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Abstract

These notes provide an introduction to the subdivision rules for uni-
form splines, including the Chaikin algorithm. We also explain the Lane-
Reisenfeld algorithm.

1 Introduction

One way of defining uniform B-splines is recursively as follows. The B-spline

N0 is the function
1 0<z<1;
Nz) = { (1)

0 otherwise,

and for d > 1, the B-spline N¢ is defined as

N(z) = /OlNd_l(a: )t 2)

We see that N° is non-negative, piecewise-constant, with support [0,1]. For
general d, one can show by induction on d that N is a non-negative, piecewise
polynomial of degree d, of smoothness C%~! at the breakpoints (called ‘knots’)
0,1,...,d+ 1, and has support [0,d + 1]. One can also show by induction that

/ N (z)de =1,

and

> Nz —i)=1.

1€EZ

The B-splines of degree 1 and 2 are

T 0<x <1,
N@z)=<{2—-2 1<z<2 (3)
0 otherwise,



and

N

5 0<z <l

NQ(x)z —%—l—Sx—xQ 1<z <2; ()
1(-3+2)? 2<1<3;
0 otherwise.

Another way of expressing (2) is clearly as
N(z) = / NONI(z — 1) dt.

Thus, if we recall that the convolution p ® g of two functions p and ¢ is defined
as

peaE = [ pla -1,
we can express (2) simply as
N¢=Ng N1, (5)

Thus N¢ is the d-fold convolution of N© with itself:

Ne=N'@N°®..-@ NY.
d+1

2 Subdivision

A uniform spline is any linear combination of integer translates of a B-spline of
a certain degree. Thus,
s(z) = Z ciN(z — i) (6)
i€

is a spline, which is clearly a piecewise polynomial of degree d, with smoothness
C?=1. The breakpoints, or knots, of s are the integers bause the translated
B-spline N4(x — 4) has knots at the integers in its support, [i,i 4+ d + 1].

Notice that for a fixed degree d, the spline s is completely determined by its
coefficient vector

c=(..,c_1,co,c1,...) .

The idea of subdivision is to represent the spline s in terms of the scaled B-
splines N¢(2z—i) whose knots are at the half-integers. The support of N%¢(2z—1)
is [i/2, (i +d 4+ 1)/2]. We would like to find the coefficients b; such that

s(x) = ZbiNd(2x —1). (7)
i€Z

To do this we will establish the refinement relation

N(a) =" sINY (22 —i). (8)

€L



In fact, by considering the supports of the B-splines in this equation it is clear
that we must have s¢ = 0 for i < 0 and i > d + 1, and so if (8) holds we must

have
d+1

Ni(z) = Z sIN (22 — 4).
=0

Assuming for the time being that (8) holds, let us see how we can use it to
find the coefficients b; from the coefficients ¢;. Starting from (6) we have

s(a) = N =) = Y 3 sINY(2(w — ) i)
= Z ¢; Z sf_Qde(Zx —1)
=33 st e N2 — i)

and equating this with (7), and using the fact that the B-splines N(2z — ¢) are
linearly independent, we can equate coefficients, giving

b; = Z 5?—2jcj' (9)
J

This formula tells us how to convert the coarse representation of s in (6) to the
finer representation in (7). If, like the coarse coefficients we arrange the fine
coefficients in a column vector

b= ( : '7b—17b0;b15 . ')Ta
we can express (9) in vector and matrix notation as
b = S’.

The matrix
d d
§%= (3142]’)1']'7
which is infinite in both dimensions, is known as the subdivision matriz. The

subdivision scheme (9) can be split into two parts, for coefficients b; with even
and odd indices. We find

bai = Z Sg(ifj)cj = Z 5i2j¢j+i = ngjci—ja (10)
J J J

and
bait = D $h(imi)+165 = D 5Lop1Ciwi = D551 Ciny- (11)
J J J
So
boi = sici + sSciq 4+ (12)
boit1 = sfci + Sgcifl + e (13)



3 The refinement relation

It is easy to see from (1) that

N%x) = N°(2z) + N°(2z — 1), (14)
and using (3) a simple calculation shows that
1 1
Ni(z) = 5N1(2x) +N' 2z — 1)+ 5N1(2x —2). (15)

Thus s = s{ = 1 and s} = 1/2, s} = 1, and s} = 1/2. We will derive the
general formula for s¢ using the recurrence relation (2). We do this by first
showing how the coefficients of degree d relate to those of degree d — 1.

Lemma 1 If the refinement relation (8) holds for degree d — 1 with coefficients
sf71 then it also holds for degree d and the coefficients are
d_ 1o a1 aa
§; = 5(51 +si21)-

Proof. Using (8), we have

— /01 Zsf‘lNd’l(Q(x —t)—i)dt
— ZS;H /01 NN 2w —t) — i) dt.

But
/Nd Yoz —t) —i)dt
:2/0Nd 12w —u —1i)du
1 1 2
:§</ Nd_1(2x—u—i)du—|—/ Nd_1(2x—u—i)du>
0 1
1 1
:5/ (Nd_l(Qx—u—i)du—l—Nd_l(?a:—u—i—1)) du
0
1
=3 (N?(2z — i) + N%(22 —i — 1)),
and so

Ni(z) = % D s N2z — i) + NY(22 — i — 1))

1
=3 D (s 4 sE N2z — ).



Iterating the formula of Lemma 1 from s = s = 1 immediately gives

Theorem 1 The refinement relation (8) holds with coefficients

1 /d+1
d .
si___2d< ; ), 0<:<d+1.

The first few examples, with s? = (s¢

¢); are

' =(1,1),
1 1
Sl:<_715_>7
2 2
, (1331
s =|-,—-,—,—
4’4’47 4)°
s (11311
s T =\=,=,—, =, = .
8727472°8

Corresponding to these, the first few subdivision matrices are

1000 11 .
1.0 00 > 2 00
0 1 0 0
G0 — 0100 Sl — o L L g
010 0 |’ 0650’
0 01 0 0 0 L 1
0 01 0 202
31 9 o0 .
iéoo 1 3 1 9
1 8
5 Oélo 3 Oiio
R EEE AR S
OO%é 0 0 5 35
00 5 3 '

The Lane-Riesenfeld algorithm is an elegant way of implementing the sub-
division scheme and follows from Lemma 1. In this algorithm we initially set

bgi = bgiJrl =G
and then, for k=1,...,d, we let
bp = (0f 7+ bi)/2.

Then b; = b¢ is the required coefficient.



We can also view this algorithm in terms of matrices. The subdivision matrix
can be expressed as

S4=AA---AS°,

d
where A is the ‘averaging’ matrix
L 100
A= 0 35 % 0 ,
00 5 3

and we can view S as a ‘doubling’ matrix. Thus to compute the new coefficients
b from the old, c, one first applies S° to ¢, which has the effect of ‘doubling’ the
coefficients in ¢, and one then applies the matrix A, which replaces all points
by their mid-points, d times.

4 Convergence

Suppose now that starting from a spline
s(x) = Z ANz — i),
i

we apply several steps of subdivision. If we subdivide s once, we obtain the
finer representation

s(z) = ZC%Nd(%: —1),

where

1 _ Z d 0
J

with sf given by Theorem 1. We can continue in this way, subdividing again
and again, so that in general

s(z) = Zchd@kx — 1),

where

k _ § : d k—1
Ci = Si72jcj .
J

At each level of subdivision, k, we can form a polygon pg, a piecewise linear
function with the value c¥ at the point 27%i. It can be shown that the sequence
of polygons (pg)x converges to s, i.e.,

s(z) = lim pg(x), z €R.
k—oo
This provides a way of plotting the spline s. After a few steps of subdivision, we

simply plot the polygon py. If k is large enough, p will appear to be a smooth
function.
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