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Radial Function in Rs

Definition
Let s ∈ N and ‖ ‖ a norm on Rs . A function Φ : Rs → R is
called radial if

Φ(x) = ϕ(‖x‖), x ∈ Rs ,

for some univariate function ϕ : [0,∞)→ R.

I The norm is often the Euclidian norm ‖ ‖2.

I ‖ ‖ = ‖ ‖2 when nothing else is said.

I Radial: Φ(x) = ϕ(r) for all x with ‖x‖ = r .



Examples Φ(x) = ϕ(‖x‖)

ε ∈ R, ε 6= 0

I Gauss ϕ(r) = e−ε
2r2

,

I distance ϕ(r) = r ,

I cubic power ϕ(r) = r 3,

I thin plate spline ϕ(r) = r 2 log r

I multiquadric ϕ(r) =
√

1 + (εr)2,

I inverse multiquadric ϕ(r) = 1/
√

1 + (εr)2,

I Wendland’s C 0 compactly supported ϕ(r) = (1− r)2
+

I Wendland’s C 2 compactly supported
ϕ(r) = (1− r)4

+(4r + 1)



Subspaces of RN

The class of polynomials in s variables with real coefficients
and of total degree ≤ m are denoted by

Πm(Rs) := span{x i1
1 · · · x is

s : i1, . . . , is ≥ 0,
s∑

k=1

ik ≤ m}.

I To given distinct points X := {x1, . . . , xN} in Rs and a
nonnegative integer m we define a subspace of RN by

Sm(X) := {c ∈ RN :
N∑

k=1

ckp(xk) = 0, p ∈ Πm(Rs)}.

I We define S−1(X) := RN .



Subspaces of RN

Sm(X) := {c ∈ RN :
N∑

k=1

ckp(xk) = 0, p ∈ Πm(Rs)}.

I S0(X) = {c ∈ RN :
∑N

k=1 ck = 0}
I Given a basis q1, . . . , qM of Πm(Rs)

I Then
Sm(X) := {c ∈ RN :

∑N
k=1 ckqj(xk) = 0, j = 1, . . . ,M}.



RBF interpolation in Rs with polynomial precision

m
Given

I Distinct points x1, . . . , xN ∈ Rs .
I Ordinate-values fj = f (xj) representing an unknown

function f .
I A radial function Φ : Rs → R given by Φ(x) = ϕ(‖x‖)
I A basis q1, . . . , qM of Πm(Rs) (for example the powers)
I Linear combinations

Pf (x) :=
∑N

k=1 ckΦ(x− xk) +
∑M

k=1 dkqk(x)
Find

I c = [c1, . . . , cN ] and d = [d1, . . . , dM ] such that

Pf (xj) :=
N∑

k=1

ckΦ(xj − xk) +
M∑

k=1

dkqk(xj) =fj , j = 1, . . . ,N

N∑
k=1

ckqj(xk) =0, j = 1, . . . ,M .

I ¶f = f for all f ∈ Πm(Rs)



Linear system

I [
A BT

B 0

] [
c
d

]
=

[
f
0

]
,

I A = [Φ(xj − xk)] ∈ RN,N , B = [qj(xk)] ∈ RM,N .

I N + M linear equations in N + M unknowns.

I Symmetric coefficient matrix.



Non-negative Fourier transform

Theorem
Let Φ(x) = ϕ(‖x‖) be a radial function with nonnegative
Fourier transform not identically zero. For any distinct points
x1, . . . , xN the matrix

A := [Φ(xj − xk)] ∈ RN,N ,

is positive definite.



Discussion

I The Fourier transform can be used for Gaussian- and
compactly supported RBF’s. But,

I The distance function and thin plate and other examples
are not integrable so do not have a Fourier transform

I Alternatives:
I Nonnegativity of the generalized Fourier transform.
I Complete monotonicity



Positive definite on a subspace

Definition
Suppose A ∈ RN,N and S a subspace of RN . We say that A is
positive definite on S if AT = A and cTAc > 0 for all nonzero
c ∈ S.

I If A is positive definite on
S = ker(B) := {c ∈ RN : Bc = 0} and B ∈ RM,N has
linearly independent rows then the block matrix[

A BT

B 0

]
is nonsingular.

I Suppose S, T are subspaces of RN with S ⊂ T . If A is
positive definite on S then A is positive definite on T .



B full rank?

I Definition
We say that a set of points X = {x1, . . . , xN} ⊂ Rs is
m-unisolvent if p ∈ Πm(Rs) and p(xk) = 0 for k = 1, . . . ,N
implies p = 0.

I Lemma
Let B = [qj(xk)] ∈ RM,N , where N ≥ M, q1, . . . , qM is a basis
for Πm(Rs), and X = {x1, . . . , xN} ⊂ Rs are distinct points in
Rs . Then B has linearly independent rows if and only if X is
m-unisolvent.

I Proof: We have aTB = [p(x1), . . . , p(xN)] where
p(x) =

∑
ajqj(x). Thus aTB = 0⇒ a = 0 if and only if

p(xk) = 0 k = 1, . . . ,N ⇒ p = 0.



Example, Univariate natural cubic spline

interpolation

I ϕ(r) = r 3, Φ(x) = |x |3

I Pf (xj) =
∑N

k=1 ck |xj − xk |3 + d0 + d1xj = fj , j = 1, . . . ,N

I
∑

k ck = 0,
∑

k ckxk = 0.

I Matrix form[
A BT

B 0

] [
c
d

]
=

[
f
0

]
,A = [|xj−xk |3], B =

[
1 · · · 1
x1 · · · xN

]
.

I N + 2 equations in N + 2 unknowns.

I If A is positive definite on ker(B) and x1, . . . , xN are

distinct then

[
A BT

B 0

]
is non-singular.



Example Cubic power in R3, N ≥ 4
I ϕ(r) = r 3; Φ(x) = ‖x‖3 = (x2 + y 2 + z2)3/2

I Pf (x) :=
∑N

k=1 ckΦ(x− xk) + d1 + d2x + d3y + d4z ,

I
∑N

k=1 ckΦ(xj − xk) + d1 + d2xj + d3yj + d4zj = fj , j =
1, . . . ,N∑

k ck = 0,
∑

k ckxk = 0,
∑

k ckyk = 0,
∑

k ckzk = 0
I N + 4 equations in N + 4 unknowns.

I

[
A BT

B 0

] [
c
d

]
=

[
f
0

]
, A = [Φ(xj − xk)]

B =


1 1 · · · 1
x1 x2 · · · xN

y1 y2 · · · yN

z1 z2 · · · zN

 ∈ R4,N ,

I If A is positive definite on S1(X) and the xj are not on a

straight line then

[
A BT

B 0

]
is nonsingular.



Completely monotone functions

Definition
A function g ∈ C∞(0,∞) that satisfies

(−1)`g (`)(r) ≥ 0, r > 0, ` = 0, 1, 2, . . .

is called completely monotone on (0,∞). If in addition
g ∈ C [0,∞) then g is said to be completely monotone on
[0,∞).

Examples:

I g(r) = e−εr , ε ≥ 0, r ≥ 0

I g(r) = r−1/2, r > 0



Characterization of completely monotone functions

I There is a general result stating that g is completely
monotone if and only if it is the Laplace transform of a
finite nonnegative Borel measure on [0,∞). This is
known as the Hausdorff-Bernstein-Widdler theorem, see
Wendland 2005.

I We will only use a sufficient condition, namely that many
completely monotone functions g are the Laplace
transform of an admissible function w

g : [0,∞)→ R, g(r) :=

∫ ∞
0

w(x)e−xrdx .

I We say that w : (0,∞)→ R is admissible, if it is
piecewise continuous, nonnegative, nonzero and the
Laplace transform g of w exists.



Positive definite on a subspace

Theorem
Let ϕ ∈ C [0,∞) and ψ := ϕ(

√
·) ∈ C∞(0,∞) Suppose for a

nonnegative integer m that the derivative ψ(m+1) is the
Laplace transform of an admissible function w, i. e.,

ψ(m+1)(r) =

∫ ∞
0

w(x)e−xrdx , r > 0.

Let A := [Φ(xj − xk)] ∈ RN,N , where X = {x1, . . . , xN} are
distinct points in Rs . Then (−1)m+1A, is positive definite on
the subspace
Sm(X) := {c ∈ RN :

∑N
k=1 ckp(xk) = 0, p ∈ Πm(Rs)}.



Example Distance in Rs

I ϕ(r) = r , ψ(r) =
√

r .

I ψ′(r) = 1
2
r−1/2 is completely monotone

I ψ′(r) =
∫∞

0
w(x)e−xrdx , w(x) = 1

2
√
πx

.

I For
∫∞

0
= e−x√

x
dx = 2

∫∞
0

e−y2
dy =

∫∞
−∞ e−y2

dy =
√
π

I so
∫∞

0
e−rx
√
πx

dx = r−1/2
√
π

∫∞
0

e−y
√

y
dy = r−1/2.

I w is admissible.

I m = 0, −A is positive definite on S0 = {c :
∑

k ck = 0}
I From theorem last time it follows that A is nonsingular

(nonzero eigenvalues) for all s ≥ 1,N ≥ 2, and any
distinct x1, . . . , xN in Rs .

I Interpolation problem with reproduction of Πm also
non-singular for all m ≥ 0, s ≥ 1,N ≥ 2, and any distinct
x1, . . . , xN in Rs .



Example Cubic

I ϕ(r) = r 3, ψ(r) = r 3/2.

I ψ′′(r) = 3
4
r−1/2 is completely monotone

I ψ′′(r) =
∫∞

0
w(x)e−xrdx , w(x) = 3

4
√
πx

.

I w is admissible.

I m = 1, A is positive definite on S1(X)

I Interpolation problem with reproduction of linear
polynomials non-singular for all s ≥ 1,N ≥ 2, and any
distinct x1, . . . , xN in Rs that do not lie on a straight line.



Example Thin plate

I ϕ(r) = r 2 log r , ψ(r) = 1
2
r log r .

I ψ′′(r) = 1
2r

is completely monotone

I ψ′′(r) = 1
2

∫∞
0

e−xrdx , w(x) = 1
2
.

I w is admissible.

I m = 1, A is positive definite on S1(X)

I Interpolation problem with reproduction of linear
polynomials non-singular for all s ≥ 1,N ≥ 2, and any
distinct x1, . . . , xN in Rs that do not lie on a straight line.



Example Inverse Multiquadrics

I ϕ(r) = 1/
√

1 + (εr)2, ψ(r) = 1/
√

1 + ε2r , ε 6= 0

I ψ is completely monotone.

I ψ(r) =
∫∞

0
w(x)e−xrdx , w admissible.

I A is positive definite.



Example Multiquadrics

I ϕ(r) =
√

1 + (εr)2, ψ(r) =
√

1 + ε2r ,

I ψ′ is completely monotonic and the Laplace transform of
an admissible function w .

I −A is positive definite on S0.

I A is non-singular with N − 1 positive and one negative
eigenvalue.



Summary of Examples

I Gauss ϕ(r) = e−ε
2r2

, m = −1, A is positive definite

I inverse multiquadric ϕ(r) = 1/
√

1 + (εr)2, m = −1, A
is positive definite

I multiquadric ϕ(r) =
√

1 + (εr)2, m = 0 −A is positive
definite on S0

I distance ϕ(r) = r , m = 0 −A is positive definite on S0

I cubic power ϕ(r) = r 3, m = 1 A is positive definite on
S1

I thin plate spline ϕ(r) = r 2 log r m = 1 A is positive
definite on S1.



Lemma

Lemma
cT [‖xj − xk‖2`]c = 0, c ∈ Sm(X), 0 ≤ ` ≤ m.

I Proof:

I ‖xj − xk‖2` =
(
‖xj‖2 + ‖xk‖2 − 2xT

j xk

)`
,

I ‖xj − xk‖2` =
∑

α+β+γ=`
`!

α!β!γ!
‖xj‖2α‖xk‖2β(−2xT

j xk)γ

I

cT [‖xj − xk‖2`]c

=
∑
j ,k

cjck

∑
α+β+γ=`

`!

α!β!γ!
‖xj‖2α‖xk‖2β(−2xT

j xk)γ

=
∑

α+β+γ=`

`!

α!β!γ!

∑
j ,k

cjck‖xj‖2α‖xk‖2β(−2xT
j xk)γ



Proof continued

I Divide α, β, γ sum into two sums α ≤ β and β < α.
Consider first the α ≤ β sum.

I qαβγ(x) :=
∑N

k=1 ck‖x‖2α‖xk‖2β(−2xTxk)γ, x ∈ Rs .

I qαβγ ∈ Π2α+γ(Rs) ⊂ Πm(Rs) for α ≤ β.

I Indeed, If α ≤ β then
2α + γ = 2α + 2β + γ − 2β = ` + α− β ≤ m.

I So
∑N

j=1 qαβγ(xj) = 0

I
∑

j ,k cjck‖xj‖2α‖xk‖2β(−2xT
j xk)γ = 0 for α ≤ β

I By symmetry this also holds for α > β and the lemma
follows.


