Radial Basis Functions I

Tom Lyche

Centre of Mathematics for Applications,
Department of Informatics,
University of Oslo
November 14, 2008

Today

- Reformulation of natural cubic spline interpolation
- Scattered data interpolation with RBF's
- Franke's example using Gaussian
- Non-singularity via nonnegative Fourier Transform
- RBF interpolation with polynomial precision
- Positive definite matrices on a subspace.

Cubic Splines

- Given $a<b$ and $\mathbf{x}=\left[x_{0}, \ldots, x_{N+1}\right]$ with $a=: x_{0}<x_{1}<\cdots<x_{N}<x_{N+1}:=b$.
- Cubic Splines: $\mathbb{S}_{3}^{2}(\mathbf{x}):=\left\{g \in C^{2}[a, b]: g_{\left(x_{j}, x_{j+1}\right)} \in \Pi_{3}\right.$, for $j=0, \ldots, N$
- $\Pi_{d}:=\operatorname{span}\left\{x^{k}: 0 \leq k \leq d\right\}$ polynomials of degree $\leq d$.
- Unique representation of $g \in \mathbb{S}_{3}^{2}$ in terms of truncated powers $x_{+}^{3}:=\max \left\{x^{3}, 0\right\}$.
- $x_{+}^{3} \in C^{2}(\mathbb{R})$.
- $g(x)=\sum_{k=1}^{N} c_{k}\left(x-x_{k}\right)_{+}^{3}+\sum_{k=0}^{3} a_{k} x^{k}, x \in[a, b]$.
- $\mathbb{S}_{3}^{2}(\mathbf{x})$ is a linear space of functions of dimension $N+4$.

Natural Cubic Splines

- $\mathbb{N S}_{3}^{2}(\mathbf{x}):=\left\{g \in \mathbb{S}_{3}^{2}(\mathbf{x}): g_{\left(\left(a, x_{1}\right)\right.}, g_{\left(\left(N_{N}, b\right)\right.} \in \Pi_{1}\right\}$.
- Truncated power representation $g \in \mathbb{N S}_{3}^{2}(\mathbf{x}) \Longleftrightarrow$
- $g(x)=\sum_{k=1}^{N} c_{k}\left(x-x_{k}\right)_{+}^{3}+a_{0}+a_{1} x, x \in[a, b]$,
- $\sum_{k=1}^{N} c_{k}=0, \quad \sum_{k=1}^{N} c_{k} x_{k}=0$.
- Proof Choosing $x \in\left(a, x_{1}\right)$ shows that $a_{2}=a_{3}=0$ in the truncated power representation.
- Choosing $x \in\left(x_{N}, b\right)$ shows the orthogonality conditions.
- remove +'s:

$$
g(x)=\sum_{k=1}^{N} c_{k}\left(x-x_{k}\right)^{3}+a_{0}+a_{1} x, x \in\left(x_{N}, b\right) .
$$

- Expand $\left(x-x_{k}\right)^{3}=x^{3}-3 x_{k} x^{2}+3 x_{k}^{2} x-x_{k}^{3}$
- Expanded Sum: $\sum_{k} c_{k}\left(x-x_{k}\right)^{3}=$

$$
x^{3} \sum_{k} c_{k}-3\left(\sum_{k} c_{k} x_{k}\right) x^{2}+3\left(\sum_{k} c_{k} x_{k}^{2}\right) x-\left(\sum_{k} c_{k} x_{k}^{3}\right) .
$$

Radial basis function representation

- truncated power representation: $g \in \mathbb{N S}_{3}^{2}(\mathbf{x}) \Longleftrightarrow$
- $g(x)=\sum_{k=1}^{N} c_{k}\left(x-x_{k}\right)_{+}^{3}+a_{0}+a_{1} x, x \in[a, b]$,
- $\sum_{k=1}^{N} c_{k}=0, \quad \sum_{k=1}^{N} c_{k} x_{k}=0$.
- Replace x_{+}^{3} by $\frac{1}{2}\left(|x|^{3}+x^{3}\right)$ in truncated power representation.
- $g(x)=\frac{1}{2} \sum_{k=1}^{N} c_{k}\left|x-x_{k}\right|^{3}+\frac{1}{2} \sum_{k=1}^{N} c_{k}\left(x-x_{k}\right)^{3}+a_{0}+$ $a_{1} x, x \in[a, b]$,
- $g(x)=\frac{1}{2} \sum_{k=1}^{N} c_{k}\left|x-x_{k}\right|^{3}+\frac{3}{2}\left(\sum_{k=1}^{N} c_{k} x_{k}^{2}\right) x-$

$$
\frac{1}{2}\left(\sum_{k=1}^{N} c_{k} x_{k}^{3}\right)+a_{0}+a_{1} x, x \in[a, b]
$$

- radial basis function representation

$$
\begin{aligned}
& -g(x)=\sum_{k=1}^{N} c_{k}\left|x-x_{k}\right|^{3}+d_{0}+d_{1} x, x \in[a, b], \\
& \quad \sum_{k=1}^{N} c_{k}=0, \quad \sum_{k=1}^{N} c_{k} x_{k}=0 .
\end{aligned}
$$

Natural cubic spline interpolation in a radial basis formulation

- Find $P_{f} \in \mathbb{N S}_{3}^{2}(\mathbf{x})$ such that $P_{f}\left(x_{j}\right)=f_{j}, j=1, \ldots, N$.
- $\sum_{k=1}^{N} c_{k} \varphi\left(\left|x_{j}-x_{k}\right|\right)+d_{0}+d_{1} x_{j}=f_{j}, j=1, \ldots, N$
- $\sum_{k} c_{k}=0, \sum_{k} c_{k} x_{k}=0$.
- Matrix form

$$
\left[\begin{array}{cc}
\mathbf{A} & \mathbf{B}^{T} \\
\mathbf{B} & \mathbf{0}
\end{array}\right]\left[\begin{array}{l}
\mathbf{c} \\
\mathbf{d}
\end{array}\right]=\left[\begin{array}{l}
\mathbf{f} \\
\mathbf{0}
\end{array}\right], \mathbf{A}=\left[\varphi\left(\left|x_{j}-x_{k}\right|\right)\right], \mathbf{B}=\left[\begin{array}{ccc}
1 & \cdots & 1 \\
x_{1} & \cdots & x_{N}
\end{array}\right]
$$

- $N+2$ equations in $N+2$ unknowns.

Radial Function in \mathbb{R}^{s}

Definition

Let $s \in \mathbb{N}$ and $\left\|\|\right.$ a norm on \mathbb{R}^{s}. A function $\Phi: \mathbb{R}^{s} \rightarrow \mathbb{R}$ is called radial if

$$
\Phi(\mathbf{x})=\varphi(\|\mathbf{x}\|), \quad \mathbf{x} \in \mathbb{R}^{s}
$$

for some univariate function $\varphi:[0, \infty) \rightarrow \mathbb{R}$.

- The norm is often the Euclidian norm $\left\|\|_{2}\right.$.
- \|\| \| \| \| $\|_{2}$ when nothing else is said.
- Radial: $\Phi(\mathbf{x})=\varphi(r)$ for all \mathbf{x} with $\|\mathbf{x}\|=r$.

Gaussian, $\varphi(r)=e^{-\varepsilon^{2} r^{2}}, \quad \varepsilon=2,6$

Distance, $\varphi(r)=-r$

Thin Plate, $\varphi(r)=r^{2} \log r$

$$
\begin{gathered}
\Phi(\mathbf{x})=\varphi(\|\mathbf{x}\|)=\frac{1}{2}\left(x^{2}+y^{2}\right) \log \left(x^{2}+y^{2}\right) \\
\nabla^{4} \Phi(\mathbf{x})=0
\end{gathered}
$$

RBF Interpolation without polynomial precision

Given

- $N, s \in \mathbb{N}$ and distinct points $\mathbf{x}_{1}, \ldots, \mathbf{x}_{N} \in \mathbb{R}^{s}$,
- ordinate-values $f_{j}=f\left(\mathbf{x}_{j}\right)$ representing an unknown function f.
- A radial function $\Phi: \mathbb{R}^{s} \rightarrow \mathbb{R}$ given by $\Phi(\mathbf{x})=\varphi(\|\mathbf{x}\|)$
- Linear combinations $P_{f}(\mathbf{x}):=\sum_{k=1}^{N} c_{K} \Phi\left(\mathbf{x}-\mathbf{x}_{k}\right)$

Find

- $\mathbf{c}=\left[c_{1}, \ldots, c_{N}\right]$ such that

$$
P_{f}\left(\mathbf{x}_{j}\right):=\sum_{k=1}^{N} c_{k} \Phi\left(\mathbf{x}_{j}-\mathbf{x}_{k}\right)=f_{j}, \quad j=1, \ldots, N
$$

- Matrix Problem $\mathbf{A c}=\mathbf{f}$, where

$$
\mathbf{A}=\left[\varphi\left(\left\|\mathbf{x}_{j}-\mathbf{x}_{k}\right\|\right)\right] \in \mathbb{R}^{N, N}, \mathbf{f}=\left[f_{1}, \ldots, f_{N}\right]^{T}
$$

$N=2$

$$
\mathbf{A}=\left[\begin{array}{ll}
\varphi\left(\left\|\mathbf{x}_{1}-\mathbf{x}_{1}\right\|\right) & \varphi\left(\left\|\mathbf{x}_{1}-\mathbf{x}_{2}\right\|\right) \\
\varphi\left(\left\|\mathbf{x}_{2}-\mathbf{x}_{1}\right\|\right) & \varphi\left(\left\|\mathbf{x}_{2}-\mathbf{x}_{2}\right\|\right)
\end{array}\right]
$$

- $\varphi(r)=e^{-\varepsilon^{2} r^{2}}, \mathbf{A}=\left[\begin{array}{ll}1 & a \\ a & 1\end{array}\right], a=e^{-\varepsilon^{2}\left\|\mathbf{x}_{1}-\mathbf{x}_{2}\right\|^{2}}<1$ if $\varepsilon \neq 0$.
- \mathbf{A} is symmetric and positive definite. (Positive eigenvalues by Gerschgorin or strict diagonal dominance).
- $\varphi(r)=r, \mathbf{A}=\left[\begin{array}{ll}0 & b \\ b & 0\end{array}\right], b=\left\|\mathbf{x}_{1}-\mathbf{x}_{2}\right\|$.
- A is symmetric with one positive and one negative eigenvalue.
- Nonsingular, but indefinite.
- Same for thin plate

Franke's test function

Franke's test function

$$
\begin{aligned}
f(x, y): & =0.75 * \operatorname{Exp}\left(-\left((9 * x-2)^{2}+(9 * y-2)^{2}\right) / 4\right) \\
& +0.75 * \operatorname{Exp}\left(-\left((9 * x+1)^{2} / 49+(9 * y+1)^{2} / 10\right)\right) \\
& +0.5 * \operatorname{Exp}\left(-\left((9 * x-7)^{2}+(9 * y-3)^{2}\right) / 4\right) \\
& -0.2 * \operatorname{Exp}\left(-\left((9 * x-4)^{2}+(9 * y-7)^{2}\right)\right)
\end{aligned}
$$

Halton Points

- $\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}$ uniformly distributed points in $(0,1)^{s}$.
- can be downloaded by searching for haltonseq.m.

289 Halton Points in \mathbb{R}^{2}

Gaussian Example

$$
\Phi(\mathbf{x})=e^{-\varepsilon^{2}\|\mathbf{x}\|^{2}}, \quad \varepsilon=21.1
$$

- 289 (left) and 1089 right) Halton Points
- f sampled from Franke's test function.
- Matlab program RBFInterpolation2D.m by Fasshauer

Discussion

- Dense linear system
- Non-singular?
- Extremely ill-conditioned for ε not large.
- Polynomials of low degree not reproduced.
- But.. Can work for scattered data in high space dimension without triangulating the data.

Non-singularity via Fourier Transform

Definition
For a function $f \in L_{1}\left(\mathbb{R}^{s}\right)$ we define the (symmetric) Fourier transform of f by

$$
\begin{equation*}
\hat{f}(\boldsymbol{\omega}):=\frac{1}{(2 \pi)^{s / 2}} \int_{\mathbb{R}^{s}} f(\mathbf{x}) e^{-i \boldsymbol{\omega} \cdot \mathbf{x}} d \mathbf{x}, \quad \boldsymbol{\omega} \in \mathbb{R}^{s} . \tag{1}
\end{equation*}
$$

and the inverse Fourier transform

$$
\begin{gather*}
f(\mathbf{x})=\frac{1}{(2 \pi)^{s / 2}} \int_{\mathbb{R}^{s}} \hat{f}(\boldsymbol{\omega}) e^{i \omega \cdot \mathbf{x}} d \boldsymbol{\omega}, \quad \mathbf{x} \in \mathbb{R}^{s} . \tag{2}\\
\Phi(\mathbf{x}):=e^{-\varepsilon^{2}\|\boldsymbol{x}\|^{2}} \Rightarrow \hat{\Phi}(\boldsymbol{\omega}):=e^{-\|\boldsymbol{\omega}\|^{2} /\left(4 \varepsilon^{2}\right)} \geq 0 .
\end{gather*}
$$

Non-negative Fourier transform

Theorem
Let $\Phi(\mathbf{x})=\varphi(\|\mathbf{x}\|)$ be a radial function with nonnegative Fourier transform not identically zero. For any distinct points $\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}$ the matrix

$$
\mathbf{A}:=\left[\varphi\left(\left\|\mathbf{x}_{j}-\mathbf{x}_{k}\right\|\right)\right] \in \mathbb{R}^{N, N}
$$

is positive definite.

Proof

$$
\begin{aligned}
\mathbf{c}^{T} \mathbf{A} \mathbf{c} & =\sum_{j=1}^{N} \sum_{k=1}^{N} c_{j} c_{k} \Phi\left(\mathbf{x}_{j}-\mathbf{x}_{k}\right) \\
& =\frac{1}{(2 \pi)^{s / 2}} \sum_{j, k} c_{j} c_{k} \int_{\mathbb{R}^{s}} \hat{\Phi}(\boldsymbol{\omega}) e^{i \boldsymbol{\omega} \cdot\left(\mathbf{x}_{j}-\mathbf{x}_{k}\right)} d \boldsymbol{\omega} \\
& =\frac{1}{(2 \pi)^{s / 2}} \int_{\mathbb{R}^{s}} \sum_{j, k}\left(c_{j} e^{i \omega \cdot \mathbf{x}_{j}} c_{k} e^{-i \omega \cdot \mathbf{x}_{k}}\right) \hat{\Phi}(\boldsymbol{\omega}) d \boldsymbol{\omega} \\
& =\frac{1}{(2 \pi)^{s / 2}} \int_{\mathbb{R}^{s}} \sum_{j}\left|c_{j} e^{i \omega \cdot \mathbf{x}_{j}}\right|^{2} \hat{\Phi}(\boldsymbol{\omega}) d \boldsymbol{\omega} \geq 0 .
\end{aligned}
$$

Equality $\Rightarrow \sum_{j} c_{j} e^{i \omega \cdot \mathbf{x}_{j}}=0, \boldsymbol{\omega} \in \mathbb{R}^{s}, \Rightarrow \mathbf{c}=\mathbf{0}$.

Discussion

- The Fourier transform can be used for some other examples. But,
- The distance function and thin plate and other examples are not integrable so do not have a Fourier transform
- Can use nonnegativity of the generalized Fourier transform.
- We will instead look at the connection between positive definite matrices and completely monotone functions.

Polynomial reproduction

- Gaussian, distance and thin plate do not reproduce polynomials
- can add terms to achieve this.
- Example $\mathbf{x}=(x, y) \in \mathbb{R}^{2}$, add $1, x, y$ to reproduce linear polynomials
- $P_{f}(\mathbf{x}):=\sum_{k=1}^{N} c_{k} \varphi\left(\left\|\mathbf{x}-\mathbf{x}_{k}\right\|\right)+d_{1}+d_{2} x+d_{3} y$,
- need 3 extra conditions
- $\sum_{k} c_{k}=0, \sum_{k} c_{k} x_{k}=0, \sum_{k} c_{k} y_{k}=0$

Linear system

$$
\begin{aligned}
& -\sum_{k=1}^{N} c_{k} \varphi\left(\left\|\mathbf{x}_{j}-\mathbf{x}_{k}\right\|\right)+d_{1}+d_{2} x_{j}+d_{3} y_{j}=f_{j}, j=1, \ldots, N \\
& \sum_{k} c_{k}=0, \quad \sum_{k} c_{k} x_{k}=0, \quad \sum_{k} c_{k} y_{k}=0
\end{aligned}
$$

$$
\left[\begin{array}{cc}
\mathbf{A} & \mathbf{B}^{T} \\
\mathbf{B} & \mathbf{0}
\end{array}\right]\left[\begin{array}{c}
\mathbf{c} \\
\mathbf{d}
\end{array}\right]=\left[\begin{array}{l}
\mathbf{f} \\
\mathbf{0}
\end{array}\right], \mathbf{A}=\left[\varphi\left(\left\|\mathbf{x}_{j}-\mathbf{x}_{k}\right\|\right)\right], \mathbf{B}^{T}=\left[\begin{array}{ccc}
1 & x_{1} & y_{1} \\
\vdots & \vdots & \vdots \\
1 & x_{N} & y_{N}
\end{array}\right]
$$

- $\mathcal{S}_{1}:=\left\{\mathbf{c} \in \mathbb{R}^{N}: \mathbf{B c}=\mathbf{0}\right\}$, is a subspace of \mathbb{R}^{N}.

Positive definite on a subspace

Definition

Suppose $\mathbf{A} \in \mathbb{R}^{N, N}$ and \mathcal{S} a subspace of \mathbb{R}^{N}. We say that \mathbf{A} is positive definite on \mathcal{S} if $\mathbf{A}^{T}=\mathbf{A}$ and $\mathbf{c}^{\top} \mathbf{A c}>0$ for all nonzero $\mathbf{c} \in \mathcal{S}$.

- If \mathbf{A} is positive definite on
$\mathcal{S}=\operatorname{ker}(\mathbf{B}):=\left\{\mathbf{c} \in \mathbb{R}^{N}: \mathbf{B c}=\mathbf{0}\right\}$ and $\mathbf{B} \in \mathbb{R}^{M, N}$ has linearly independent rows then the block matrix

$$
\left[\begin{array}{cc}
\mathbf{A} & \mathbf{B}^{T} \\
\mathbf{B} & \mathbf{0}
\end{array}\right]
$$

is nonsingular.

Proof

$$
\begin{aligned}
& {\left[\begin{array}{cc}
\mathbf{A} & \mathbf{B}^{T} \\
\mathbf{B} & \mathbf{0}
\end{array}\right]\left[\begin{array}{l}
\mathbf{c} \\
\mathbf{d}
\end{array}\right]=0 } \Rightarrow \begin{aligned}
\mathbf{A} \mathbf{c}+\mathbf{B}^{T} \mathbf{d}=0 \\
\mathbf{B \mathbf { c }}=0
\end{aligned} \\
& \Rightarrow \mathbf{c}^{T} \mathbf{A c}+\mathbf{c}^{T} \mathbf{B}^{T} \mathbf{d}=0 \\
& \mathbf{c}^{T} \mathbf{B}^{T}=0 .
\end{aligned}
$$

- So $\mathbf{c}=\mathbf{0}$ and then $\mathbf{d}=\mathbf{0}$ since $\mathbf{0}=\mathbf{A c}+\mathbf{B}^{T} \mathbf{d}=\mathbf{B}^{T} \mathbf{d}$ and \mathbf{B} has linearly independent rows.

Positive and negative eigenvalues

Theorem

If $\mathbf{A} \in \mathbb{R}^{N, N}$ is positive definite on the subspace $\mathcal{S}:=\left\{\mathbf{c} \in \mathbb{R}^{N}: \sum_{k} c_{k}=0\right\}$ and $\sum_{i} a_{i i} \leq 0$, then \mathbf{A} has $N-1$ positive eigenvalues and one negative eigenvalue.

- Proof
- \mathcal{S} is a subspace of \mathbb{R}^{N} of dimension $N-1$.
- Since \mathbf{A} is symmetric it has real eigenvalues.
- Let $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{N}$ be the eigenvalues of \mathbf{A}.
- Recall Courant-Fischer's characterization

$$
\lambda_{k}=\max _{\operatorname{dim} \mathcal{T}=k} \min _{\substack{\mathbf{c} \in \mathcal{T} \\\|\mathbf{c}\|=1}} \mathbf{c}^{T} \mathbf{A c}
$$

- In particular

$$
\lambda_{N-1} \geq \min _{\substack{\mathbf{c} \in \mathcal{S} \\\|\mathbf{c}\|=1}} \mathbf{c}^{\top} \mathbf{A} \mathbf{c}>0
$$

- But $\sum_{i} \lambda_{i}=\sum_{i} a_{i i} \leq 0$ so $\lambda_{N}<0$.

Non-singularity without polynomial precision

Corollary

Let $\Phi(\mathbf{x}):=\varphi(\|\mathbf{x}\|)$ be a radial function. If
$\mathbf{A}=\left[\varphi\left(\left\|\mathbf{x}_{j}-\mathbf{x}_{k}\right\|\right)\right] \in \mathbb{R}^{N, N}$ is positive definite on the subspace
$\mathcal{S}:=\left\{\mathbf{c} \in \mathbb{R}^{N}: \sum_{k} c_{k}=0\right\}$ and $\varphi(0)=0$ then \mathbf{A} is non-singular with $N-1$ positive eigenvalues and one negative eigenvalue.

Proof.
This follows immediately from the previous theorem.

Distance matrix

- $\varphi(r)=-r, \Phi(\mathbf{x})=\varphi(\|\mathbf{x}\|)=-\|\mathbf{x}\|$.
- $\mathbf{A}=\left[\left\|\mathbf{x}_{j}-\mathbf{x}_{k}\right\|\right]$ and
- $a_{j j}=\left\|\mathbf{x}_{j}-\mathbf{x}_{j}\right\|=0, j=1, \ldots, N$ since $\varphi(0)=0$ so $\sum_{j} a_{j j} \leq 0$.
- We show next time that \mathbf{A} is positive definite on $\mathcal{S}:=\left\{\mathbf{c} \in \mathbb{R}^{N}: \sum_{k} c_{k}=0\right\}$.
- It will then follow that the distance matrix is non-singular with $N-1$ positive and one negative eigenvalue.

