compulsory property is Yes, there must be one

organization unit group to be selected. Otherwise, no unit

group is required.

 Edit a group set The requirement of input values is similar to adding a group

set function

 Delete a group set The program must ask users for confirmation. Unit group set

can be deleted only when it contains no organization unit

Thanh Ngoc Nguyen Building a tool for Category Partition automation

12

group

Hierarchy operators

 Move an organization

unit

Users select a organization unit called orgA to be moved and

after that select a parent organization unit for orgA. If no

parent organization unit is selected, orgA will become a root.

An organization unit can not be moved to itself. If orgA has

children, they will also to be moved with it.

Table 1: Module specification

3.4 Building an automation tool for generating test frames based on test specification using CPM

3.4.1 Standardization of test specification language (TSL)

TSL was first proposed by Ostrand and Balcer (1988). According to this language, categories and choices are presented as a

list of rows. Properties of choices are specified by the syntax [property X, Y] with X and Y as properties separated by a

comma. There are two special annotations [error] and [single] which are are used to reduce the number of possible

combinations. The [error] property assigned to the choices that represent error condition while the [single] property assigned

to the choices that are not to be combined with choices of other parameters (Mathur 2008). Though the TSL proposed by

Ostrand and Balcer (1988) is simple and easy to understand, it has some limitations. First, the characters [and] used for

describing properties of choices take testers longer time to type. Second, it is written as a text file, therefore, difficult for a

program to process.

3.4.2 A revised TSL

To make it more effective, I propose a modified version of TSL in order to overcome the challenges in the original TSL. The

modified TSL employs a column-oriented approach that places category, choice, property, and condition into different

columns. With this approach, testers can save certain amount of time in typing the special characters [,], but still keep the

readability of the language . The modified TSL is described in the following table:

STT Change

1 Category, partition, property, and

constraints are placed in four different

columns

2 Remove the open and close character: [

and]

3 Remove the keyword: if

Thanh Ngoc Nguyen Building a tool for Category Partition automation

13

Table 2: Simplified TSL

3.4.3 Using Excel file as input/output

There are different alternatives for input formats such as hierarchy structure xml, comma separated value (csv) file, relational

database structure, and excel. I decided to select Excel because of several reasons.

First, it is one of the most common used programs including browser, and word processor. To make it possible for testers

who do not have deep technical understanding to use this category partition method, Excel appears to be a good choice.

Second, time to produce test specification should be minimized. Building categories, participation, and their constraints is not

always a straightforward process. Easy re-factoring, i.e. changing or updating partitions and constraints, can help to increase

chance to have good test sets and allow testers to save time in unnecessary steps.

Third, Excel allows a systematic way of storing test specification and test set, easy to be retrieved and transferred.

3.4.4 Building algorithm

- Class design:

The tool consists of the following classes:

a. Category

b. Choice

c. Property

d. CPGenerator

Each category has a list of choices and each choice has a list of properties and conditions. The CPGenerator is the main class

that read the Excel file, build the data structure from the file, and create the test frames.

- Algorithm: the CPGenerator class has a main method called buildTestFrames and other supporting methods. The algorithm

for buildTestFrames method can be described in pseudo code as follows:

a. Reading the input Excel file

b. Building a data structure of the test specification from the Excel file

c. Create test frame with error annotation

d. Create test frame with single annotation

e. Create test frame remaining

Test frames created in step c, d, and e are inserted into a new Excel file.

3.5 Initial results

In this section, I applied the tool developed in the previous section to test the SUT described in the case study. The following

steps have been done:

Thanh Ngoc Nguyen Building a tool for Category Partition automation

14

- Build the categories, choices, and constraints using the revised TSL (Excel file as input)

- Apply the tool for the case to build the test set (Excel file as output)

- Run the test set manually

The test specification, the test frame generated by the tool, and the results of test cases are presented as follows:

3.5.1 Organization unit functionalities

Adding:

Test specification

Categories Partitions Properties Conditions

openingdate

 null error

 valid

 notvalid error

closingdate

 null single

 valid and >= openingdate

 valid and < openingdate error

 notvalid error

selectedorg

 null single

 notnull

environment

 name not exist nameok

 shortname not exist shortnameok

 name exist nameok

 shortname exist shortnameok

 Table 3: Test specification of adding organization unit

Test frames

 No

Test frame

ID name shortname openingdate selectedorg environment

Expected

output Pass/Fail

1 length=0

 Error

message on

invalid

input

P

Thanh Ngoc Nguyen Building a tool for Category Partition automation

15

2 length=1

Error

message on

invalid

input

P

3 length>255

Error

message on

invalid

input

F

4 length=0

Error

message on

invalid

input

P

5 length>25

Error

message on

invalid

input

P

6 null

Error

message on

invalid

input

P

7 notvalid

Error

message on

invalid

input

P

8 3.2.2.1.1.1.1. length=2-255

length=2-

25 valid null

name not

exist

Add

successfully

a root

orgunit

P

9 3.2.2.2.1.1.1. length=2-255

length=2-

25 valid notnull

name not

exist

 Add

successfully

a non-root

orgunit

P

10 3.2.2.2.2.1.1. length=2-255

length=2-

25 valid notnull

shortname

not exist

 Add

successfully

a non-root

P

Thanh Ngoc Nguyen Building a tool for Category Partition automation

16

orgunit

11 3.2.2.2.3.1.1. length=2-255

length=2-

25 valid notnull name exist

 Error

message on

existing

name

P

12 3.2.2.2.4.1.1. length=2-255

length=2-

25 valid notnull

shortname

exist

 Error

message on

existing

shortname

P

Table 4: Test frames of adding organization unit, generated by the tool

Editing: the selected organization input is not available

Test specification

Categories Partitions Properties Conditions

name

 length=0 error

 length=1 error

 length=2-255 nameok

 length>255 error

shortname

 length=0 error

 length=2-25 shortnameok

 length>25 error

openingdate

 null error

 valid

 notvalid error

closingdate

 null single

 valid and >= openingdate

 valid and < openingdate error

 notvalid error

environment

 name not exist nameok

Thanh Ngoc Nguyen Building a tool for Category Partition automation

17

 shortname not exist shortnameok

 name exist nameok

 shortname exist shortnameok

Table 5: Test specification of editing organization unit

Test frames

 No

Test frame

ID name shortname openingdate closingdate environment

Expected

output Pass/Fail

1 length=0

 Error

message on

invalid

input

P

2 length=1

 Error

message on

invalid

input

P

3 length>255

 Error

message on

invalid

input

F

4 length=0

 Error

message on

invalid

input

P

5 length>25

 Error

message on

invalid

input

P

6 null

 Error

message on

invalid

input

P

7 notvalid

 Error

message on

invalid

input

P

8 3.2.2.1.1.1.1. length=2-255 length=2-25 valid null name not exist Update
P

Thanh Ngoc Nguyen Building a tool for Category Partition automation

18

successfully

orgunit

9

valid and <

openingdate

 Error

message on

invalid

input

P

10 notvalid

 Error

message on

invalid

input

P

11 3.2.2.2.1.1.1. length=2-255 length=2-25 valid

valid and >=

openingdate name not exist

 Update

successfully

orgunit

P

12 3.2.2.2.2.1.1. length=2-255 length=2-25 valid

valid and >=

openingdate

shortname not

exist

Update

successfully

orgunit

P

13 3.2.2.2.3.1.1. length=2-255 length=2-25 valid

valid and >=

openingdate name exist

Error

message on

existing

name

P

14 3.2.2.2.4.1.1. length=2-255 length=2-25 valid

valid and >=

openingdate

shortname

exist

Error

message on

existing

name

P

Table 6: Test frames of editing organization unit, generated by the tool

Deleting

Test specification

Categories Partitions Properties Conditions

environment

 orgunit contains a child

 orgunit contains no child

Table 7: Test specification of deleting organization unit

Test frames

Thanh Ngoc Nguyen Building a tool for Category Partition automation

19

 No

Test frame

ID environment

Expected

output Pass/Fail

1 1.1.1.1.1.1.1.

orgunit contains a

child

 Fail to

delete

2 2.1.1.1.1.1.1.

orgunit contains no

child

 Succeed

to delete

Table 8: Test frames of deleting organization unit, generated by the tool

3.5.2 Organization unit group

Adding

Test specification

Categories Partitions Properties Conditions

name

 length=0 error

 length=1 error

 length=2-255

 length>255 error

list of orgunit

 0 orgunit

 1 orgunit

 2 orgunit

environment

 name does not exist

 name exists single

Table 9: Test specification of adding organization unit group

Test frames

 No

Test frame

ID name

list of

orgunit environment Expected output Pass/Fail

1 length=0

 Error message on

invalid input

P

2 length=1

 Error message on

invalid input

P

3 length>255

 Error message on

invalid input

F

Thanh Ngoc Nguyen Building a tool for Category Partition automation

20

4 3.1.1.1.1.1.1.

length=2-

255 0 orgunit

name does not

exist

 Error successfully

group with 0

orgunit

P

5 3.3.1.1.1.1.1.

length=2-

255 2 orgunit

name does not

exist

 Error successfully

group with 2

orgunits

P

6 3.2.1.1.1.1.1.

length=2-

255 1 orgunit

name does not

exist

 Error successfully

group with 1

orgunit

P

7 3.2.2.1.1.1.1.

length=2-

255 1 orgunit name exists

Error message on

existing name

P

Table 10: Test frames of Test specification of adding organization unit group, generated by the tool

Editing

Test specification

Categories Partitions Properties Conditions

name

 length=0 error

 length=1 error

 length=2-255

 length>255 error

list of orgunit

 0 orgunit

 1 orgunit

 2 orgunit

environment

 name exists single

 name does not exist

Table 11: Test specification of Test specification of updating organization unit group

Test frames

 No

Test frame

ID name

list of

orgunit environment

Expected

output Pass/Fail

1 length=0

 Error

message on

invalid input

P

Thanh Ngoc Nguyen Building a tool for Category Partition automation

21

2 length=1

 Error

message on

invalid input

P

3 length>255

 Error

message on

invalid input

F

4 3.1.1.1.1.1.1. length=2-255 0 orgunit name exists

 Error

message on

existing name

P

5 3.1.2.1.1.1.1. length=2-255 0 orgunit

name does not

exist

 Update

successfully

group with 0

orgunit

P

6 3.2.2.1.1.1.1. length=2-255 1 orgunit

name does not

exist

 Update

successfully

group with 1

orgunit

P

7 3.3.2.1.1.1.1. length=2-255 2 orgunit

name does not

exist

 Update

successfully

group with 2

orgunit

P

Table 12: Test frames of Test specification of adding organization unit group, generated by the tool

Deleting

Test specification

Categories Partitions Properties Conditions

environment

 group has 1 orgunit

 group has 0 orgunit

Table 13: Test specification of deleting organization unit group

Test frame

 No

Test frame

ID environment Expected output Pass/Fail

1 1.1.1.1.1.1.1. group has 1 orgunit Fail to delete P

Thanh Ngoc Nguyen Building a tool for Category Partition automation

22

2 2.1.1.1.1.1.1. group has 0 orgunit Succeed to delete P

Table 14: Test frames of deleting organization unit group, generated by the tool

3.5.3 Group set

Adding

Test specification

Categories Partitions Properties Conditions

name

 length=0 error

 length=1 error

 length=2-255

 length>255 error

description

 length=0 error

 length=1 error

 length=2-255

 length>255 error

compulsory

 Yes

 No

list of group

 1 group

 2 groups single

 0 group

environment

 group set name exist single

 group set name does not exist

Table 15: Test specification of adding group set

Test frame

 name description compulsory

list of

group environment Expected output Pass/Fail

1 length=0

 Error message on

invalid input

P

2 length=1

 Error message on

invalid input

P

Thanh Ngoc Nguyen Building a tool for Category Partition automation

23

3 length>255

 Error message on

invalid input

P

4 length=0

 Error message on

invalid input

P

5 length=1

 Error message on

invalid input

P

6 length>255

 Error message on

invalid input

F

7 3.3.1.2.2.1.1.

length=2-

255

length=2-

255 Yes

2

groups

group set

name does

not exist

 Add successfully

group set with 2

groups

P

8 3.3.1.1.1.1.1.

length=2-

255

length=2-

255 Yes

1

group

group set

name exist

 Error message on

exisiting name

P

9 3.3.1.1.2.1.1.

length=2-

255

length=2-

255 Yes

1

group

group set

name does

not exist

 Add successfully

group set with 1

groups

P

10 3.3.1.3.2.1.1.

length=2-

255

length=2-

255 Yes

0

group

group set

name does

not exist

 Error message

when compulsory

is Yes but no group

is selected

P

11 3.3.2.1.2.1.1.

length=2-

255

length=2-

255 No

1

group

group set

name does

not exist

 Add successfully

group set with 1

groups

P

12 3.3.2.3.2.1.1.

length=2-

255

length=2-

255 No

0

group

group set

name does

not exist

 Add successfully

group set with 0

groups

P

Table 16: Test frames of group set, generated by the tool

Editing

Test specification

Categories Partitions Properties Conditions

name

 length=0 error

Thanh Ngoc Nguyen Building a tool for Category Partition automation

24

 length=1 error

 length=2-255

 length>255 error

description

 length=0 error

 length=1 error

 length=2-255

 length>255 error

compulsory

 Yes

 No

list of group

 1 group

 2 groups single

 0 group

environment

 group set name exist single

 group set name does not exist

Table 17: Test specification of editing group set

Test frame

 name description compulsory

list of

group environment Expected output Pass/Fail

1 length=0

 Error message on

invalid input

P

2 length=1

 Error message on

invalid input

P

3 length>255

 Error message on

invalid input

F

4 length=0

 Error message on

invalid input

P

5 length=1

 Error message on

invalid input

P

6 length>255

 Error message on

invalid input

P

Thanh Ngoc Nguyen Building a tool for Category Partition automation

25

7

3.3.1.

2.2.1.

1.

length=2-

255

length=2-

255 Yes 2 groups

group set

name does

not exist

 Add successfully

group set with 2

groups

P

8

3.3.1.

1.1.1.

1.

length=2-

255

length=2-

255 Yes 1 group

group set

name exist

 Error message on

existing name

P

9

3.3.1.

1.2.1.

1.

length=2-

255

length=2-

255 Yes 1 group

group set

name does

not exist

 Add successfully

group set with 1

groups

P

10

3.3.1.

3.2.1.

1.

length=2-

255

length=2-

255 Yes 0 group

group set

name does

not exist

 Error message when

compulsory is Yes

but no group is

selected

P

11

3.3.2.

1.2.1.

1.

length=2-

255

length=2-

255 No 1 group

group set

name does

not exist

 Add successfully

group set with 1

groups

P

12

3.3.2.

3.2.1.

1.

length=2-

255

length=2-

255 No 0 group

group set

name does

not exist

 Add successfully

group set with 0

groups

P

Table 18: Test frames of editing group set, generated by the tool

Deleting

Test specification

Categories Partitions Properties Conditions

environment

 group set contains a child

 group set contains no child

Table 19: Test specification of deleting group set

Test frame

 environment

Expected

output Pass/Fail

1 1.1.1.1.1.1.1.

group set

contains a child Fail to delete

P

Thanh Ngoc Nguyen Building a tool for Category Partition automation

26

2 2.1.1.1.1.1.1.

group set

contains no

child

 Succeed to

delete

P

Table 20: Test frames of deleting group set, generated by the tool

3.5.4 Hierarchy operators

Test specification

Categories Partitions Properties Conditions

orgunit to be moved

 non-root orgunit nonroot

 root orgunit

target orgunit

 same as the moving orgunit

 child of the moving orgunit

 parent of the moving orgunit nonroot

 brother of the moving orgunit

Table 21: Test specification of hierarchy operators

Test frame

orgunit to be

moved target orgunit Expected output Pass/Fail

1 1.1.1.1.1.1.1. non-root orgunit

same as the moving

orgunit

 Error message about one

group can not be moved to

itself

P

2 1.2.1.1.1.1.1. non-root orgunit

child of the moving

orgunit

 Error message about one

group can not be moved to

its children

P

3 1.3.1.1.1.1.1. non-root orgunit

parent of the

moving orgunit Successful but unchanged

P

4 1.4.1.1.1.1.1. non-root orgunit

brother of the

moving orgunit Successful move

P

5 2.1.1.1.1.1.1. root orgunit

same as the moving

orgunit

 Error message about one

group can not be moved to

itself

P

6 2.2.1.1.1.1.1. root orgunit

child of the moving

orgunit

 Error message about one

group can not be moved to

its children

P

Thanh Ngoc Nguyen Building a tool for Category Partition automation

27

7 2.4.1.1.1.1.1. root orgunit

brother of the

moving orgunit Successful move

P

Table 22: Test frames of hierarchy operators, generated by the tool

4 ANALYSIS OF THE RESULTS

4.1 Analyzing the results

4.1.1 Effectiveness of CPM:

By using the tool, a test set was created comprising 87 test cases for four sub-functionalities: organization unit, group, group

set, and hierarchy operator. This number of test cases is feasible for testers to test in practice given the time constraint. It is

also very much smaller compared to the number of possible test cases when not using CPM. The equivalence partition

method would result in a huge number of test cases. For example, in the adding organization unit functionality alone, there

are 5 categories containing 4, 3, 3, 2, 4 partitions respectively, the number of test case for this situation is 4x3x3x2x4 = 288

test cases. For all the functionalities of the organization unit management module, number of test cases can end up at

thousands. This is not feasible to test in practice.

4.1.2 Effectiveness of the tool:

During the case study, the tool has helped me to rebuild the test frames quickly whenever I discovered a mistake in defining

categories and choices.

For example, the following table shows how the tool can help to rebuild the test frame table if testers make a mistake in

writing test specification. This table is related to the hierarchy operator functionality.

In the specification Before, I made mistake when forgetting to define a constraint for orgunit to be moved and the target

orgunit. The consequence was a test frame which combined root orgunit and its parent was built. However, this combination

was invalid and could not possible in practice. By creating a constraint, as showed in the specification After, the test frames

did not contain that ill-logical combination.

 Before After

Sp
ec

ifi
ca

tio
n

Categories Partitions Properties Conditions

orgunit to be
moved
 non-root orgunit

 root orgunit
target orgunit

same as the moving
orgunit

child of the moving
orgunit

parent of the moving
orgunit

brother of the moving
orgunit

Categories Partitions Properties Conditions

orgunit to be
moved
 non-root orgunit nonroot
 root orgunit
target orgunit

same as the moving
orgunit

child of the moving
orgunit

parent of the moving
orgunit nonroot

brother of the moving
orgunit

Thanh Ngoc Nguyen Building a tool for Category Partition automation

28

Te
st

 fr
am

e

 No orgunit to be moved target orgunit

1 non-root orgunit
same as the moving
orgunit

2 non-root orgunit
child of the moving
orgunit

3 non-root orgunit
parent of the moving
orgunit

4 non-root orgunit
brother of the moving
orgunit

5 root orgunit
same as the moving
orgunit

6 root orgunit
child of the moving
orgunit

7 root orgunit
parent of the moving
orgunit

8 root orgunit
brother of the moving
orgunit

 No orgunit to be moved target orgunit

1 non-root orgunit same as the moving orgunit

2 non-root orgunit child of the moving orgunit

3 non-root orgunit parent of the moving orgunit

4 non-root orgunit

brother of the moving

orgunit

5 root orgunit same as the moving orgunit

6 root orgunit child of the moving orgunit

7 root orgunit

brother of the moving

orgunit

Table 23: Test frames generated before and after changing the properties

Another example of this kind of mistakes was in the updating group functionality which is summarized in the following

table:

 Before After

Sp
ec

ifi
ca

tio
n

Categories Partitions Properties Conditions

name

 length=0 error

 length=1 error

 length=2-255

 length>255 error

list of orgunit

 0 orgunit single

 1 orgunit

 2 orgunit single

environment

 name exists

 name does not exist

Categories Partitions Properties Conditions

name

 length=0 error

 length=1 error

 length=2-255

 length>255 error

list of orgunit

 0 orgunit

 1 orgunit

 2 orgunit

environment

 name exists single

 name does not exist

Te
st

 fr
am

e

name

list of
orgunit environment

1 length=0

2 length=1

3 length>255

4 length=2-255 0 orgunit name exists

5 length=2-255 2 orgunit name exists

6 length=2-255 1 orgunit name exists
7 length=2-255 1 orgunit name does not exist

 No name

list of

orgunit environment

1 length=0

2 length=1

3 length>255

4 length=2-255 0 orgunit name exists

5 length=2-255 0 orgunit name does not exist

6 length=2-255 1 orgunit name does not exist

7 length=2-255 2 orgunit name does not exist

Table 24: Test frames generated before and after adding annotation Single to environment partition: name does not exist

Thanh Ngoc Nguyen Building a tool for Category Partition automation

29

The table shows that the Before Specification led to three redundant test frames which are marked as red color. When the

group name exists in the system, test cases combing that existing group name with three different options of list size are not

useful at all because the system behaves the same: checking and showing error message on the existing name. By using the

tool, new test frames table was re-generated quickly by making a change in the test specification: adding [single] to the

choice “name exists”.

4.1.3 Results of running the test set:

Manual running the test set built the previous section produced the results with six failed test cases. All of them are related to

the length of input value.

The defect rate = 6/87 *100 = 6.98 %

This result can derive several notices:

- The organization unit management module is an advanced module and mostly used by super users. In all the

countries, this module was used exclusively by the HISP team. The organization unit hierarchy for each country was

given as “factory setting”. If the module had been used by the end users, probably these bugs could have been

reported.

- This is a very simple module but there are bugs on it. Applying CPM in other complicated modules could reveal

more bugs.

- Applying method like CPM can increase the confidence in order to release the product. It also helps to estimate time

for testing, hence, making better project planning.

4.1.4 The relations between graphical user interface (GUI) design and CPM:

Mathur (2008) have several discussions on the relations between GUI and equivalence class. He argues that if the GUI can

prevent invalid input, there is no need for equivalence class on such invalid values (p.110, p.117). It means that testers do not

need to build such test cases. I think that argument is also applied in the case of CPM. For example, in the Group Set

functionality, there is a property called Compulsory. This property is implemented as a combo box with two options Yes or

No. With this design, there is no chance for users to input invalid values such as numbers and other strings. Therefore, test

design must take into account GUI design (Mathur 2008) in order to have a small and feasible test sets. On the other hand,

the GUI design should also be based on test design (Mathur 2008).

It is also worth to notice that in the adding organization unit functionality, the property Open Date and Closing Date are

slightly different from the case described above. These properties accept only valid date. However, they allow users to either

select a date from a date picker or type in a text box. The reason for this is because typing a date is faster compared to

selecting from the date picker. As a result, testers have to build test cases based on the both of the use cases: selecting date

from date picker and free text typing.

Thanh Ngoc Nguyen Building a tool for Category Partition automation

30

4.2 Summary of important results

- The case study shows that CPM is a very effective method especially for web based and enterprise application such

as DHIS2. When several techniques of white box testing seem difficult to apply, black box testing technique

becomes an obvious choice.

- A tool has been developed to automate the test frame building process from the test specification. This tool allows

testers to define categories, choices, and constraints quickly with simple Excel file as input.

- A module of DHIS2 software - organization unit module - has been used as an empirical case to experiment the

effectiveness of the tool. As presented in the case study section, the tool appears to be productive in helping testers

to save time in building test sets and increase quality of test cases by offering the refactoring functionalities, i.e.

testers can re-build test frames when changing the test specification.

5 LESSONS LEARNED AND OPEN ISSUES

5.1 Lesson learned

Through this project, I have learned many things which will be useful for my work:

- The important role of testing in producing high quality software

- Assess the adequacy of a test set based on coverage criteria. Know how to improve the quality of test set.

- Know how to apply systematic testing to a particular system

- Partially address the problem of quality in DHIS2 software. The result of this project can serve as a departure to
apply testing for the rest of modules in DHIS2.

5.2 Practical and technical difficulties

While doing this assignment, I encountered several difficulties. The first challenge I find hard to overcome is how to select a

good project. Testing is a very broad topic with many different approaches, techniques, and categories. Therefore selecting

appropriate methods requires experience but also contains risks. There is a big chance for selecting wrong approaches. It is

hard to find a neither too big nor too small system in order to test. Therefore, I have to select a business web application.

Second, tools for testing are plenty but not-all-of-them are good. Many OSS testing projects are outdated, creating difficulties

on acquiring supports and being compatible of newer versions of other software, i.e. JDK 1.6. Working through all the tools

require enormous amount of time. Moreover, there are lacking lots of tools for automatically generating test cases based on

test specification. For example, there is no tool for common used methods like Category Partition Method and Cause Effect

Graph Method3

3 Indeed, there is tool called BenderRBT for cause effect graph but it is not OSS (http://benderrbt.com/)

. Available mutation testing tools such as MuClipse, Jester etc do not support Spring Dependency Injection,

i.e. which class to be called is declared in a applicationContext.xml file. Mutation tools while creating new mutant class do

Thanh Ngoc Nguyen Building a tool for Category Partition automation

31

not make the change in the applicationContext.xml file accordingly making the mutant class unable to run. This is practically

difficult for those who select white box testing on Spring based web application.

Third, analyzing the results of the case study seems very difficult task. I was very confused about what contribution this

project can make. Is it to find as many bug of the SUT as possible? Or should it aim to prove that a certain method is better

than another by using empirical data from the case study? Or a combination of all?

5.3 Discussion, limitation, and future research

The tool can help test engineers build the test set quickly; however, there is a large space open for future research.

- The tool needs to be extended in order to address the issue of limitation in the number of inputs. Currently only

maximum seven inputs are allowed.

- The process to automatically generate test script from test frames as described in Step 8 in Ostrand and Balcer -

1988 is not possible in this case study. I could not manage do find a systematic way to run the test automatically.

Though I could manually record test executions by using Selenium4

- More research needs to be done to compare the productivity and the quality of the test sets between two groups of

testers: using the tool and not using the tool.

, save them in Java code, and run them later.

Due to the time constraints, several ideas have not been implemented in this project. If I could have had more time, I will try

to do the following things:

- Compare Category Partition with Cause Effect Graph (CEG) to see which method is better in detecting bugs. I also

plan to make a tool to build the cause-effect graph using language like XML. I believe CEG can enable automating

test case generation because each Cause has only two values: true or false. By assigning each case (true or false) a

particular value, it is possible to develop a tool to read these values to build test cases.

- Run the test cases developed by CPM against the source code to measure the coverage of code executed by these

test cases. This combination of black box and white box techniques could create a better understanding the

(possible) relationship between the two approaches. Therefore, in the case of available source code, testers can know

the adequacy of their test sets.

4 http://seleniumhq.org/

Thanh Ngoc Nguyen Building a tool for Category Partition automation

32

6 REFERENCES

Book:

A. Mathur, Foundations of Software Testing, Pearson Education, 2008

M. Pezze and M. Young, Software Analysis and Software Testing, Wiley, 2007

Paper

T. Y. Chen and Pak-Lok Poon, Experience With Teaching Black-Box Testing in a Computer Science/Software Engineering

Curriculum, IEEE TRANSACTIONS ON EDUCATION, VOL. 47, NO. 1, FEBRUARY 2004

Xu Baowen* ** Nie Changhai* Shi Qunfeng* Lu Hong*, AN ALGORITHM FOR AUTOMATICALLY GENERATING

BLACK-BOX TEST CASES 1, Vol.20 No.1 JOURNAL OF ELECTRONICS Jan. 2003

Grottke, M.; K.S. Trivedi; “Fighting Bugs: Remove, Retry, Replicate, and Rejuvenate,” IEEE Computer, vol. 40, no. 2, 2007,

p. 107-109

T.Y. Chen; P.-L. Poon; T.H. Tse; “A Choice Relation Framework for Supporting Category-Partition Test Case Generation,”

IEEE Transactions on Software Engineering, vol. 29, no. 7, 2003, p. 577-593

T.Y. Chen; P.-L. Poon; T.H. Tse; “An Integrated Classification-tree Methodology for Test Case Generation,” International

Journal of Software Engineering and Knowledge Engineering, vol. 10, no. 6, 2000, p. 647-679.

 Grochtmann, M.; K. Grimm; “Classification Trees for Partition Testing,” Software Testing, Verification and Reliability, vol.

3, no. 2, 1993, p. 63-82.

Beizer, B.; Software Testing Techniques, Van Nostrand Reinhold, USA, 1990

Krishnan, R.; S.M. Krishna; P.S. Nandhan; “Combinatorial Testing: Learnings From Our Experience,” ACM SIGSOFT

Software Engineering Notes, vol. 32, no. 3, 2007, p. 1-8

Gary E. MogyorodiThe Journal for Software Testing Professionals, March, 2003: Requirements-Based Testing: Cause-

Effect Graphing

N. Amla and P. Ammann, “Using Z Specifications in Category-Partition Testing,” <i>Systems Integrity, Software Safety,

and Process Security: Building the Right System Right: Proc. Seventh Ann. IEEE Conf. Computer Assurance (COMPASS

'92),</i> pp. 3-10, 1992.

http://softestserv.ca/RBT_Cause-Effect_Graphing2.pdf�
http://softestserv.ca/RBT_Cause-Effect_Graphing2.pdf�

Thanh Ngoc Nguyen Building a tool for Category Partition automation

33

P. Ammann and J. Offutt, “Using Formal Methods to Derive Test Frames in Category-Partition Testing,” <i>Safety,

Reliability, Fault Tolerance, Concurrency, and Real Time Security: Proc. Ninth Ann. Conf. Computer Assurance

(COMPASS '94),</i> pp. 69-79, 1994.

M. Grochtmann and K. Grimm, “Classification Trees for Partition Testing,” <i>Software Testing, Verification and

Reliability,</i> vol. 3, no. 2, pp. 63-82, 1993.

A.J. Offutt and A. Irvine, “Testing Object-Oriented Software Using the Category-Partition Method,” <i>Proc. 17th Int'l Conf.

Technology of Object-Oriented Languages and Systems (TOOLS 17),</i> pp. 293-304, 1995.

Thanh Ngoc Nguyen Building a tool for Category Partition automation

34

7 APPENDICES

7.1 The source code of the tool developed in the project

Category.java
package org.hisp.dhis.oum.functional.automation;

import java.util.Collection;

public class Category {

 private String name;

 private int position;

 private int cellPosition;

 private Collection<Choice> partitions;

 private int start;

 private int end;

 public Category() {
 super();
 }

 public Category(String name) {
 super();
 this.name = name;
 }

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 public int getPosition() {
 return position;
 }

 public void setPosition(int position) {
 this.position = position;
 }

 public int getCellPosition() {
 return cellPosition;
 }

 public void setCellPosition(int cellPosition) {
 this.cellPosition = cellPosition;
 }

 public Collection<Choice> getPartitions() {
 return partitions;
 }

 public void setPartitions(Collection<Choice> partitions) {
 this.partitions = partitions;
 }

 public int getStart() {
 return start;
 }

 public void setStart(int start) {
 this.start = start;
 }

 public int getEnd() {
 return end;
 }

 public void setEnd(int end) {
 this.end = end;
 }
}

Choice.java
package org.hisp.dhis.oum.functional.automation;

Thanh Ngoc Nguyen Building a tool for Category Partition automation

35

import java.beans.PropertyVetoException;
import java.util.Collection;

public class Choice {

 private String name;

 private int position;

 private int cellPosition;

 private Category category;

 private Property property;

 private String sProperty;

 private String sCondition;

 private Collection<String> conditions;

 private Collection<Property> properties;

 public Collection<Property> getProperties() {
 return properties;
 }

 public void setProperties(Collection<Property> properties) {
 this.properties = properties;
 }

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 public int getPosition() {
 return position;
 }

 public void setPosition(int position) {
 this.position = position;
 }

 public int getCellPosition() {
 return cellPosition;
 }

 public void setCellPosition(int cellPosition) {
 this.cellPosition = cellPosition;
 }

 public Category getCategory() {
 return category;
 }

 public void setCategory(Category category) {
 this.category = category;
 }

 public Property getProperty() {
 return property;
 }

 public void setProperty(Property property) {
 this.property = property;
 }

 public Collection<String> getConditions() {
 return conditions;
 }

 public void setConditions(Collection<String> conditions) {
 this.conditions = conditions;
 }

 public String getSProperty() {
 return sProperty;
 }

 public void setSProperty(String property) {
 sProperty = property;
 }

 public String getSCondition() {
 return sCondition;
 }

Thanh Ngoc Nguyen Building a tool for Category Partition automation

36

 public void setSCondition(String condition) {
 sCondition = condition;
 }

}

Property.java
package org.hisp.dhis.oum.functional.automation;

public class Property {

 private String name;

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 public Property(String name) {
 super();
 this.name = name;
 }

}

CPGenerator.java
package org.hisp.dhis.oum.functional.automation;

import java.io.File;
import java.text.DateFormat;
import java.text.SimpleDateFormat;
import java.util.ArrayList;
import java.util.Collection;
import java.util.Date;
import java.util.List;
import java.util.Locale;

import jxl.Cell;
import jxl.Sheet;
import jxl.Workbook;
import jxl.WorkbookSettings;
import jxl.write.Label;
import jxl.write.WritableCellFormat;
import jxl.write.WritableFont;
import jxl.write.WritableSheet;
import jxl.write.WritableWorkbook;

public class CPGenerator {

 private static String ERROR = "error";
 private static String SINGLE = "single";

 public int buildTestFrames(String dir, String inputFile, int sheet) throws Throwable
 {

 //////////NOW OPEN INPUT FILE AND PROCESS ///////////////
 Workbook rworkbook = Workbook.getWorkbook(new File(dir + inputFile));
 Sheet rsheet = rworkbook.getSheet(sheet);

 //////////CREATE A SHEET FOR OUTPUT DATA
 DateFormat dateFormat = new SimpleDateFormat("yyyyMMdd HHmmss");
 Date date = new Date();
 String today = dateFormat.format(date);

 String filename = dir + ""+ inputFile+ today.toString() +"_output_"+sheet+"_"+rsheet.getName()+".xls";

 WorkbookSettings ws = new WorkbookSettings();
 ws.setLocale(new Locale("en", "EN"));
 WritableWorkbook workbook = Workbook.createWorkbook(new File(filename), ws);
 WritableSheet s = workbook.createSheet("Sheet"+sheet, sheet);

 // Format the Font
 WritableFont wf = new WritableFont(WritableFont.ARIAL, 10,
 WritableFont.BOLD);
 WritableCellFormat cf = new WritableCellFormat(wf);
 cf.setWrap(true);

 Cell[] cells = rsheet.getColumn(0);

 List<Category> categories = new ArrayList<Category>();

Thanh Ngoc Nguyen Building a tool for Category Partition automation

37

 int k=0;
 for(Cell cell: cells)
 {
 if(cell.getContents().trim().length()>0)
 {
 Category category = new Category(cell.getContents());

 category.setPosition(cell.getRow());

 categories.add(category);
 }
 k++;
 }

 Cell[] cellPartitions = rsheet.getColumn(1);
 Cell[] cellProperties = rsheet.getColumn(2);
 Cell[] cellConditions = rsheet.getColumn(3);

 int j=0;
 for(int i=0;i<categories.size();i++)
 {
 Category cat = categories.get(i);

 List<Choice> partitions = new ArrayList<Choice>();

 j= categories.get(i).getPosition()+1;
 int parid =1;
 while(cellPartitions[j].getContents().length()>0)
 {

 Choice partition = new Choice();
 partition.setPosition(parid);
 partition.setName(cellPartitions[j].getContents().trim());

 partition.setSProperty(cellProperties[j].getContents().trim());
 partition.setSCondition(cellConditions[j].getContents().trim());

 partition.setCategory(cat);

 //deprecated
 String propertyName = cellProperties[j].getContents().trim();

 if (propertyName.trim()!=null)
 {
 partition.setProperty(new Property(propertyName));
 }

 //inserting list of properties
 String property = cellProperties[j].getContents().trim();
 List<Property> properties = new ArrayList<Property>();

 if(property.trim()!=null)
 {
 String[] proarray = property.split(",");

 for(String pro: proarray)
 {
 properties.add(new Property(pro.trim()));
 }

 partition.setProperties(properties);

 }//if

 //inserting list of conditions
 String condition = cellConditions[j].getContents();

 List<String> conditions = new ArrayList<String>();

 if(condition.trim()!=null)
 {
 String[] conarray = condition.split(",");

 for(String con: conarray)
 {
 conditions.add(con.trim());
 }

 partition.setConditions(conditions);

 }//if

 partitions.add(partition);
 parid++;
 j++;

 }//while

 categories.get(i).setPartitions(partitions);
 //break;
 }//big for

Thanh Ngoc Nguyen Building a tool for Category Partition automation

38

 ////////////////////START TO WRITE TEST CASE TO SHEET NOW////////////////
 int collumn = 2;
 Label l = null;

 for(Category category: categories)
 {
 //first setup the title
 l = new Label(collumn, 0, category.getName() , cf);
 s.addCell(l);
 collumn++;
 }

 //write expected output and pass/fail
 l = new Label(collumn++, 0, "Expected output" , cf);
 s.addCell(l);
 l = new Label(collumn++, 0, "Pass/Fail" , cf);
 s.addCell(l);

 ////////////////////FOR ALL ERROR AND SINGLE TEST CASE////////////////
 collumn = 2;
 int row = 1;
 int testCaseNo = 1;
 String testFrame = "";

 for(Category category: categories)
 {
 for(Choice partition: category.getPartitions())
 {
 //for error
 if(partition.getName().trim().length()>0 &&
partition.getProperty().getName().trim().equals(ERROR))
 {
 //setup test case no
 l = new Label(0, testCaseNo, String.valueOf(testCaseNo) , cf);
 s.addCell(l);

 l = new Label(collumn, row, partition.getName() , cf);
 s.addCell(l);

 row++;
 testCaseNo++;
 }

 //for single
 if(partition.getName().trim().length()>0 &&
partition.getProperty().getName().trim().equals(SINGLE))
 {
 //test case no
 l = new Label(0, testCaseNo, String.valueOf(testCaseNo) , cf);
 s.addCell(l);

 //for the rest of input
 int subcolumn = 2;
 for(Category cat: categories)
 {
 Choice par = getValidPartitionFromCategory(cat);

 //if encounter this cat
 if(partition.getCategory().getName().equals(cat.getName()))
 {
 l = new Label(collumn, row, partition.getName() , cf);
 s.addCell(l);
 testFrame += partition.getPosition()+ ".";
 }
 else
 {
 l = new Label(subcolumn, row, par.getName() , cf);
 s.addCell(l);

 testFrame += par.getPosition()+ ".";
 }

 subcolumn++;
 }

 //add testframe
 l = new Label(1, row, testFrame , cf);
 s.addCell(l);
 testFrame = "";
 //add the single itself

 row++;
 testCaseNo++;
 }

 }//for partition

 collumn++;
 }//for category

Thanh Ngoc Nguyen Building a tool for Category Partition automation

39

 /////////////// NOW TAKE CARE THE REST WITH PROPERTY AND CONDITION/////////////////

 int count = 1;

 List<List<Choice>> combinations = new ArrayList<List<Choice>>();

 for(Choice par0: getCategoryById(categories, 0).getPartitions())
 {
 for(Choice par1: getCategoryById(categories, 1).getPartitions())
 {

 for(Choice par2: getCategoryById(categories, 2).getPartitions())
 {

 for(Choice par3: getCategoryById(categories, 3).getPartitions())
 {

 for(Choice par4: getCategoryById(categories, 4).getPartitions())
 {
 for(Choice par5: getCategoryById(categories, 5).getPartitions())
 {

 for(Choice par6: getCategoryById(categories,
6).getPartitions())
 {

 if(isNeitherErrorNorSingle(par6.getProperty().getName()) && isNeitherErrorNorSingle(par5.getProperty().getName()) &&
isNeitherErrorNorSingle(par4.getProperty().getName()) && isNeitherErrorNorSingle(par3.getProperty().getName()) &&
isNeitherErrorNorSingle(par2.getProperty().getName()) && isNeitherErrorNorSingle(par1.getProperty().getName()) &&
isNeitherErrorNorSingle(par0.getProperty().getName()))
 {

 List<Choice> combinationPars = new
ArrayList<Choice>();
 combinationPars.add(par0);
 combinationPars.add(par1);
 combinationPars.add(par2);
 combinationPars.add(par3);
 combinationPars.add(par4);
 combinationPars.add(par5);
 combinationPars.add(par6);

 if(isAValidCombination(combinationPars))
 {

 System.out.println(par0.getName()+" - "+ par1.getName()+" - "+ par2.getName()+" - "+ par3.getName()+" - "+ par4.getName()+" - "+
par5.getName()+" - "+ par6.getName());

 System.out.println(par0.getPosition()+"."+ par1.getPosition()+"."+ par2.getPosition()+"."+ par3.getPosition()+"."+
par4.getPosition()+"."+ par5.getPosition()+"."+ par6.getPosition());

 //write to cell

 int subcolumn = 2;
 for(int
m=0;m<7;m++)
 {
 l = new
Label(subcolumn, row, combinationPars.get(m).getName() , cf);

 s.addCell(l);

 testFrame += combinationPars.get(m).getPosition()+ ".";

 subcolumn++;
 }
 //testframe
 l = new Label(1,
row, testFrame , cf);
 s.addCell(l);
 //test no
 l = new Label(0,
testCaseNo, String.valueOf(testCaseNo) , cf);
 s.addCell(l);

 testFrame = "";
 row++;

 testCaseNo++;

 }

 count++;
 }//big if

 }//for 6

Thanh Ngoc Nguyen Building a tool for Category Partition automation

40

 }//for 5
 }//for 4
 }//for 3
 }//for 2
 }//for 1
 }//for 0

 workbook.write();
 workbook.close();

 return row;
 }//main

 //recursive funtion to create combinations
 public List<List<Choice>> createCombination(int n, List<List<Choice>> coms)
 {

 List<List<Choice>> combinations = null;
 if(n==0)return null;
 else
 {

 }
 return null;
 }

 //THE IDEA IS THAT ONE COMBINATION IS ONLY VALID IF
 //1. THEY ALL HAVE NO CONDITION
 //1. A COMBINATION OF: NO CONDITION PARTITION + IF THEY HAVE A CONDITION, THERE MUST BE A PARTITION WHICH CONTAIN THAT CONDITION
 private boolean isAValidCombination(Collection<Choice> pars) {

 boolean flag = false;
 int countTrue = 0;
 for(Choice par: pars)
 {
 System.out.println(par.getName());

 Collection<String> cons = par.getConditions();

 if(par.getConditions().size()>0)
 {

 int subcountTrue = 0;

 for(String con: cons)
 {
 if(isExisting(pars, con)) subcountTrue++;
 }

 if (subcountTrue==par.getConditions().size()) countTrue++;
 subcountTrue = 0;

 }
 else
 {
 countTrue++;
 }

 //countTrue++;
 }

 if (countTrue == pars.size()) return true;
 else return false;

 }

 public boolean isExisting(Collection<Choice> partitions, String property)
 {
 for(Choice par:partitions)
 {
 for(Property pro: par.getProperties())
 {
 if(pro.getName().equals(property))
 {
 return true;
 }
 }

 }
 return false;
 }

 //with cat as Category, get first valid partition in the cat
 public Choice getValidPartitionFromCategory(Category cat)
 {

 for(Choice par: cat.getPartitions())
 {
 if(!(par.getProperty().getName()).equals(ERROR) && !(par.getProperty().getName()).equals(SINGLE))
 return par;

 }

Thanh Ngoc Nguyen Building a tool for Category Partition automation

41

 return null;
 }

 public Category getCategoryById(Collection<Category> categories, int i)
 {

 int k = 0;
 for(Category cat: categories)
 {
 if (k==i) return cat;
 k++;
 }
 return null;
 }

 public boolean isNeitherErrorNorSingle(String s)
 {

 if (!s.trim().equals(ERROR) && !s.trim().equals(SINGLE))
 return true;
 else
 return false;
 }

 public Choice findPartitionByName(String partitionName, Collection<Category> categories)
 {
 for(Category cat: categories)
 {
 for(Choice par: cat.getPartitions())
 {
 if(par.getName().equals(partitionName)) return par;
 }

 }
 return null;
 }

 public Choice findPartitionByProperty(String property, Collection<Category> categories)
 {
 for(Category cat: categories)
 {
 for(Choice par: cat.getPartitions())
 {
 if(par.getProperty().getName().equals(property)) return par;
 }

 }
 return null;
 }

 public Collection<Choice> findPartitionsByProperty(String property, Collection<Category> categories)
 {
 Collection<Choice> partitions = new ArrayList<Choice>();

 for(Category cat: categories)
 {
 for(Choice par: cat.getPartitions())
 {
 if(par.getProperty().getName().equals(property))
 {
 partitions.add(par);
 //System.out.println(par.getName());
 }
 }

 }
 return partitions;
 }

 public String getCondition(Collection<String> cons, int i)
 {
 cons.iterator();
 return null;
 }
}

7.2 Source code being tested

Source code of the module can be downloaded at http://dhis2.org/downloads or check out using launch pad by invoking bzr
branch lp:dhis2

http://dhis2.org/downloads�

	ABSTRACT
	KEYWORDS: black box testing, category partition method, dhis2, testing

	1 INTRODUCTION
	1.1 Scope of project
	1.2 Goals of project
	1.3 Structure of the report

	2 BACKGROUND
	2.1 Why black box?
	2.2 Why category partition?
	2.3 Why test frame generator?

	3 DESIGN OF THE CASE STUDY
	3.1 Description of system under test (SUT)
	3.2 The dhis-web-maintainance-organisationunit module
	3.3 The requirement specification of the module
	3.4 Building an automation tool for generating test frames based on test specification using CPM
	3.4.1 Standardization of test specification language (TSL)
	3.4.2 A revised TSL
	3.4.3 Using Excel file as input/output
	3.4.4 Building algorithm

	3.5 Initial results
	3.5.1 Organization unit functionalities
	3.5.2 Organization unit group
	3.5.3 Group set
	3.5.4 Hierarchy operators

	4 ANALYSIS OF THE RESULTS
	4.1 Analyzing the results
	4.1.1 Effectiveness of CPM:
	4.1.2 Effectiveness of the tool:
	4.1.3 Results of running the test set:
	4.1.4 The relations between graphical user interface (GUI) design and CPM:

	4.2 Summary of important results

	5 LESSONS LEARNED AND OPEN ISSUES
	5.1 Lesson learned
	5.2 Practical and technical difficulties
	5.3 Discussion, limitation, and future research

	6 REFERENCES
	7 APPENDICES
	7.1 The source code of the tool developed in the project
	7.2 Source code being tested

