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Radial Function in R*®

Definition
Let s € N and || || a norm on R®. A function ¢ : R®* — R is
called radial if

D(x) = p(llx[), xR,
for some univariate function ¢ : [0, 00) — R.

» The norm is often the Euclidian norm || ||».
» || || = || |l2 when nothing else is said.
» Radial: &(x) = ¢(r) for all x with ||x|| = r.



Examples @(x) = o(||x]|)

ceeR, e#0
» Gauss p(r) = e =",

» distance o(r) =r,

» cubic power ¢(r) = r3,

» thin plate spline ¢(r) = r?logr

» multiquadric (r) = /1 + (cr)?,

> inverse multiquadric ¢(r) = 1/,/1+ (er)?,

» Wendland’s C° compactly supported ¢(r) = (1 —r)3

» Wendland’s C?> compactly supported
p(r)=(1-r)i(4r+1)



Subspaces of RV

The class of polynomials in s variables with real coefficients
and of total degree < m are denoted by

S
My(R®) == span{xj" - - - x* :iy,... i >0, Z ik < m}.
k=1

» To given distinct points X := {xy,...,xy} in R* and a
nonnegative integer m we define a subspace of RV by

Sm(X):={c € R" : Y "cp(xi) =0, p € Mp(R%)}.

k=1

» We define S_1(X) := RV,



Subspaces of RV

N
Sm(X):={c € R": Y "cp(xi) =0, p € Mpu(R%)}.
k=1
» So(X) ={ceR": 3N ¢ =0}
» Given a basis g, ..., gy of M,(R?)

» Then
Sm(X) = {ceRY: SV cqixk) =0, j=1,...,M}.



RBF interpolation in R® with polynomial precision

m
Given
» Distinct points x3,...,xy € R°.
» Ordinate-values f; = f(x;) representing an unknown
function f.
» A radial function @ : R® — R given by ®(x) = ¢(||x||)
» A basis qi, ..., gy of M,(R*) (for example the powers)
» Linear combinations
Pr(x) = Yoy c@(x — xi) + >y (%)
Find

» c=[c,...,cy] and d = [dy, . .., dy] such that

N M
Pf(XJ‘) = Z Ck€p(XJ' — Xk) + Z quk(Xj) :f;'7 J = 1, Ce
k=1

k=1

N
S agx) =0, j=1....



Linear system

o o[-l

> A= [D(x; — xx)] € RVNV B = [g;(xx)] € RMV.
» N + M linear equations in N + M unknowns.
» Symmetric coefficient matrix.



Non-negative Fourier transform

Theorem

Let &(x) = ¢(||x||) be a radial function with nonnegative
Fourier transform not identically zero. For any distinct points
X1,...,Xy the matrix

A = [D(x; — x)] € RVN,

is positive definite.



Discussion

» The Fourier transform can be used for Gaussian- and
compactly supported RBF's. But,

» The distance function and thin plate and other examples
are not integrable so do not have a Fourier transform

» Alternatives:

» Nonnegativity of the generalized Fourier transform.
» Complete monotonicity



Positive definite on a subspace

Definition
Suppose A € RVN and S a subspace of RV, We say that A is
positive definite on S if AT = A and ¢” Ac > 0 for all nonzero

ceS.

» If A is positive definite on
S =ker(B) := {c € RV : Bc = 0} and B € RM" has
linearly independent rows then the block matrix

A BT
B 0
is nonsingular.

» Suppose S, 7 are subspaces of RY with S C 7. If Ais
positive definite on S then A is positive definite on 7.



B full rank?

» Definition
We say that a set of points X = {xy,...,xy} C R is
m-unisolvent if p € M,,(R®) and p(xx) =0for k=1,..., N
implies p = 0.

» Lemma
Let B = [gj(xx)] € RMN, where N > M, qy,...,qum is a basis
for N, (R*), and X = {xy,...,xy} C R* are distinct points in
R*®. Then B has linearly independent rows if and only if X is
m-unisolvent.
» Proof: We have a’B = [p(x;), ..., p(xn)] where
p(x) = > a;q;(x). Thusa’B =0 =-a =0 if and only if
p(xk)=0 k=1,... N=p=0.



Example, Univariate natural cubic spline
interpolation

> o(r) =13, d(x) = |x?

> Pf(xj):Zivzlck|xj_xk|3+d0+d1xj:f)’,jZl,...,N
> ZkaZO, ZkaXkZO.

S

Matrix form
A B [c] [f] A 515 |1 oo 1
M R L S |
» N + 2 equations in N + 2 unknowns.
» If A is positive definite on ker(B) and xp,...,xy are

T

distinct then {A

B O} is non-singular.



Example Cubic power in R3, N > 4
> o(r) = r¥ &(x) = [|x]|* = (@ + y* + 22)*?
> Pr(x) := 22’21 ck®P(x — xk) + di + dox + dzy + dyz,
> 1Zk”_1 j\klsﬁ(xj — ) + dy + dox; + day; + dazy = £, j =

k=0, Y, ax=0, >, aw=0 >, cz=0
» N + 4 equations in N + 4 unknowns.

BT~

1 1 --- 1
B=|* 2 7 NI c 4N,
i Y2 0 YN
Z1 Zp o+ Zy
» If A is positive definite on S;(X) and the x; are not on a
T

. : A
straight line then [B 0

} is nonsingular.



Completely monotone functions

Definition
A function g € C*°(0, 00) that satisfies

(-1)g9(r)>0, r>0, ¢=0,1,2,...

is called completely monotone on (0, c0). If in addition
g € C[0,00) then g is said to be completely monotone on
[0, c0).
Examples:
» g(r)=e*,e>0,r>0
» g(r)=r1t2r>0



Characterization of completely monotone functions

» There is a general result stating that g is completely
monotone if and only if it is the Laplace transform of a
finite nonnegative Borel measure on [0, c0). This is
known as the Hausdorff-Bernstein-Widdler theorem, see
Wendland 2005.

» We will only use a sufficient condition, namely that many
completely monotone functions g are the Laplace
transform of an admissible function w

g:[0,00) =R, g(r):= /000 w(x)e " dx.

» We say that w : (0, 00) — R is admissible, if it is
piecewise continuous, nonnegative, nonzero and the
Laplace transform g of w exists.



Positive definite on a subspace

Theorem

Let ¢ € C[0,00) and 1) := p(+y/*) € C>(0,00) Suppose for a
nonnegative integer m that the derivative (1) js the
Laplace transform of an admissible function w, i. e.,

YD) :/ w(x)e *"dx, r>0.
0

Let A := [D(x; — xx)] € RV, where X = {xy,...,xy} are
distinct points in R®. Then (—1)™"tA, is positive definite on
the subspace

Sm(X) = {c e RV : 2V . ap(xx) = 0, p € My(R?)}.



Example Distance in R®
> p(r)=r, ¢( )=r.

> zp’( ) = 11712 is completely monotone

> = fo w(x)e *dx, w(x) = 2\/15.

» For fooo = 2dx = 2 [ e dy = [ eV dy =7

00 efrxd Y2 oo ey dy _ r,1/2.

> 50 Jo =T lo

» w is admissible.

» m=0, —A is positive definite on So = {c: ), cx = 0}

» From theorem last time it follows that A is nonsingular
(nonzero eigenvalues) for all s > 1,N > 2, and any
distinct xq,...,xy in R®.

» Interpolation problem with reproduction of 1, also
non-singular for all m >0, s > 1,N > 2, and any distinct
X1,...,Xy in R®.



Example Cubic

>90()=3¢()—

> "'(r) = r1/2 s completely monotone

W (r) fo e dx, w(x) = ;o=
W is adm|55|b|e.

v

m =1, A is positive definite on S;1(X)

vV vV

Interpolation problem with reproduction of linear
polynomials non-singular for all s > 1,N > 2, and any
distinct xq,...,xy in R® that do not lie on a straight line.



Example Thin plate

> o(r) =r?logr, ¥(r) = 3rlogr.

» ¢"(r) = 5= is completely monotone

> w// — 2]‘0 —xrdX W X) l

2

> wis adm|55|b|e.

» m=1, A is positive definite on S;(X)

» Interpolation problem with reproduction of linear
polynomials non-singular for all s > 1,N > 2, and any
distinct xq,...,xy in R® that do not lie on a straight line.



Example Inverse Multiquadrics

> o(r) = 1/\/T+ (e () = 1/VIT 22r e £0
» 1) is completely monotone.
> (r) = [5° w(x)e "dx, w admissible.

» A is positive definite.



Example Multiquadrics

p(r) = 1+ (er)? o(r) = V14e?r,

" is completely monotonic and the Laplace transform of
an admissible function w.

v

v

v

—A is positive definite on Sp.

v

A is non-singular with N — 1 positive and one negative
eigenvalue.



Summary of Examples

» Gauss p(r) =e =" m=—1,Ais positive definite

» inverse multiquadric o(r) =1/4/1+ (¢r)?2, m= -1, A

is positive definite
» multiquadric ¢(r) = \/1+ (er)?, m =0 —A is positive
definite on Sy

» distance ¢(r) =r, m =0 —A is positive definite on Sy

3

» cubic power ¢(r) = r’>, m=1 A is positive definite on

S1
» thin plate spline ¢(r) = r’logr m =1 A is positive
definite on S;.



Lemma

Lemma
c[Ix; = xx[*le =0, c € Sn(X), 0 < £ < m.

» Proof:
¢
> 1% — %2 = (%5112 + 1%l — 2x] x4,
> I = Xkl = 2ot s alﬁl'yIHxJHZlekHZB( 2x ] %)

>

c[llx; —xul[*e

=2 6% D, anjnmnxkuw 2] i)
J7

a+pB+y=¢

12
= Y i gl 2w
J,k

a+p+y={



Proof continued

» Divide o, 3, sum into two sums a < (3 and 3 < a.
Consider first the @ < 3 sum.

N le% S
> Gapy (%) 1= 2opcy kX x| (—2xTxi)7, x € Re.
> Gapy € Moniy(R®) C Mp(R?) for a < G
» Indeed, If o < 3 then

20+v=2a+20+v7—-20=0+a— < m.
N
> So Zj:l Gapy(x;) =0
> 30k GeklXilP Ixul 2 (—=2x ] x4)” = 0 for o < 8
» By symmetry this also holds for a > /3 and the lemma

follows.



