Radial Basis Functions II

Tom Lyche

Centre of Mathematics for Applications, Department of Informatics, University of Oslo

December 2, 2008

Radial Function in \mathbb{R}^s

Definition

Let $s \in \mathbb{N}$ and $\| \ \|$ a norm on \mathbb{R}^s . A function $\Phi : \mathbb{R}^s \to \mathbb{R}$ is called radial if

$$\Phi(\mathbf{x}) = \varphi(\|\mathbf{x}\|), \quad \mathbf{x} \in \mathbb{R}^s,$$

for some univariate function $\varphi : [0, \infty) \to \mathbb{R}$.

- ▶ The norm is often the Euclidian norm $\| \|_2$.
- $\| \| = \| \|_2$ when nothing else is said.
- ▶ Radial: $\Phi(\mathbf{x}) = \varphi(r)$ for all \mathbf{x} with $\|\mathbf{x}\| = r$.

Examples $\Phi(\mathbf{x}) = \varphi(\|\mathbf{x}\|)$

$$\varepsilon \in \mathbb{R}$$
, $\varepsilon \neq 0$

- Gauss $\varphi(r) = e^{-\varepsilon^2 r^2}$,
- distance $\varphi(r) = r$,
- cubic power $\varphi(r) = r^3$,
- ▶ thin plate spline $\varphi(r) = r^2 \log r$
- multiquadric $\varphi(r) = \sqrt{1 + (\varepsilon r)^2}$,
- inverse multiquadric $\varphi(r) = 1/\sqrt{1+(\varepsilon r)^2}$,
- ▶ Wendland's C^0 compactly supported $\varphi(r) = (1-r)_+^2$
- Wendland's C^2 compactly supported $\varphi(r) = (1-r)^4_+(4r+1)$

Subspaces of \mathbb{R}^N

The class of polynomials in s variables with real coefficients and of total degree $\leq m$ are denoted by

$$\Pi_m(\mathbb{R}^s) := \operatorname{span}\{x_1^{i_1}\cdots x_s^{i_s}: i_1,\ldots,i_s\geq 0,\ \sum_{k=1}^s i_k\leq m\}.$$

▶ To given distinct points $\mathbf{X} := \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$ in \mathbb{R}^s and a nonnegative integer m we define a subspace of \mathbb{R}^N by

$$\mathcal{S}_m(\mathbf{X}) := \{ \mathbf{c} \in \mathbb{R}^N : \sum_{k=1}^N c_k p(\mathbf{x}_k) = 0, \ p \in \Pi_m(\mathbb{R}^s) \}.$$

• We define $S_{-1}(\mathbf{X}) := \mathbb{R}^N$.

Subspaces of \mathbb{R}^N

$$\mathcal{S}_m(\mathbf{X}) := \{ \mathbf{c} \in \mathbb{R}^N : \sum_{k=1}^N c_k p(\mathbf{x}_k) = 0, \ p \in \Pi_m(\mathbb{R}^s) \}.$$

- ▶ $S_0(\mathbf{X}) = \{ \mathbf{c} \in \mathbb{R}^N : \sum_{k=1}^N c_k = 0 \}$
- ▶ Given a basis q_1, \ldots, q_M of $\Pi_m(\mathbb{R}^s)$
- ► Then $S_m(\mathbf{X}) := \{ \mathbf{c} \in \mathbb{R}^N : \sum_{k=1}^N c_k q_j(\mathbf{x}_k) = 0, \ j = 1, \dots, M \}.$

RBF interpolation in \mathbb{R}^s with polynomial precision

Given

m

- ▶ Distinct points $\mathbf{x}_1, \dots, \mathbf{x}_N \in \mathbb{R}^s$.
- ▶ Ordinate-values $f_j = f(\mathbf{x}_j)$ representing an unknown function f.
- A radial function $\Phi: \mathbb{R}^s \to \mathbb{R}$ given by $\Phi(\mathbf{x}) = \varphi(\|\mathbf{x}\|)$
- lacksquare A basis q_1,\ldots,q_M of $\Pi_m(\mathbb{R}^s)$ (for example the powers)
- Linear combinations $P_f(\mathbf{x}) := \sum_{k=1}^{N} c_k \Phi(\mathbf{x} \mathbf{x}_k) + \sum_{k=1}^{M} d_k q_k(\mathbf{x})$

Find

$$\mathbf{c} = [c_1, \dots, c_N]$$
 and $\mathbf{d} = [d_1, \dots, d_M]$ such that
$$P_f(\mathbf{x}_j) := \sum_{k=0}^{N} c_k \Phi(\mathbf{x}_j - \mathbf{x}_k) + \sum_{k=0}^{M} d_k q_k(\mathbf{x}_j) = f_j, \quad j = 1, \dots, N$$

$$\sum_{k=1}^{N} c_k q_j(\mathbf{x}_k) = 0, \quad j = 1, \dots, M.$$

Linear system

$$\begin{bmatrix} \mathbf{A} & \mathbf{B}^T \\ \mathbf{B} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{c} \\ \mathbf{d} \end{bmatrix} = \begin{bmatrix} \mathbf{f} \\ \mathbf{0} \end{bmatrix},$$

- ▶ N + M linear equations in N + M unknowns.
- ► Symmetric coefficient matrix.

Non-negative Fourier transform

Theorem

Let $\Phi(\mathbf{x}) = \varphi(\|\mathbf{x}\|)$ be a radial function with nonnegative Fourier transform not identically zero. For any distinct points $\mathbf{x}_1, \dots, \mathbf{x}_N$ the matrix

$$\mathbf{A} := [\Phi(\mathbf{x}_j - \mathbf{x}_k)] \in \mathbb{R}^{N,N},$$

is positive definite.

Discussion

- ► The Fourier transform can be used for Gaussian- and compactly supported RBF's. But,
- ► The distance function and thin plate and other examples are not integrable so do not have a Fourier transform
- Alternatives:
 - Nonnegativity of the generalized Fourier transform.
 - Complete monotonicity

Positive definite on a subspace

Definition

Suppose $\mathbf{A} \in \mathbb{R}^{N,N}$ and \mathcal{S} a subspace of \mathbb{R}^{N} . We say that \mathbf{A} is positive definite on \mathcal{S} if $\mathbf{A}^{T} = \mathbf{A}$ and $\mathbf{c}^{T}\mathbf{A}\mathbf{c} > 0$ for all nonzero $\mathbf{c} \in \mathcal{S}$.

▶ If **A** is positive definite on $S = \ker(\mathbf{B}) := \{\mathbf{c} \in \mathbb{R}^N : \mathbf{B}\mathbf{c} = \mathbf{0}\}$ and $\mathbf{B} \in \mathbb{R}^{M,N}$ has linearly independent rows then the block matrix

$$\begin{bmatrix} \mathbf{A} & \mathbf{B}^T \\ \mathbf{B} & \mathbf{0} \end{bmatrix}$$

is nonsingular.

▶ Suppose S, T are subspaces of \mathbb{R}^N with $S \subset T$. If **A** is positive definite on S then **A** is positive definite on T.

B full rank?

Definition

We say that a set of points $\mathbf{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\} \subset \mathbb{R}^s$ is m-unisolvent if $p \in \Pi_m(\mathbb{R}^s)$ and $p(\mathbf{x}_k) = 0$ for $k = 1, \dots, N$ implies p = 0.

▶ Lemma

Let $\mathbf{B} = [q_j(\mathbf{x}_k)] \in \mathbb{R}^{M,N}$, where $N \geq M$, q_1, \ldots, q_M is a basis for $\Pi_m(\mathbb{R}^s)$, and $\mathbf{X} = \{\mathbf{x}_1, \ldots, \mathbf{x}_N\} \subset \mathbb{R}^s$ are distinct points in \mathbb{R}^s . Then \mathbf{B} has linearly independent rows if and only if \mathbf{X} is m-unisolvent.

▶ **Proof**: We have $\mathbf{a}^T \mathbf{B} = [p(\mathbf{x}_1), \dots, p(\mathbf{x}_N)]$ where $p(\mathbf{x}) = \sum a_j q_j(\mathbf{x})$. Thus $\mathbf{a}^T \mathbf{B} = \mathbf{0} \Rightarrow \mathbf{a} = \mathbf{0}$ if and only if $p(\mathbf{x}_k) = 0$ $k = 1, \dots, N \Rightarrow p = 0$.

Example, Univariate natural cubic spline interpolation

- $\varphi(r) = r^3, \ \Phi(x) = |x|^3$
- $P_f(x_j) = \sum_{k=1}^N c_k |x_j x_k|^3 + d_0 + d_1 x_j = f_j, j = 1, \dots, N$
- $\sum_{k} c_{k} = 0, \sum_{k} c_{k} x_{k} = 0.$
- ► Matrix form

$$\begin{bmatrix} \mathbf{A} & \mathbf{B}^T \\ \mathbf{B} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{c} \\ \mathbf{d} \end{bmatrix} = \begin{bmatrix} \mathbf{f} \\ \mathbf{0} \end{bmatrix}, \mathbf{A} = [|x_j - x_k|^3], \ \mathbf{B} = \begin{bmatrix} 1 & \cdots & 1 \\ x_1 & \cdots & x_N \end{bmatrix}.$$

- \triangleright N+2 equations in N+2 unknowns.
- If **A** is positive definite on $\ker(\mathbf{B})$ and x_1, \dots, x_N are distinct then $\begin{bmatrix} \mathbf{A} & \mathbf{B}^T \\ \mathbf{B} & \mathbf{0} \end{bmatrix}$ is non-singular.

Example Cubic power in \mathbb{R}^3 , $N \geq 4$

•
$$\varphi(r) = r^3$$
; $\Phi(\mathbf{x}) = \|\mathbf{x}\|^3 = (x^2 + y^2 + z^2)^{3/2}$

$$P_f(\mathbf{x}) := \sum_{k=1}^{N} c_k \Phi(\mathbf{x} - \mathbf{x}_k) + d_1 + d_2 x + d_3 y + d_4 z,$$

$$\sum_{k=1}^{N} c_k \Phi(\mathbf{x}_j - \mathbf{x}_k) + d_1 + d_2 x_j + d_3 y_j + d_4 z_j = f_j, \ j = 1, \dots, N$$

$$\sum_{k} c_{k} = 0$$
, $\sum_{k} c_{k} x_{k} = 0$, $\sum_{k} c_{k} y_{k} = 0$, $\sum_{k} c_{k} z_{k} = 0$

▶
$$N + 4$$
 equations in $N + 4$ unknowns.

$$\begin{bmatrix}
\mathbf{A} & \mathbf{B}^T \\
\mathbf{B} & \mathbf{0}
\end{bmatrix}
\begin{bmatrix}
\mathbf{c} \\
\mathbf{d}
\end{bmatrix} = \begin{bmatrix}
\mathbf{f} \\
\mathbf{0}
\end{bmatrix}, \mathbf{A} = [\Phi(\mathbf{x}_j - \mathbf{x}_k)]$$

$$\mathbf{B} = egin{bmatrix} 1 & 1 & \cdots & 1 \ x_1 & x_2 & \cdots & x_N \ y_1 & y_2 & \cdots & y_N \ z_1 & z_2 & \cdots & z_N \ \end{pmatrix} \in \mathbb{R}^{4,N},$$

If **A** is positive definite on $S_1(\mathbf{X})$ and the \mathbf{x}_j are not on a straight line then $\begin{bmatrix} \mathbf{A} & \mathbf{B}^T \\ \mathbf{B} & \mathbf{0} \end{bmatrix}$ is nonsingular.

Completely monotone functions

Definition

A function $g \in C^{\infty}(0,\infty)$ that satisfies

$$(-1)^{\ell}g^{(\ell)}(r) \geq 0, \quad r > 0, \quad \ell = 0, 1, 2, \dots$$

is called completely monotone on $(0,\infty)$. If in addition $g \in C[0,\infty)$ then g is said to be completely monotone on $[0,\infty)$.

Examples:

- $g(r) = e^{-\varepsilon r}$, $\varepsilon \ge 0$, $r \ge 0$
- $g(r) = r^{-1/2}, r > 0$

Characterization of completely monotone functions

- ▶ There is a general result stating that g is completely monotone if and only if it is the Laplace transform of a finite nonnegative Borel measure on $[0, \infty)$. This is known as the Hausdorff-Bernstein-Widdler theorem, see Wendland 2005.
- We will only use a sufficient condition, namely that many completely monotone functions g are the Laplace transform of an admissible function w

$$g:[0,\infty)\to\mathbb{R},\quad g(r):=\int_0^\infty w(x)e^{-xr}dx.$$

▶ We say that $w:(0,\infty) \to \mathbb{R}$ is admissible, if it is piecewise continuous, nonnegative, nonzero and the Laplace transform g of w exists.

Positive definite on a subspace

Theorem

Let $\varphi \in C[0,\infty)$ and $\psi := \varphi(\sqrt{\cdot}) \in C^{\infty}(0,\infty)$ Suppose for a nonnegative integer m that the derivative $\psi^{(m+1)}$ is the Laplace transform of an admissible function w, i. e.,

$$\psi^{(m+1)}(r) = \int_0^\infty w(x)e^{-xr}dx, \quad r > 0.$$

Let $\mathbf{A} := [\Phi(\mathbf{x}_j - \mathbf{x}_k)] \in \mathbb{R}^{N,N}$, where $\mathbf{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$ are distinct points in \mathbb{R}^s . Then $(-1)^{m+1}\mathbf{A}$, is positive definite on the subspace

$$\mathcal{S}_m(\mathbf{X}) := \{\mathbf{c} \in \mathbb{R}^N : \sum_{k=1}^N c_k p(\mathbf{x}_k) = 0, \ p \in \Pi_m(\mathbb{R}^s)\}.$$

Example Distance in \mathbb{R}^s

- $ightharpoonup \varphi(r) = r, \ \psi(r) = \sqrt{r}.$
- $\psi'(r) = \frac{1}{2}r^{-1/2}$ is completely monotone
- $\psi'(r) = \int_0^\infty w(x)e^{-xr}dx$, $w(x) = \frac{1}{2\sqrt{\pi x}}$.
- ► For $\int_0^\infty = \frac{e^- x}{\sqrt{x}} dx = 2 \int_0^\infty e^{-y^2} dy = \int_{-\infty}^\infty e^{-y^2} dy = \sqrt{\pi}$
- ▶ so $\int_0^\infty \frac{e^{-rx}}{\sqrt{\pi x}} dx = \frac{r^{-1/2}}{\sqrt{\pi}} \int_0^\infty \frac{e^{-y}}{\sqrt{y}} dy = r^{-1/2}$.
- w is admissible.
- ▶ m = 0, $-\mathbf{A}$ is positive definite on $S_0 = \{\mathbf{c} : \sum_k c_k = 0\}$
- From theorem last time it follows that **A** is nonsingular (nonzero eigenvalues) for all $s \ge 1, N \ge 2$, and any distinct $\mathbf{x}_1, \dots, \mathbf{x}_N$ in \mathbb{R}^s .
- ▶ Interpolation problem with reproduction of Π_m also non-singular for all $m \ge 0$, $s \ge 1$, $N \ge 2$, and any distinct $\mathbf{x}_1, \ldots, \mathbf{x}_N$ in \mathbb{R}^s .

Example Cubic

- $\varphi(r) = r^3, \ \psi(r) = r^{3/2}.$
- $\psi''(r) = \frac{3}{4}r^{-1/2}$ is completely monotone
- $\psi''(r) = \int_0^\infty w(x)e^{-xr}dx, \ w(x) = \frac{3}{4\sqrt{\pi x}}.$
- w is admissible.
- ▶ m = 1, **A** is positive definite on $S_1(\mathbf{X})$
- Interpolation problem with reproduction of linear polynomials non-singular for all $s \geq 1, N \geq 2$, and any distinct $\mathbf{x}_1, \dots, \mathbf{x}_N$ in \mathbb{R}^s that do not lie on a straight line.

Example Thin plate

- $\varphi(r) = r^2 \log r, \ \psi(r) = \frac{1}{2} r \log r.$
- $\psi''(r) = \frac{1}{2r}$ is completely monotone
- $\psi''(r) = \frac{1}{2} \int_0^\infty e^{-xr} dx$, $w(x) = \frac{1}{2}$.
- w is admissible.
- ightharpoonup m=1, **A** is positive definite on $\mathcal{S}_1(\mathbf{X})$
- ▶ Interpolation problem with reproduction of linear polynomials non-singular for all $s \ge 1, N \ge 2$, and any distinct $\mathbf{x}_1, \dots, \mathbf{x}_N$ in \mathbb{R}^s that do not lie on a straight line.

Example Inverse Multiquadrics

- ho $\varphi(r) = 1/\sqrt{1+(\varepsilon r)^2}$, $\psi(r) = 1/\sqrt{1+\varepsilon^2 r}$, $\varepsilon \neq 0$
- $ightharpoonup \psi$ is completely monotone.
- $\psi(r) = \int_0^\infty w(x)e^{-xr}dx$, w admissible.
- ▶ **A** is positive definite.

Example Multiquadrics

- $\varphi(r) = \sqrt{1 + (\varepsilon r)^2}, \ \psi(r) = \sqrt{1 + \varepsilon^2 r},$
- $\blacktriangleright \psi'$ is completely monotonic and the Laplace transform of an admissible function w.
- ▶ $-\mathbf{A}$ is positive definite on \mathcal{S}_0 .
- ▶ **A** is non-singular with N-1 positive and one negative eigenvalue.

Summary of Examples

- ▶ **Gauss** $\varphi(r) = e^{-\varepsilon^2 r^2}$, m = -1, **A** is positive definite
- ▶ inverse multiquadric $\varphi(r) = 1/\sqrt{1+(\varepsilon r)^2}$, m=-1, **A** is positive definite
- ▶ multiquadric $\varphi(r) = \sqrt{1 + (\varepsilon r)^2}$, m = 0 −**A** is positive definite on S_0
- ▶ **distance** $\varphi(r) = r$, m = 0 **-A** is positive definite on \mathcal{S}_0
- cubic power $\varphi(r)=r^3$, m=1 **A** is positive definite on \mathcal{S}_1
- ▶ thin plate spline $\varphi(r) = r^2 \log r$ m = 1 **A** is positive definite on S_1 .

Lemma

Lemma

$$\mathbf{c}^T[\|\mathbf{x}_j - \mathbf{x}_k\|^{2\ell}]\mathbf{c} = 0, \ \mathbf{c} \in \mathcal{S}_m(\mathbf{X}), \ 0 \le \ell \le m.$$

- ► Proof:
- $\|\mathbf{x}_{j} \mathbf{x}_{k}\|^{2\ell} = (\|\mathbf{x}_{j}\|^{2} + \|\mathbf{x}_{k}\|^{2} 2\mathbf{x}_{j}^{T}\mathbf{x}_{k})^{\ell},$
- $\|\mathbf{x}_j \mathbf{x}_k\|^{2\ell} = \sum_{\alpha + \beta + \gamma = \ell} \frac{\ell!}{\alpha!\beta!\gamma!} \|\mathbf{x}_j\|^{2\alpha} \|\mathbf{x}_k\|^{2\beta} (-2\mathbf{x}_j^T \mathbf{x}_k)^{\gamma}$

$$\mathbf{c}^{T}[\|\mathbf{x}_{j} - \mathbf{x}_{k}\|^{2\ell}]\mathbf{c}$$

$$= \sum_{j,k} c_{j} c_{k} \sum_{\alpha+\beta+\gamma=\ell} \frac{\ell!}{\alpha!\beta!\gamma!} \|\mathbf{x}_{j}\|^{2\alpha} \|\mathbf{x}_{k}\|^{2\beta} (-2\mathbf{x}_{j}^{T}\mathbf{x}_{k})^{\gamma}$$

$$= \sum_{\alpha+\beta+\gamma=\ell} \frac{\ell!}{\alpha!\beta!\gamma!} \sum_{i,k} c_{j} c_{k} \|\mathbf{x}_{j}\|^{2\alpha} \|\mathbf{x}_{k}\|^{2\beta} (-2\mathbf{x}_{j}^{T}\mathbf{x}_{k})^{\gamma}$$

Proof continued

- ▶ Divide α, β, γ sum into two sums $\alpha \leq \beta$ and $\beta < \alpha$. Consider first the $\alpha < \beta$ sum.
- $q_{\alpha\beta\gamma} \in \Pi_{2\alpha+\gamma}(\mathbb{R}^s) \subset \Pi_m(\mathbb{R}^s)$ for $\alpha \leq \beta$.
- ▶ Indeed, If $\alpha \leq \beta$ then $2\alpha + \gamma = 2\alpha + 2\beta + \gamma 2\beta = \ell + \alpha \beta \leq m$.
- $ightharpoonup ext{So } \sum_{j=1}^N q_{\alpha\beta\gamma}(\mathbf{x}_j) = 0$
- ▶ By symmetry this also holds for $\alpha > \beta$ and the lemma follows.