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In this lecture, we review the definitions and properties of barycentric co-
ordinates on triangles, and study generalizations to convex polygons. These
generalized coordinates have various applications in computer graphics, in-
cluding curve, surface, and image deformation, and parameterization of tri-
angular meshes.

1 Triangular coordinates

Let T be a triangle in R
2 with vertices v1,v2,v3. For convenience we will

assume that v1,v2,v3 are in anti-clockwise order around the boundary of
T , as in Figure 1. It has been known for a long time, and was at least
known by Mobius, that any point x in T can be expressed uniquely as a
convex combination of the three vertices. In other words, there are unique
real values λ1, λ2, λ3 ≥ 0 such that

λ1 + λ2 + λ3 = 1, (1)

and
λ1v1 + λ2v2 + λ3v3 = x. (2)

To see this, observe that the scalar equation (1) and the vector equation (2)
together form a linear system of three equations,
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Figure 1: Point in a triangle.
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the assumption that T is non-degenerate implies that the matrix in (3) is
non-singular, and Cramer’s rule gives the unique solution

λ1 =
A(x,v2,v3)

A(v1,v2,v3)
, λ2 =

A(v1,x,v3)

A(v1,v2,v3)
, λ3 =

A(v1,v2,x)

A(v1,v2,v3)
. (5)

The values λi are called the barycentric coordinates of the point x. Observe
that due to the anti-clockwise ordering of the vertices v1,v2,v3, all four areas
in (5) are non-negative and therefore λ1, λ2, λ3 have the important property of
being non-negative. Had the vertices been ordered clockwise, all the areas in
(5) would have had the opposite sign but we would again have λ1, λ2, λ3 ≥ 0.

The three areas in the numerators in (5) are shown in Figure 2 where Ai

denotes the triangle area A(x,vi+1,vi+2) with indices regarded cyclically: if
j = k + 3m, with k ∈ {1, 2, 3} and m ∈ Z, then vj := vk.

Viewed as functions of x, we see from (5) that the λi are linear polyno-
mials, and from now on we treat them as functions of x. Using either (2) or
(5) we see that they have the Lagrange property,

λi(vj) = δij . (6)
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Figure 2: Areas of triangles formed by x.
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Figure 3: Values of λ1 at the vertices.

Here, δij denotes the Kronecker delta function that has value 1 when i = j
and value 0 when i 6= j. The values of λ1 at the vertices are shown in
Figure 3.

The linear polynomials λ1, λ2, λ3 are clearly well-defined for all x ∈ R
2.

However, they are are not all positive outside T . Their signs are shown in
Figure 4.
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Figure 4: Signs of λ1, λ2, λ3.

1.1 Interpolation

Barycentric coordinates are useful for interpolation on triangles. Given a
function f : T → R, we can define the linear polynomial

g(x) = If(x) =
3
∑

i=1

λi(x)f(vi), x ∈ T.

Due to the Lagrange property (6), it is easy to verify that g(vi) = f(vi),
i = 1, 2, 3. Thus g is the linear interpolant to the data. The interpolation
operator I has linear precision. This comes from the barycentric property
(2) combined with (1): if

f(x) = a · x + b,

then

g(x) =
3
∑

i=1

λi(x)(a · vi + b) = a ·
3
∑

i=1

λi(x)vi + b
3
∑

i=1

λi(x) = f(x).
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Figure 5: Example of a convex polygon.

1.2 Derivatives

It is sometimes useful to know the derivatives of λ1, λ2, λ3. Using the notation

Dkf =
∂λ

∂xk
, k = 1, 2,

for partial derivatives of a differentiable function f : R
2 → R, we can can

write the gradient of f as ∇f = (D1f, D2f). Differentiating the expression
in (5), using (4), gives

∇λi =
rot(vi+2 − vi+1)

2A(v1,v2,v3)
, i = 1, 2, 3,

where rot(a) = rot(a1, a2) := (−a2, a1), which can be interpreted as a rota-
tion of the vector a by π/2. Thus, for example the gradient of λ1 points in
the inward direction perpendicular to the edge [v2,v3].

2 Polygonal coordinates

Let Ω be a convex polygon in the plane, regarded as a closed set, with
vertices v1,v2, . . . ,vn, n ≥ 3, in an anticlockwise ordering. Figure 5 shows
an example with n = 5. We will call any set of functions λi : Ω → R,
i = 1, . . . , n, barycentric coordinates if they satisfy, for all x ∈ Ω, the three
properties

λi(x) ≥ 0, i = 1, 2, . . . , n, (7)
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n
∑

i=1

λi(x) = 1 (8)

and
n
∑

i=1

λi(x)vi = x. (9)

In the special case that n = 3, the λi are the unique triangular coordinates
of (5). For n ≥ 4, and for general x ∈ Ω, there is no unique choice of
the n values λ1(x), . . . , λn(x) that satisfies the three conditions. In most
applications we would like functions λi that are as smooth as possible.

2.1 General properties

Even though barycentric coordinates are not unique for n ≥ 4, they share
some general properties that follow from the three defining axioms (7), (8)
and (9). First, they have the Lagrange property λi(vj) = δij and are linear
along each edge of Ω. To see this, observe that the axioms (8) and (9) imply
linear precision, i.e., for any linear function f : R

2 → R,

n
∑

i=1

λi(x)f(vi) = f(x). (10)

Therefore, since the area A(x,vj ,vj+1) is linear in x, we have

n
∑

i=1

λi(x)A(vi,vj,vj+1) = A(x,vj ,vj+1),

and so if x belongs to the edge [vj ,vj+1],

∑

i6=j,j+1

λi(x)A(vi,vj,vj+1) = 0.

Since A(vi,vj,vj+1) > 0 for i 6= j, j + 1 by the convexity of Ω, and since
λi(x) ≥ 0 by (7) it follows that λi(x) = 0 for all i 6= j, j + 1. This implies
that from (9),

λj(x)vj + λj+1(x)vj+1 = x.

We have thus shown that all barycentric coordinates share the same val-
ues on the boundary of Ω. We can also use the defining axioms to ob-
tain some information about the coordinates in the interior of Ω. For each
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Figure 6: Upper and lower bounds.

i ∈ {1, . . . , n}, let Li : Ω → R be the function that is linear in each triangle
of the form [vi,vj,vj+1], j 6= i − 1, i, and has the values Li(vj) = δij at
the vertices of Ω, as illustrated in Figure 6a. Conversely, let ℓi : Ω → R be
the function that is linear on the triangle [vi−1,vi,vi+1], and on the poly-
gon [v1, . . . ,vi−1,vi+1, . . . ,vn], and also has the values Li(vj) = δij at the
vertices, as illustrated in Figure 6b.

Theorem 1 For x ∈ Ω and i = 1, . . . , n,

ℓi(x) ≤ λi(x) ≤ Li(x). (11)

Proof. The point x belongs to at least one triangle of the form [vi,vj,vj+1],
j 6= i− 1, i. Since A(x,vj ,vj+1) is linear in x, the two properties (8) and (9)
imply

A(x,vj,vj+1) =

n
∑

k=1

λk(x)A(vk,vj,vj+1) ≥ λi(x)A(vi,vj,vj+1),

the latter inequality due to the positivity property (7). This implies that

λi(x) ≤ A(x,vj ,vj+1)/A(vi,vj ,vj+1) = Li(x).

The opposite inequality, ℓi(x) ≤ λi(x), is trivial if x is outside the triangle
[vi−1,vi,vi+1], for then ℓi(x) = 0. So suppose x ∈ [vi−1,vi,vi+1]. Then, since
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A(x,vi+1,vi−1) is linear in x,

A(x,vi+1,vi−1) =
n
∑

k=1

λk(x)A(vk,vi+1,vi−1)

= λi(x)A(vi,vi+1,vi−1) −
∑

k 6=i−1,i,i+1

λk(x)A(vk,vi−1,vi+1)

≤ λi(x)A(vi,vi+1,vi−1)

which implies that

λi(x) ≥ A(x,vi+1,vi−1)/A(vi,vi+1,vi−1) = ℓi(x).

2

2.2 Quadrilateral coordinates

A common approach to building smooth barycentric coordinates in the spe-
cial case that Ω is a quadrilateral is to view the quadrilateral as the image
of a bilinear map from the unit square [0, 1]× [0, 1]. This is often used in the
PDE literature on finite elements.

Denote the vertices of Ω by v00,v10,v01,v11, as in Figure 7. Then, for
each x ∈ Ω, there exist unique λ and µ in [0, 1] such that

x = (1 − λ)(1 − µ)v00 + λ(1 − µ)v10 + (1 − λ)µv01 + λµv11. (12)
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This gives four barycentric coordinates λij, i, j = 0, 1. If a function f is given
this gives an interpolant

g(x) =

1
∑

i=0

1
∑

j=0

λijf(vij),

with linear precision.
It remains to find λ and µ, given x ∈ Ω. Letting

a = v00 − x, b = v10 − v00, c = v01 − v00, d = v00 − v10 − v01 + v11,

we can re-write (12) as

a + bλ + cµ + dλµ = 0. (13)

Taking the cross product of both sides of this equation with (a + cµ) gives

(a + cµ) × (b + dµ) = 0,

or
(c × d)µ2 + (c × b + a× d)µ + a × b = 0

which is a quadratic in µ and can be solved explicitly for µ. Note though that
the special case c × d = 0 must be treated separately. The other unknown,
λ, can be found in a smilar way.

3 Wachspress coordinates

In this chapter we study Wachspress coordinates. These are barycentric
coordinates over convex polygons that are rational functions, and are defined
by

λi(x) =
wi(x)

∑n
j=1

wj(x)
, x ∈ Ω, (14)

where
wi(x) = Bi

∏

j 6=i−1,i

Aj(x), (15)

and
Ai(x) := A(x,vi,vi+1) and Bi := A(vi−1,vi,vi+1).
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The triangle areas Ai and Bi are shown in Figure 8. Since Aj is linear in x

we see that wi is a polynomial of degree n− 2. It follows that the numerator
of λi has degree n − 2. Thus the denominator,

W (x) =
n
∑

j=1

wj(x), (16)

has degree at most n − 2, but in fact its degree is n − 3. This follows from
the barycentric property λi which we prove in the next section.

Wachspress coordinates are clearly smooth (C∞) and also rational poly-
nomials in the coordinates x1 and x2 of the point x = (x1, x2) with degree at
most n − 2.

We note that in the case that Ω is a regular polygon, the areas B1, . . . , Bn

are equal in which case they can be removed from the formula and we have
simply

wi(x) =
∏

j 6=i−1,i

Aj(x). (17)

We now establish the barycentric property (9) for the Wachspress coor-
dinates (14). It helps first to express the coordinates in a different form.
Multiplying wi by a constant in i does not change λi, and so dividing wi by
∏n

j=1
Aj gives the alternative form

λi(x) =
w̃i(x)

∑n
j=1

w̃j(x)
, w̃i(x) =

Bi

Ai−1(x)Ai(x)
, (18)
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which is valid for x ∈ Int(Ω). In contrast to wi, the rational function w̃i

depends only on the three local vertices vi−1, vi, and vi+1.

Theorem 2 With w̃i as in (18),

n
∑

i=1

w̃i(x)(vi − x) = 0, x ∈ Int(Ω). (19)

Proof. We express x as a barycentric combination of vi−1, vi, and vi+1,

x =
Ai(x)

Bi
vi−1 +

(Bi − Ai−1(x) − Ai(x))

Bi
vi +

Ai−1(x)

Bi
vi+1,

and rearrange this equation in the form

Bi

Ai−1(x)Ai(x)
(vi − x) =

1

Ai−1(x)
(vi − vi−1) −

1

Ai(x)
(vi+1 − vi).

Summing both sides of this equation over i = 1, . . . , n gives the result. 2

The barycentric property (9) immediately follows from this. Another
consequence is that

n
∑

i=1

w̃i(x)vi = x

n
∑

i=1

w̃i(x),

and so
n
∑

i=1

wi(x)vi = x

n
∑

i=1

wi(x).

Then, since the left hand side is a (vector) polynomial of degree ≤ n−2, the
sum W (x) =

∑n
i=1

wi(x) must be a polynomial of degree ≤ n − 3.

3.1 Wachspress coordinates outside the polygon

Do Wachspress coordinates extend outside the polygon? We saw that barycen-
tric coordinates over a triangle continue to be well-defined outside the trian-
gle, even though they are no longer all positive there.

Wachspress coordinates, however, may not be well-defined outside the
polygon. Consider the example of Fig 9, where n = 4, and Ω is a quadri-
lateral. The lines through the fours sides of the quadrilateral intersect in
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Figure 9: Singularities of Wachspress coordinates

the two points p and q. By definition, we see that A2(p) = A4(p) = 0.
Therefore, wi(p) = 0 for all i = 1, 2, 3, 4, and so W (p) = 0. Similarly,
A1(q) = A3(q) = 0, and so W (q) = 0 We showed earlier that the polynomial
W has degree ≤ n−2, which in this quadrilateral case is degree 1. Thus, W is
zero along the line L through p and q and we conclude that the Wachspress
coordinates λ1, . . . , λ4 are not well-defined on the line L.

4 Mean value coordinates

Another set of barycentric coordinates for convex polygons are the so-called
mean value coordinates,

λi(x) =
wi(x)

∑n
j=1

wj(x)
, x ∈ Ω, (20)

where

wi(x) =
tan(αi−1(x)/2) + tan(αi(x)/2)

‖vi − x‖ , (21)
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and ‖ · ‖ denotes the Euclidean norm in R
2 and αi(x) is the angle at x in the

triangle [x,vi,vi+1], illustrated in Figure 10.
Note that the tangents in the formula do not need to be evaluated directly.

Instead, using the notation di = vi − x, ri = ‖di‖, and ei = di/ri, we can
write

sin αi = ei × ei+1, and cos αi = ei · ei+1,

where × and · denote cross and dot products of vectors in R
2, and then use

either of the two formulas

tan(α/2) = (1 − cos α)/ sinα = sin α/(1 + cosα).

Nevertheless, the mean value weight (21) requires computing square roots in
order to evaluate ri−1, ri, and ri+1.

4.1 Barycentric property

We now show that the mean value coordinates satisfy the barycentric prop-
erty (9).

Theorem 3 With wi as in (21),

n
∑

i=1

wi(x)(vi − x) = 0, x ∈ Int(Ω). (22)
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Proof. With x ∈ Int(Ω) fixed, equation (22) is equivalent to

n
∑

i=1

(

tan(αi−1/2) + tan(αi/2)
)

ei = 0,

which can be rewritten as

n
∑

i=1

tan(αi/2)(ei + ei+1) = 0. (23)

To show that this equation holds, express the unit vector ei as ei = (cos θi, sin θi).
Then αi = θi+1 − θi, and so

tan
(αi

2

)

(ei + ei+1) = tan

(

θi+1 − θi

2

)

(cos θi + cos θi+1, sin θi + sin θi+1)

= (sin θi+1 − sin θi, cos θi − cos θi+1),

the last line following from the addition and subtraction formulas for sines
and cosines. Summing this expression over i = 1, . . . , n gives equation (23)
as required. 2

4.2 Alternative expression

The formula (21) is only valid for x in the interior of Ω. However, since the
upper and lower bounds in Theorem 1 apply to the mean value coordinates
at every interior point, and because the bounds are equal at the boundary
of Ω we see that that the coordinates uniquely continue to the boundary in
the usual way. An alternative way to see this is the following alternative
formula, which is clearly valid all x in Ω.

Theorem 4 The mean value coordinates λi of (20–21) can be expressed as

λi(x) =
w̃i(x)

∑n
j=1

w̃j(x)
, (24)

where

w̃i(x) =

(

(ri−1ri+1 − di−1 · di+1)
∏

j 6=i−1,i

(rjrj+1 + dj · dj+1)

)1/2

. (25)
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Proof. From the addition formula for sines, we have

wi =
1

ri

(

sin(αi−1/2)

cos(αi−1/2)
+

sin(αi/2)

cos(αi/2)

)

=
sin((αi−1 + αi)/2)

ri cos(αi−1/2) cos(αi/2)
.

Then, to get rid of the half-angles we use the identities

sin(A/2) =
√

(1 − cos A)/2,

cos(A/2) =
√

(1 + cosA)/2,

to obtain

wi =

√
2

ri

(

1 − cos(αi−1 + αi)

(1 + cosαi−1)(1 + cosαi)

)1/2

.

Now we substitute in the scalar product formula,

cos(αi−1 + αi) =
di−1 · di+1

ri−1ri+1

,

and similarly for cos(αi−1) and cos(αi), and the 1/ri term cancels out:

wi =
√

2

(

ri−1ri+1 − di−1 · di+1

(ri−1ri + di−1 · di)(riri+1 + di · di+1)

)1/2

.

Finally, we set w̃i = Cwi, where C is the constant

C =
1√
2

n
∏

j=1

(rjrj+1 + dj · dj+1)
1/2,

giving (25). 2

Now, if x lies on the edge [vj , vj+1], then we see that w̃i(x) = 0 for all
i 6= j, j + 1 and w̃j(x) > 0 and w̃j+1(x) > 0, and so the λi are well-defined
at x with λi(x) = 0 for all i 6= j, j + 1 and

λj(x)vj + λj+1(x)vj+1 = x.

While the formula is numerically valid at the boundary it requires more
square root computations.

15


