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In this lecture, we review the definitions and properties of barycentric co-
ordinates on triangles, and study generalizations to convex polygons. These
generalized coordinates have various applications in computer graphics, in-
cluding curve, surface, and image deformation, and parameterization of tri-
angular meshes.

1 Triangular coordinates

Let T be a triangle in R? with vertices vy, vo, vs. For convenience we will
assume that vi, vy, vy are in anti-clockwise order around the boundary of
T, as in Figure 1. It has been known for a long time, and was at least
known by Mobius, that any point x in 7" can be expressed uniquely as a
convex combination of the three vertices. In other words, there are unique
real values Ai, Ao, A3 > 0 such that

M4 Ao+ Ay =1, (1)

and
)\1V1 + )\2V2 + )\3V3 = X. (2)

To see this, observe that the scalar equation (1) and the vector equation (2)
together form a linear system of three equations,

1 1 1 A1 1
viovpovg || A =2, (3)
vi vl vl A3 x?
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Figure 1: Point in a triangle.

where v; = (v},v3), j = 1,2,3, and x = (2',2%). Since the signed area of
the triangle T' is given by

1 1 1 1
A(Vla Vo, V3) = 5 ,U% ,U% U.?1> ) (4)
v vy 03

the assumption that 7' is non-degenerate implies that the matrix in (3) is
non-singular, and Cramer’s rule gives the unique solution

A(X7 V27V3) A(Vlaxa V3) A(V17V27X)

)\1: )\2: )\3:

A(V1,V2,V3)’ A(V17V2,V3)’ A(V17V2,V3)'

()

The values \; are called the barycentric coordinates of the point x. Observe
that due to the anti-clockwise ordering of the vertices vy, vo, v3, all four areas
in (5) are non-negative and therefore A;, Ay, A3 have the important property of
being non-negative. Had the vertices been ordered clockwise, all the areas in
(5) would have had the opposite sign but we would again have A, Ay, A3 > 0.

The three areas in the numerators in (5) are shown in Figure 2 where A;
denotes the triangle area A(x,v; 1, v;12) with indices regarded cyclically: if
Jj=k+3m, with k € {1,2,3} and m € Z, then v; := vy.

Viewed as functions of x, we see from (5) that the \; are linear polyno-
mials, and from now on we treat them as functions of x. Using either (2) or
(5) we see that they have the Lagrange property,

N(v;) = b (6)
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Figure 2: Areas of triangles formed by x.
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Figure 3: Values of \; at the vertices.

Here, 9;; denotes the Kronecker delta function that has value 1 when i = j
and value 0 when ¢ # j. The values of \; at the vertices are shown in
Figure 3.

The linear polynomials Ai, Ao, A3 are clearly well-defined for all x € R2.
However, they are are not all positive outside T'. Their signs are shown in
Figure 4.



Figure 4: Signs of A\, Ag, As.

1.1 Interpolation

Barycentric coordinates are useful for interpolation on triangles. Given a
function f : T — R, we can define the linear polynomial

3

9x) = If(x) = SNf(v),  x€T.

i=1
Due to the Lagrange property (6), it is easy to verify that g(v;) = f(vi),
1 = 1,2,3. Thus g is the linear interpolant to the data. The interpolation
operator I has linear precision. This comes from the barycentric property
(2) combined with (1): if
f(x)=a-x+0b,

then

3 3 3

g(x) =Y M(x)(@-vi+b)=a- Y Mx)vi+ bz Xi(x) = f(x).

i=1 i=1
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Figure 5: Example of a convex polygon.

1.2 Derivatives

It is sometimes useful to know the derivatives of A1, As, A3. Using the notation

O\
Ok
for partial derivatives of a differentiable function f : R? — R, we can can
write the gradient of f as Vf = (D1 f, Dof). Differentiating the expression
in (5), using (4), gives

Dkf: k:1727

. I'Ot(VH_Q — Vi+1)

P
v ' 2A(V17V27V3) ’

i=1,23,

where rot(a) = rot(a',a?) := (—a? a'), which can be interpreted as a rota-
tion of the vector a by 7/2. Thus, for example the gradient of \; points in
the inward direction perpendicular to the edge [va, v3].

2 Polygonal coordinates

Let Q be a convex polygon in the plane, regarded as a closed set, with
vertices vi,Vs,...,V,, n > 3, in an anticlockwise ordering. Figure 5 shows
an example with n = 5. We will call any set of functions \; : Q@ — R,
1 =1,...,n, barycentric coordinates if they satisfy, for all x € €2, the three
properties

Ai(x) >0, 1=1,2,...,n, (7)



Z ANi(x) =1 (8)
and

Z Ai(x)v; = x. 9)

In the special case that n = 3, the \; are the unique triangular coordinates
of (5). For n > 4, and for general x € (2, there is no unique choice of
the n values A\j(x),..., A\, (x) that satisfies the three conditions. In most
applications we would like functions A; that are as smooth as possible.

2.1 General properties

Even though barycentric coordinates are not unique for n > 4, they share
some general properties that follow from the three defining axioms (7), (8)
and (9). First, they have the Lagrange property \;(v;) = ¢;; and are linear
along each edge of 2. To see this, observe that the axioms (8) and (9) imply
linear precision, i.e., for any linear function f : R? — R,

D A f(vi) = f(x). (10)
i=1
Therefore, since the area A(x,Vv;, v;11) is linear in x, we have
D M)AV, Vi, V1) = A(X, V5, Vi),
i=1

and so if x belongs to the edge [v;, v;41],

Z )\Z’(X)A(Vz‘, Vi, Vj+1) =0.
i#4.0+1
Since A(v;,Vv;j,vj41) > 0 for i # j,j + 1 by the convexity of €2, and since
Ai(x) > 0 by (7) it follows that \;(x) = 0 for all ¢ # 7,7 + 1. This implies
that from (9),
A (X)Vj 4+ A (X)vjpn = x.
We have thus shown that all barycentric coordinates share the same val-

ues on the boundary of 2. We can also use the defining axioms to ob-
tain some information about the coordinates in the interior of ). For each
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Figure 6: Upper and lower bounds.

ie{l,...,n}, let L; : Q@ — R be the function that is linear in each triangle
of the form [v;,v;,vj11], j # i — 1,4, and has the values L;(v;) = ¢;; at
the vertices of (), as illustrated in Figure 6a. Conversely, let /; : & — R be
the function that is linear on the triangle [v; 1, v;, vi11], and on the poly-
gon [Vi,...,Vi_1,Vit1,...,Vy], and also has the values L;(v;) = 0;; at the
vertices, as illustrated in Figure 6b.

Theorem 1 Forxe Q andi=1,...,n,
li(x) < \i(x) < Li(x). (11)

Proof. The point x belongs to at least one triangle of the form [v;, v;, v,11],
J #i—1,i. Since A(x,Vv;,V;41) is linear in x, the two properties (8) and (9)
imply

A(x,vj, Vi) = Z Me(X)A(Vi, Vi, Vign) = Ni(%)A(Vi, Vi, Vi),
k=1
the latter inequality due to the positivity property (7). This implies that

Ai(x) < A%, v, Vi) [A(Vi, v, Vi) = Li(x).

The opposite inequality, ¢;(x) < A;(x), is trivial if x is outside the triangle
[Vi_1, Vi, Viy1], for then £;(x) = 0. So suppose x € [v;_1, v;, Vi41]. Then, since

7
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Figure 7: Convex quadrilateral
A(x,V;i11,V;_1) is linear in x,

A(X,Vz‘+1,Vz‘—1) = ZAk(X)A(Vk,VHl,Vz‘—l)
k=1

= )\i<X>A<VZ'7 Vit Vifl) - Z )\k(X)A(ka Vi-1, Vz’+1)
k#i—1,ii+1
< N(X)A(Vi, Vig1, Vie1)

which implies that

Xi(x) > A(x, vit1, Vie1) JA(Vi, Vigr, Vier) = 4i(x).

2.2 Quadrilateral coordinates

A common approach to building smooth barycentric coordinates in the spe-
cial case that €2 is a quadrilateral is to view the quadrilateral as the image
of a bilinear map from the unit square [0, 1] x [0, 1]. This is often used in the
PDE literature on finite elements.

Denote the vertices of 2 by vqg, Vig, Vo1, Vi1, as in Figure 7. Then, for
each x € ), there exist unique A and g in [0, 1] such that

x = (1=A)(1 = p)voo + A1 = p)vig + (1 = A)pvor + Ay (12)



This gives four barycentric coordinates \;;, ¢, 5 = 0, 1. If a function f is given

this gives an interpolant

R

Nij f(Vij),

g(x) = Z

11
i=0 j=0

with linear precision.
It remains to find A and p, given x € (2. Letting

a=vop —X, b=vy—ve, €=vg—Vve, d=Ve—Vi— Vo + Vi,
we can re-write (12) as
a+bA+cu+diu=0. (13)
Taking the cross product of both sides of this equation with (a + cu) gives
(a+cu) x (b+du) =0,

or
(cxd)p? +(cxb+axdpu+axb=0

which is a quadratic in ¢ and can be solved explicitly for u. Note though that
the special case ¢ x d = 0 must be treated separately. The other unknown,
A, can be found in a smilar way.

3 Wachspress coordinates

In this chapter we study Wachspress coordinates. These are barycentric

coordinates over convex polygons that are rational functions, and are defined
by

o wi®)
Ai(x) Z?:ﬂ‘fj(x)’ € €, (14)
where
wi) =B [] A, (15)
jAi—1
and

Ai(x) == A(x, vy, vir1) and By = A(vi_1, Vi, Vit).



Figure 8: Triangles areas

The triangle areas A; and B; are shown in Figure 8. Since A; is linear in x
we see that w; is a polynomial of degree n — 2. It follows that the numerator
of \; has degree n — 2. Thus the denominator,

W) = > (), (16)

has degree at most n — 2, but in fact its degree is n — 3. This follows from
the barycentric property \; which we prove in the next section.

Wachspress coordinates are clearly smooth (C'*°) and also rational poly-
nomials in the coordinates z! and 2 of the point x = (z!, 2%) with degree at
most n — 2.

We note that in the case that €2 is a regular polygon, the areas By, ..., B,
are equal in which case they can be removed from the formula and we have
simply

wix)= [ 4. (17)
jAi—1,

We now establish the barycentric property (9) for the Wachspress coor-
dinates (14). It helps first to express the coordinates in a different form.
Multiplying w; by a constant in ¢ does not change A;, and so dividing w; by
[Tj-, A; gives the alternative form

e B
> i Wi(x) ' Ai 1 (x)Ai(x)’

J

Ai(x) = (18)



which is valid for x € Int(€2). In contrast to w;, the rational function w;
depends only on the three local vertices v;_1, v;, and v, 1.

Theorem 2 With w; as in (18),

Zwi(x)(vi -x) =0, xet(Q). (19)

Proof. We express x as a barycentric combination of v;_1, v;, and v;,1,

JA, | B A AR, A,

and rearrange this equation in the form

B 3 m v vit) - —(vi — v,
A moAG VY T AL VY T g e YY)

Summing both sides of this equation over ¢ = 1,...,n gives the result. O

The barycentric property (9) immediately follows from this. Another

consequence is that
n n
Z TI)Z(X)VZ‘ =X Z TI)Z(X),
i=1 i=1

and so . .
Z w;i(X)v; = X Z w;(x).
i=1 i=1

Then, since the left hand side is a (vector) polynomial of degree < n — 2, the
sum W (x) = Y, w;(x) must be a polynomial of degree < n — 3.

3.1 Wachspress coordinates outside the polygon

Do Wachspress coordinates extend outside the polygon? We saw that barycen-
tric coordinates over a triangle continue to be well-defined outside the trian-
gle, even though they are no longer all positive there.

Wachspress coordinates, however, may not be well-defined outside the
polygon. Consider the example of Fig 9, where n = 4, and €2 is a quadri-
lateral. The lines through the fours sides of the quadrilateral intersect in

11



Figure 9: Singularities of Wachspress coordinates

the two points p and q. By definition, we see that Ay(p) = A4(p) = 0.
Therefore, w;(p) = 0 for all @ = 1,2,3,4, and so W(p) = 0. Similarly,
Ai(q) = As(q) =0, and so W(q) = 0 We showed earlier that the polynomial
W has degree < n—2, which in this quadrilateral case is degree 1. Thus, W is
zero along the line L through p and q and we conclude that the Wachspress
coordinates Aq,..., A\; are not well-defined on the line L.

4 Mean value coordinates

Another set of barycentric coordinates for convex polygons are the so-called
mean value coordinates,

w;(x)

M= e )

x €, (20)

where
wi(%) = tan(a,_1(x)/2) + tan(a;(x)/2)

, (21)
[vi — ]|

12
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Figure 10: Angles in mean value formula

and || - || denotes the Euclidean norm in R? and «;(x) is the angle at x in the
triangle [x, v;, vi41], illustrated in Figure 10.

Note that the tangents in the formula do not need to be evaluated directly.
Instead, using the notation d; = v; — x, r; = ||d;||, and e; = d;/r;, we can
write

sinq; = e; X €41, and cosa; = €; - €11,

where x and - denote cross and dot products of vectors in R?, and then use
either of the two formulas

tan(a/2) = (1 — cosa)/sina = sina /(1 + cos ).

Nevertheless, the mean value weight (21) requires computing square roots in
order to evaluate r;_1, r;, and r;,1.

4.1 Barycentric property

We now show that the mean value coordinates satisfy the barycentric prop-
erty (9).

Theorem 3 With w; as in (21),

Zwi(x)(vi -x)=0, xet(Q). (22)

13



Proof. With x € Int(Q) fixed, equation (22) is equivalent to

n

Z (tan(ci—1/2) + tan(a;/2))e; = 0,

i=1

which can be rewritten as

D tan(ai/2)(e; + ei1) = 0. (23)

i=1
To show that this equation holds, express the unit vector e; as e; = (cos 6;, sin ¢;).

Then o; = 9i+1 — 92‘, and so

i Oiy1 — 0; . .
tan (%) (e; +ej11) = tan (%) (cos 0; + cos b;41,sin0; + sin0;,1)

= (sin ;41 — sin 6;, cos O; — cos b;41),

the last line following from the addition and subtraction formulas for sines
and cosines. Summing this expression over i = 1,...,n gives equation (23)
as required. a

4.2 Alternative expression

The formula (21) is only valid for x in the interior of ). However, since the
upper and lower bounds in Theorem 1 apply to the mean value coordinates
at every interior point, and because the bounds are equal at the boundary
of 2 we see that that the coordinates uniquely continue to the boundary in
the usual way. An alternative way to see this is the following alternative
formula, which is clearly valid all x in 2.

Theorem 4 The mean value coordinates \; of (20-21) can be expressed as

QIJZ‘ (X)

M= e )

(24)

where

1/2
w;(x) = <(7“z‘17“z‘+1 —diy-dipy) [ (it d; de)) . (25)

14



Proof. From the addition formula for sines, we have

1 (sin(ail/Q) sin(ai/Q)) _sin((ai +00)/2)

r; \cos(ci_1/2) ' cos(a;/2) ricos(a;_1/2) cos(ay/2)

w; =

Then, to get rid of the half-angles we use the identities
sin(A/2) = /(1 — cos A)/2,
cos(A/2) = +/(1+ cos A)/2,

P (enares)

i + cosa;_1)(1 + cos oy

to obtain

w; =

Now we substitute in the scalar product formula,

di_-dipr
cos(aj_1 + o) = —————,
Ti—1Ti+1

and similarly for cos(a;_1) and cos(«;), and the 1/r; term cancels out:

w; = \/é ( Ti1Tir1 — di*l . di+1 )1/2 |
(ricari +diq - dy)(rir +d; - diyq)

Finally, we set w; = Cw;, where C' is the constant

(rjrjs1 +dj - dja)'?,
1

1
‘=5

n

\)

J

giving (25).

Now, if x lies on the edge [v;,v;41], then we see that w;(x) = 0 for all
i # 7,7+ 1 and w;(x) > 0 and w;11(x) > 0, and so the \; are well-defined

at x with \;(x) =0 for all i # j,j + 1 and

A (X) Vi + X (X)) = x.

While the formula is numerically valid at the boundary it requires more

square root computations.

15



