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Subdivision surfaces
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2. Chaikin’s scheme

3. General subdivision schemes

4. Bi-quadratic and bi-cubic subdivision

5. Subdivision surfaces: Catmull-Clark and Loop
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Subdivision of Bezier Curves

We saw in the last chapter how the de Casteljau algorithm both evaluates

the curve and divides it into two.
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If we divide a cubic curve at its (parametric) midpoint, the initial control

points p0, p1, p2, p3 are replaced by the new control points

ℓ0 = p0

ℓ1 = (p0 + p1)/2,

ℓ2 = (p0 + 2p1 + p2)/4,

ℓ3 = r0 = (p0 + 3p1 + 3p2 + p3)/4,

r1 = (p1 + 2p2 + p3)/4,

r2 = (p2 + p3)/2,

r3 = p3.

Under repeated division, called subdivision, the control polygon converges

to the curve. After only a few iterations the polygon is so close to the curve

that we can simply render the polygon rather than the curve.
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Subdivision curves

A subdivision curve is a curve generated by iterative refinement of a given

polygon, called the control polygon. The limit curve can be rendered by

simply rendering the polygon resulting from sufficiently many refinements.

Both Bezier curves and spline curves are subdivision curves. For example,

Chaikin’s scheme generates a C1 quadratic spline curve with uniform knots.
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From a control polygon . . . , vi−1, vi, vi+1, . . ., we generate a refined
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The full subdivision scheme is as follows.

1. Set v0
i = vi, for all i ∈ ZZ.

2. For n = 1, 2, . . ., set
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The number of points doubles at each iteration. Here is the limiting curve:
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The general (linear) subdivision scheme is

vn
i =

∑

k∈ZZ

ai−2kvn−1

k ,

where a0, a1, . . . , am is the (finite) subdivision mask (all other ai are

zero). The mask for Chaikin’s scheme is

( a0 a1 a2 a3 ) = ( 1

4

3

4

3

4

1

4
) .

The mask can be split into two masks, for even and odd indexes separately:

v2i =
∑

k∈ZZ

a2kvn−1

i−k ,

v2i+1 =
∑

k∈ZZ

a2k+1v
n−1

i−k ,

In Chaikin’s scheme, these equations become
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and the two masks are

( a0 a2 ) = ( 1

4

3

4
) and ( a1 a3 ) = ( 3

4

1

4
) .
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Another example is a C2 cubic spline curve (again with uniform knots).

The mask is

( a0 a1 a2 a3 a4 ) =
1

8
( 1 4 6 4 1 ) .

If we split into the two masks (a0, a2, a4) and (a1, a3), we get the scheme

vn
2i =

1

8
(vn−1

i + 6vn−1

i−1 + vn−1

i−2 ),

vn
2i+1 =

1

2
(vn−1

i + vn−1

i−1
).
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A uniform Cd−1 spline curve of degree d can be generated by the mask

( a0 a1 . . . ad+1 ) =
1

2d
(
(
d+1

0

) (
d+1

1

)
. . .

(
d+1

d+1

)
) .
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Subdivision surfaces

These are generated by iterative refinement of a polygonal mesh, usually

with four-sided faces (quadrilateral meshes) or three-sided faces (triangle

meshes).
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For uniform (‘structured’) meshes, the limit surface is a spline surface.

We get a tensor-product spline surface from a rectangular mesh, and a

‘box-spline’ surface from a triangular mesh.

Triangular gridRectangular grid

For non-uniform (‘unstructured’) meshes, the limit surface has no

closed form. However, the surface is locally a spline surface, except at

so-called extraordinary points.

Quadrilateral mesh Triangular mesh
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Tensor-product subdivision on rectangular grids.

Example 1. Chaikin (C1 biquadratic).
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There are four submasks

1

16

(
3 1
9 3

)

,
1

16

(
1 3
3 9

)

,
1

16
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3 1

)
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1
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They are tensor-products of the quadratic curve masks. For example
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Example 2. C2 bicubic.
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The mask for cubic curves is

( a0 a1 a2 a3 a4 ) =
1

8
( 1 4 6 4 1 ) .

and the two submasks are

1

8
( 1 6 1 ) and

1

2
( 1 1 ) .
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If we take tensor-products of these two submasks we get the four bicubic

masks

1

64





1 6 1
6 36 6
1 6 1
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.

These are used to compute the four new points
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Catmull-Clark subdivision surfaces

This is a generalization of the C2 bicubic scheme to an arbitrary quadri-

lateral mesh. The limit surface is C2 except at extraordinary points.
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It is enough to define the masks associated with the following figure. In the

figure, 5 faces meet at the vertex v. In general there will be N faces. In the

‘canonical’ case we have N = 4.
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As for the N = 4 bicubic case, there are three types of points: vertex points

v, edge points e, and face points f , and there are three associated masks.
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The algorithm goes in three steps.

Step 1. Compute the new face points. We use Mask C as before:

fn
i =

1

4
(vn−1 + en−1

i + en−1

i+1 + fn−1

i ).

Step 2. Compute the new edge points. We use Mask B as before:

en
i =

1

16
(en−1

i−1 + fn−1

i−1 + 6vn−1 + 6en−1

i + en−1

i+1 + fn−1

i ).

Using the new face points fn
i computed in the first step, this computation

reduces to

en
i =

1

4
(vn−1 + en−1

i + fn
i−1 + fn

i ).

Step 3. Compute the new vertex point. For N = 4 the rule for Mask A is

vn =
1

64

(

36vn−1 + 6
4∑

i=1

en−1

i +
4∑

i=1

fn−1

i

)

,

which can be expressed as

vn =
1

4

(

2vn−1 +
1

4

4∑

i=1

en−1

i +
1

4

4∑

i=1

fn
i

)

.

Catmull and Clark proposed the generalization

vn =
1

N

(

(N − 2)vn−1 +
1

N

N∑

i=1

en−1

i +
1

N

N∑

i=1

fn
i

)

.

This formula ensures C1 continuity at the extraordinary points. It can

be shown that C2 continuity at extraordinary points is impossible without

using larger masks.
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Doo-Sabin subdivision

As Catmull-clark subdivision surfaces generalize C2 bicubic spline surfaces,

Doo-Sabin subdivision surfaces generalize C1 biquadratic spline surfaces.

Tangent plane (C1) continuity is again achieved at the extrordinary points.

We will not give the details, just illustrate with the following example.
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Loop subdivision

This is a subdivision scheme for arbitrary triangle meshes, based on so-

called ‘box-splines’ (which is beyond the scope of this course), specifically

C2 quartic ‘box-splines.
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In this scheme we only compute vertex points and edge points, so there are

only two masks. After one subdivision step each former triangle is replaced

by four, a so-called 1-4 split.

Suppose we have the situation of the figure below.
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Here the number N of neighbouring triangles is 5. The ‘canonical’ case is

N = 6 in which case the scheme reduces to ‘box-spline’ subdivision, yielding

a C2 surface. The algorithm has just two steps.
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Step 1. Compute the new edge points by the rule

en
i =

1

8
(3vn−1 + 3en−1

i + en−1

i−1 + en−1

i+1 ).

Step 2. Compute the new vertex points. The rule for ‘box-splines’ in the

case N = 6 is

vn =
5

8
vn−1 +

3

8

(1

6

6∑

i=1

en−1

i

)

.

Loop proposed the generalization

vn = αNvn−1 + (1 − αN )
( 1

N

N∑

i=1

en−1

i

)

,

and showed that with the weighting

αN =
(3

8
+

1

4
cos(2π/N)

)2

+
3

8
,

the limit surface is C1 at the extraordinary points. The surface is a gener-

alization of a box-spline surface because α6 = 5

8
.
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