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Abstract

These notes provide an introduction to the construction of functions
through subdivision, focusing on 4-point interpolatory subdivision. The
material is based on the papers [1, 2, 3, 4].

1 Introduction

Given a sequence of values fi, for i = 0, 1, 2, . . . , n, we want to find an inter-
polant, i.e., a function f : [0, n] → R such that f(i) = fi, for i = 0, 1, . . . , n,
with good smoothness and approximation properties. One way of doing this is
to use interpolatory subdivision. One of the earliest and best known examples
of interpolatory subdivision is the four-point scheme.

Suppose we extend the data values a little so that we start with fi for
i = −2,−1, 0, . . . , n, n + 1, n + 2. We will compute an interpolant f as the limit
of polygons. We start by setting f0

i = fi and the first and coarsest polygon is
the continuous function f0 : [−2, n + 2] → R which is linear on each interval
[i, i + 1], −2 ≤ i ≤ n + 1, and such that f0(i) = f0

i , −2 ≤ i ≤ n + 2. In short,
f0 is the piecewise linear interpolant to the data (i, f0

i ), −2 ≤ i ≤ n + 2. We
then generate a sequence f1, f2, . . . , of finer and finer polygons through a four
point rule. We choose some real value w. Then for each k = 0, 1, 2, . . . , we set

fk+1
2i = fk

i − 1 ≤ i ≤ 2kn + 1, (1)

fk+1
2i+1 = −wfk

i−1 +

(

1

2
+ w

)

fk
i +

(

1

2
+ w

)

fk
i+1 − wfk

i+2,−1 ≤ i ≤ 2kn, (2)

and let fk : [−21−k, n + 21−k] → R be the piecewise linear interpolant to the
data (2−ki, fk

i ), −2 ≤ i ≤ 2kn + 2. Figure 1 shows the first four polygons for
an example data set, with w = 1/16.

Exercise 1 Show that for all w, the scheme has linear precision, in the sense

that if fi = p1(i) for some linear polynomial p1, then fk
i = p1(2

−ki) for all i
and k, i.e., the scheme reproduces linear polynomials p1.

Exercise 2 Show that if w = 1/16 then the scheme has cubic precision, i.e.,

reproduces polynomials of degree 3.
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Figure 1: Scheme with w = 1/16. Top row: k = 0, 1, bottom row: k = 2, 3.

2 Smoothness

We hope that for some values of w, the sequence of polygons (fk)k has a limit
function over the interval [0, n] as k → ∞, and that the limit function has
derivatives. Figure 2 shows limit functions with the values w = 1/32 and w =
1/6.

Theorem 1 For |w| < 1/4, the sequence (fk)k has a limit

f(x) = lim
k→∞

fk(x), 0 ≤ x ≤ n,

which is continuous in [0, n].

In order to prove the theorem we will use a well known result from analysis
that says that a sufficient condition for such convergence is that (fk)k is a
Cauchy sequence in the max norm

‖f‖ := max
0≤x≤n

|f(x)|.

Thus we need to show that for any ǫ > 0 there is some N such that for all
i, j ≥ N ,

‖f i − f j‖ ≤ ǫ. (3)

To this end we will use the following lemma.
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Figure 2: Limit function with (left) w = 1/32 and (right) w = 1/6.

Lemma 1 If there are positive constants C and λ < 1 such that

‖fk+1 − fk‖ ≤ Cλk, k = 0, 1, 2, . . . , (4)

then (fk)k is a Cauchy sequence.

Proof. Observe that under condition (4), if i > j,

‖f i − f j‖ ≤ ‖f i − f i−1‖ + ‖f i−1 − f i−2‖ + · · · + ‖f j+1 − f j‖
≤ Cλi−1 + Cλi−2 + · · · + Cλj

= Cλj(λi−1−j + λi−2−j + · · · + λ + 1)

≤ Cλj(1 + λ + λ2 + · · · )
= Cλj/(1 − λ) ≤ CλN/(1 − λ).

Thus (3) holds if we take N large enough that CλN/(1 − λ) ≤ ǫ. 2

We now prove Theorem 1:

Proof. Observe that the maximum value of |fk+1(x) − fk(x)| is attained at a
midpoint on level k, i.e., at a point of the form x = 2−(k+1)(2i + 1), and at this
point,

fk+1(x) − fk(x) = fk+1
2i+1 − (fk

i + fk
i+1)/2

= −wfk
i−1 + wfk

i + wfk
i+1 − wfk

i+2,

= w(fk
i − fk

i−1) − w(fk
i+2 − fk

i+1),

and so
|fk+1(x) − fk(x)| ≤ 2|w|max{|fk

i − fk
i−1|, |fk

i+2 − fk
i+1|},

and therefore
‖fk+1 − fk‖ ≤ C1 max

i
|fk

i+1 − fk
i |,
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Figure 3: First and ‘second’ derivative (level k = 5) with w = 1/16.

where C1 = 2|w|. Thus if we can show that there are constants C2 and λ < 1
such that

max
i

|fk
i+1 − fk

i | ≤ C2λ
k, k = 0, 1, 2, . . . ,

then we can apply Lemma 1 with C = C1C2. To this end observe that

fk+1
2i+1 − fk+1

2i = w(fk
i − fk

i−1) + (fk
i+1 − fk

i )/2 − w(fk
i+2 − fk

i+1), (5)

fk+1
2i+2 − fk+1

2i+1 = −w(fk
i − fk

i−1) + (fk
i+1 − fk

i )/2 + w(fk
i+2 − fk

i+1). (6)

It follows that

max
i

|fk+1
i+1 − fk+1

i | ≤ (2|w| + 1/2)max
i

|fk
i+1 − fk

i |,

and therefore that (2) holds with

λ = 2|w| + 1/2, C2 = max
i

|f0
i+1 − f0

i |.

Thus the sequence (fk)k is Cauchy if λ < 1 which is equivalent to the condition
that |w| < 1/4. 2

We next consider the smoothness of the limit function. Figure 3 shows the
numerical first derivative (a plot of first order divided differences) at level k = 5
and the ‘second derivative’ (second order divided differences) at the same level.

Theorem 2 For |w| < 1/4, let f be the limit function of Theorem 1. If 0 <
w < 1/8 then f ∈ C1[0, n].

Proof. Define the first order divided difference

dk
i := 2k(fk

i+1 − fk
i ),

and let dk : [−21−k, n+2−k] → R be the piecewise linear interpolant to the data
(2−ki, dk

i ), −2 ≤ i ≤ 2kn + 1. We will show
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(i) that the sequence of polygons (dk)k has a continuous limit

d(x) = lim
k→∞

dk(x), 0 ≤ x ≤ n,

and

(ii) that

f(x) = f(0) +

∫ x

0

d(y) dy, x ∈ [0, n], (7)

which implies that f is differentiable with f ′ = d.

Starting with (i), we will show that (dk)k is a Cauchy sequence. Notice
that the maximum difference |dk+1(x) − dk(x)| occurs at a point x of the form
2−(k+1)(2i) or 2−(k+1)(2i + 1). Thus

‖dk+1 − dk‖ ≤ max{|dk+1
2i − dk

i |, |dk+1
2i+1 − (dk

i + dk
i+1)/2|}. (8)

Notice that from (5) there is a subdivision scheme for the dk
i :

dk+1
2i = 2wdk

i−1 + dk
i − 2wdk

i+1, (9)

dk+1
2i+1 = −2wdk

i−1 + dk
i + 2wdk

i . (10)

Substituting these into (8) it immediately follows that there is some constant
(depending only on w) such that

‖dk+1 − dk‖ ≤ C max
i

|dk
i+1 − dk

i |.

Thus it remains to bound the differences on the right. Taking differences of the
dk

i gives

dk+1
2i+1 − dk+1

2i = 4w(dk
i − dk

i−1) + 4w(dk
i+1 − dk

i ), (11)

dk+1
2i+2 − dk+1

2i+1 = −2w(dk
i − dk

i−1) + (1 − 4w)(dk
i+1 − dk

i ) − 2w(dk
i+2 − dk

i+1).

(12)

It follows that
max

i
|dk+1

i+1 − dk+1
i | ≤ max

i
|dk

i+1 − dk
i |

for 0 ≤ w ≤ 1/8. But this only shows that

max
i

|dk
i+1 − dk

i | ≤ C, k = 0, 1, 2, . . . ,

for these w, which is not good enough to show that (dk)k is a Cauchy sequence.
Yet by applying (11) twice, a longer calculation shows that for 0 < w < 1/8,
there is some β < 1 such that

max
i

|dk+1
i+1 − dk+1

i | ≤ β max
i

|dk−1
i+1 − dk−1

i |.
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Thus for these w,

max
i

|dk
i+1 − dk

i | ≤ Kλk, k = 0, 1, 2, . . . ,

with λ =
√

β < 1 and this shows that (dk)k is a Cauchy sequence.
Considering (ii), since both sides of (7) are are continuous in x, it is sufficient

to show that the equation holds for all dyadic points, i.e., points of the form

x = p +

m
∑

j=1

aj2
−j ,

where p ∈ {0, 1, . . . , n − 1} and a1, . . . , am ∈ {0, 1}. Then, for any k ≥ m, we
can express x as x = 2−kqk, where

qk = 2kp +

m
∑

j=1

aj2
k−j .

So by the trapezoidal rule,

∫ x

0

dk(y) dy = 2−k

(

dk
0

2
+

qk−1
∑

i=1

dk
i +

dk
qk

2

)

=
fk

qk
+ fk

qk+1

2
− fk

0 + fk
1

2
.

We now let k → ∞ in this equation. The left hand side converges to
∫ x

0
d(y) dy

and since fk
0 = f(0) and fk

qk
= f(x), and since fk

1 → f(0) and fk
qk+1 → f(x),

the right hand side converges to f(x) − f(0) and this establishes (7). 2

It has been shown that no value of w gives a limit function that is twice
differentiable for general data values fi. However, with w = 1/16, the limit
function is ‘close’ to C2 in the following sense. First we need to define what
we mean by Hölder continuity. Recall that a function g : [a, b] → R is said to
be Hölder continuous with exponent α, where 0 < α < 1, if there is a constant
C > 0 such that

|g(y) − g(x)|
|y − x|α ≤ C, for a ≤ x < y ≤ b,

in which case we write f ∈ Cα[a, b]. Hölder continuity in the limiting case α = 1
is the same as Lipschitz continuity. We also write f ∈ Ck+α[a, b] for k = 1, 2, . . .
and α ∈ (0, 1) if f (k) ∈ Cα[a, b].

Exercise 3 Show that the function g(x) = x1/2 is Hölder continuous in [0, 1]
with any exponent α satisfying 0 < α ≤ 1/2.

It can be shown that when w = 1/16, the derivative of the limit function f
of the scheme (1) is Hölder continuous in [0, n] for all exponents α, 0 < α < 1.
We can express this by writing f ′ ∈ C1−ǫ[0, n] for any small ǫ > 0, and so
f ∈ C2−ǫ[0, n].
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Figure 4: Basis function with w = 1/16.

3 Approximation order

We now establish the rate of approximation of the four-point scheme in the case
w = 1/16. When the data is fi = δij for some j we call the limit function
Bj . Figure 4 shows the function B0. For some integer n let h = 1/n and
suppose we sample a function g at the points ih, i = −2, . . . , n + 2, giving
the data fh

i = g(ih). Let fh : [0, 1] → R denote the limit function of the
subdivision scheme adapted to the grid spacing h, so that fh(ih) = g(ih), and
let ‖f‖ := max0≤x≤1 |f(x)|.

Theorem 3 If g ∈ C4[−2h, 1 + 2h] and w = 1/16 there is a constant C > 0
such that

‖g − fh‖ ≤ Ch4‖g(4)‖.

Proof. Let Bh
j denote the limit function of the scheme with spacing h of the

data fh
i = δij . Then by the linearity of the scheme,

fh(x) =

n+2
∑

i=−2

fh
i Bh

i (x). (13)

Note also that ‖Bh
i ‖ = ‖B1

i ‖ = ‖B1
0‖ = C1 for some constant C1 > 0. Suppose

x ∈ [jh, (j+1)h]. Then since the support of Bh
i is contained in [(i−2)j, (i+3)h],

the global sum (13) becomes a local one,

fh(x) =

j+3
∑

i=j−2

fh
i Bh

i (x). (14)

We want next to replace fh
i in this sum by its Taylor expansion

fh
i = g(ih) = g(x) +

3
∑

r=1

(ih − x)rg(r)(x)/r! + (ih − x)4g(4)(ci)/4!, (15)
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where ci is some point between x and ih. Notice that since the scheme with
w = 1/16 has cubic precision,

j+3
∑

i=j−2

(ih − y)rBh
i (x) = (y − x)r, r = 1, 2, 3,

for any y and in particular

j+3
∑

i=j−2

(ih − x)rBh
i (x) = 0, r = 1, 2, 3.

Thus when we substitute (15) into (14) we end up with

fh(x) = g(x) +

j+3
∑

i=j−2

(ih − x)4g(4)(cj)B
h
i (x)/4!.

Since |ih− x| ≤ 3h we deduce that

|fh(x) − g(x)| ≤ 6(3h)4‖g(4)‖C1/4!.

2

Note that the above method of proof can be applied to many interpolation
and approximation problems. In general, if an approximation method:

(i) is linear

(ii) has bounded basis functions of local support, and

(iii) has polynomial precision of degree d,

then the approximation order is O(hd+1) provided the function being approxi-
mated has a bounded (d + 1)-st derivative.
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