Radial Basis Functions II

Tom Lyche

Centre of Mathematics for Applications,
Department of Informatics,
University of Oslo
December 2, 2008

Radial Function in \mathbb{R}^{s}

Definition

Let $s \in \mathbb{N}$ and $\left\|\|\right.$ a norm on \mathbb{R}^{s}. A function $\Phi: \mathbb{R}^{s} \rightarrow \mathbb{R}$ is called radial if

$$
\Phi(\mathbf{x})=\varphi(\|\mathbf{x}\|), \quad \mathbf{x} \in \mathbb{R}^{s}
$$

for some univariate function $\varphi:[0, \infty) \rightarrow \mathbb{R}$.

- The norm is often the Euclidian norm $\left\|\|_{2}\right.$.
- \|\| \| \| \| $\|_{2}$ when nothing else is said.
- Radial: $\Phi(\mathbf{x})=\varphi(r)$ for all \mathbf{x} with $\|\mathbf{x}\|=r$.

Examples $\Phi(\mathbf{x})=\varphi(\|\mathbf{x}\|)$

$$
\varepsilon \in \mathbb{R}, \varepsilon \neq 0
$$

- Gauss $\varphi(r)=e^{-\varepsilon^{2} r^{2}}$,
- distance $\varphi(r)=r$,
- cubic power $\varphi(r)=r^{3}$,
- thin plate spline $\varphi(r)=r^{2} \log r$
- multiquadric $\varphi(r)=\sqrt{1+(\varepsilon r)^{2}}$,
- inverse multiquadric $\varphi(r)=1 / \sqrt{1+(\varepsilon r)^{2}}$,
- Wendland's C^{0} compactly supported $\varphi(r)=(1-r)_{+}^{2}$
- Wendland's C^{2} compactly supported $\varphi(r)=(1-r)_{+}^{4}(4 r+1)$

Subspaces of \mathbb{R}^{N}

The class of polynomials in s variables with real coefficients and of total degree $\leq m$ are denoted by

$$
\Pi_{m}\left(\mathbb{R}^{s}\right):=\operatorname{span}\left\{x_{1}^{i_{1}} \cdots x_{s}^{i_{s}}: i_{1}, \ldots, i_{s} \geq 0, \sum_{k=1}^{s} i_{k} \leq m\right\}
$$

- To given distinct points $\mathbf{X}:=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right\}$ in \mathbb{R}^{s} and a nonnegative integer m we define a subspace of \mathbb{R}^{N} by

$$
\mathcal{S}_{m}(\mathbf{X}):=\left\{\mathbf{c} \in \mathbb{R}^{N}: \sum_{k=1}^{N} c_{k} p\left(\mathbf{x}_{k}\right)=0, p \in \Pi_{m}\left(\mathbb{R}^{s}\right)\right\} .
$$

- We define $\mathcal{S}_{-1}(\mathbf{X}):=\mathbb{R}^{N}$.

Subspaces of \mathbb{R}^{N}

$$
\mathcal{S}_{m}(\mathbf{X}):=\left\{\mathbf{c} \in \mathbb{R}^{N}: \sum_{k=1}^{N} c_{k} p\left(\mathbf{x}_{k}\right)=0, p \in \Pi_{m}\left(\mathbb{R}^{s}\right)\right\}
$$

- $\mathcal{S}_{0}(\mathbf{X})=\left\{\mathbf{c} \in \mathbb{R}^{N}: \sum_{k=1}^{N} c_{k}=0\right\}$
- Given a basis q_{1}, \ldots, q_{M} of $\Pi_{m}\left(\mathbb{R}^{s}\right)$
- Then
$\mathcal{S}_{m}(\mathbf{X}):=\left\{\mathbf{c} \in \mathbb{R}^{N}: \sum_{k=1}^{N} c_{k} q_{j}\left(\mathbf{x}_{k}\right)=0, j=1, \ldots, M\right\}$.

RBF interpolation in \mathbb{R}^{s} with polynomial precision

 m
Given

- Distinct points $\mathbf{x}_{1}, \ldots, \mathbf{x}_{N} \in \mathbb{R}^{s}$.
- Ordinate-values $f_{j}=f\left(\mathbf{x}_{j}\right)$ representing an unknown function f.
- A radial function $\Phi: \mathbb{R}^{s} \rightarrow \mathbb{R}$ given by $\Phi(\mathbf{x})=\varphi(\|\mathbf{x}\|)$
- A basis q_{1}, \ldots, q_{M} of $\Pi_{m}\left(\mathbb{R}^{s}\right)$ (for example the powers)
- Linear combinations

$$
P_{f}(\mathbf{x}):=\sum_{k=1}^{N} c_{k} \Phi\left(\mathbf{x}-\mathbf{x}_{k}\right)+\sum_{k=1}^{M} d_{k} q_{k}(\mathbf{x})
$$

Find

- $\mathbf{c}=\left[c_{1}, \ldots, c_{N}\right]$ and $\mathbf{d}=\left[d_{1}, \ldots, d_{M}\right]$ such that

$$
\begin{aligned}
P_{f}\left(\mathbf{x}_{j}\right):=\sum_{k=1}^{N} c_{k} \Phi\left(\mathbf{x}_{j}-\mathbf{x}_{k}\right)+ & \sum_{k=1}^{M} d_{k} q_{k}\left(\mathbf{x}_{j}\right)=f_{j}, \\
& j=1, \ldots, N \\
& \sum^{N} c_{k} q_{j}\left(\mathbf{x}_{k}\right)=0, \quad j=1, \ldots, M
\end{aligned}
$$

Linear system

$$
\left[\begin{array}{cc}
\mathbf{A} & \mathbf{B}^{T} \\
\mathbf{B} & \mathbf{0}
\end{array}\right]\left[\begin{array}{l}
\mathbf{c} \\
\mathbf{d}
\end{array}\right]=\left[\begin{array}{l}
\mathbf{f} \\
\mathbf{0}
\end{array}\right]
$$

- $\mathbf{A}=\left[\Phi\left(\mathbf{x}_{j}-\mathbf{x}_{k}\right)\right] \in \mathbb{R}^{N, N}, \mathbf{B}=\left[q_{j}\left(\mathbf{x}_{k}\right)\right] \in \mathbb{R}^{M, N}$.
- $N+M$ linear equations in $N+M$ unknowns.
- Symmetric coefficient matrix.

Non-negative Fourier transform

Theorem
Let $\Phi(\mathbf{x})=\varphi(\|\mathbf{x}\|)$ be a radial function with nonnegative Fourier transform not identically zero. For any distinct points $\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}$ the matrix

$$
\mathbf{A}:=\left[\Phi\left(\mathbf{x}_{j}-\mathbf{x}_{k}\right)\right] \in \mathbb{R}^{N, N}
$$

is positive definite.

Discussion

- The Fourier transform can be used for Gaussian- and compactly supported RBF's. But,
- The distance function and thin plate and other examples are not integrable so do not have a Fourier transform
- Alternatives:
- Nonnegativity of the generalized Fourier transform.
- Complete monotonicity

Positive definite on a subspace

Definition
Suppose $\mathbf{A} \in \mathbb{R}^{N, N}$ and \mathcal{S} a subspace of \mathbb{R}^{N}. We say that \mathbf{A} is positive definite on \mathcal{S} if $\mathbf{A}^{\top}=\mathbf{A}$ and $\mathbf{c}^{\top} \mathbf{A c}>0$ for all nonzero $\mathbf{c} \in \mathcal{S}$.

- If \mathbf{A} is positive definite on
$\mathcal{S}=\operatorname{ker}(\mathbf{B}):=\left\{\mathbf{c} \in \mathbb{R}^{N}: \mathbf{B c}=\mathbf{0}\right\}$ and $\mathbf{B} \in \mathbb{R}^{M, N}$ has linearly independent rows then the block matrix

$$
\left[\begin{array}{cc}
\mathbf{A} & \mathbf{B}^{T} \\
\mathbf{B} & \mathbf{0}
\end{array}\right]
$$

is nonsingular.

- Suppose \mathcal{S}, \mathcal{T} are subspaces of \mathbb{R}^{N} with $\mathcal{S} \subset \mathcal{T}$. If \mathbf{A} is positive definite on \mathcal{S} then \mathbf{A} is positive definite on \mathcal{T}.

B full rank?

- Definition

We say that a set of points $\mathbf{X}=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right\} \subset \mathbb{R}^{s}$ is m-unisolvent if $p \in \Pi_{m}\left(\mathbb{R}^{s}\right)$ and $p\left(\mathbf{x}_{k}\right)=0$ for $k=1, \ldots, N$ implies $p=0$.

- Lemma

Let $\mathbf{B}=\left[q_{j}\left(\mathbf{x}_{k}\right)\right] \in \mathbb{R}^{M, N}$, where $N \geq M, q_{1}, \ldots, q_{M}$ is a basis for $\Pi_{m}\left(\mathbb{R}^{s}\right)$, and $\mathbf{X}=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right\} \subset \mathbb{R}^{s}$ are distinct points in \mathbb{R}^{s}. Then \mathbf{B} has linearly independent rows if and only if \mathbf{X} is m-unisolvent.

- Proof: We have $\mathbf{a}^{\top} \mathbf{B}=\left[p\left(\mathbf{x}_{1}\right), \ldots, p\left(\mathbf{x}_{N}\right)\right]$ where $p(\mathbf{x})=\sum a_{j} q_{j}(\mathbf{x})$. Thus $\mathbf{a}^{\top} \mathbf{B}=\mathbf{0} \Rightarrow \mathbf{a}=\mathbf{0}$ if and only if $p\left(\mathbf{x}_{k}\right)=0 \quad k=1, \ldots, N \Rightarrow p=0$.

Example, Univariate natural cubic spline interpolation

- $\varphi(r)=r^{3}, \Phi(x)=|x|^{3}$
- $P_{f}\left(x_{j}\right)=\sum_{k=1}^{N} c_{k}\left|x_{j}-x_{k}\right|^{3}+d_{0}+d_{1} x_{j}=f_{j}, j=1, \ldots, N$
$-\sum_{k} c_{k}=0, \sum_{k} c_{k} x_{k}=0$.
- Matrix form
$\left[\begin{array}{cc}\mathbf{A} & \mathbf{B}^{T} \\ \mathbf{B} & \mathbf{0}\end{array}\right]\left[\begin{array}{l}\mathbf{c} \\ \mathbf{d}\end{array}\right]=\left[\begin{array}{l}\mathbf{f} \\ \mathbf{0}\end{array}\right], \mathbf{A}=\left[\left|x_{j}-x_{k}\right|^{3}\right], \mathbf{B}=\left[\begin{array}{ccc}1 & \cdots & 1 \\ x_{1} & \cdots & x_{N}\end{array}\right]$.
- $N+2$ equations in $N+2$ unknowns.
- If \mathbf{A} is positive definite on $\operatorname{ker}(\mathbf{B})$ and x_{1}, \ldots, x_{N} are distinct then $\left[\begin{array}{lc}\mathbf{A} & \mathbf{B}^{T} \\ \mathbf{B} & \mathbf{0}\end{array}\right]$ is non-singular.

Example Cubic power in $\mathbb{R}^{3}, N \geq 4$

- $\varphi(r)=r^{3} ; \Phi(\mathbf{x})=\|\mathbf{x}\|^{3}=\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}$
- $P_{f}(\mathbf{x}):=\sum_{k=1}^{N} c_{k} \Phi\left(\mathbf{x}-\mathbf{x}_{k}\right)+d_{1}+d_{2} x+d_{3} y+d_{4} z$,
- $\sum_{k=1}^{N} c_{k} \Phi\left(\mathbf{x}_{j}-\mathbf{x}_{k}\right)+d_{1}+d_{2} x_{j}+d_{3} y_{j}+d_{4} z_{j}=f_{j}, j=$ $1, \ldots, N$

$$
\sum_{k} c_{k}=0, \quad \sum_{k} c_{k} x_{k}=0, \quad \sum_{k} c_{k} y_{k}=0, \quad \sum_{k} c_{k} z_{k}=0
$$

- $N+4$ equations in $N+4$ unknowns.
- $\left[\begin{array}{cc}\mathbf{A} & \mathbf{B}^{T} \\ \mathbf{B} & \mathbf{0}\end{array}\right]\left[\begin{array}{l}\mathbf{c} \\ \mathbf{d}\end{array}\right]=\left[\begin{array}{l}\mathbf{f} \\ \mathbf{0}\end{array}\right], \mathbf{A}=\left[\Phi\left(\mathbf{x}_{j}-\mathbf{x}_{k}\right)\right]$

$$
\mathbf{B}=\left[\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
x_{1} & x_{2} & \cdots & x_{N} \\
y_{1} & y_{2} & \cdots & y_{N} \\
z_{1} & z_{2} & \cdots & z_{N}
\end{array}\right] \in \mathbb{R}^{4, N}
$$

- If \mathbf{A} is positive definite on $\mathcal{S}_{1}(\mathbf{X})$ and the \mathbf{x}_{j} are not on a straight line then $\left[\begin{array}{cc}\mathbf{A} & \mathbf{B}^{T} \\ \mathbf{B} & \mathbf{0}\end{array}\right]$ is nonsingular.

Completely monotone functions

Definition
A function $g \in C^{\infty}(0, \infty)$ that satisfies

$$
(-1)^{\ell} g^{(\ell)}(r) \geq 0, \quad r>0, \quad \ell=0,1,2, \ldots
$$

is called completely monotone on $(0, \infty)$. If in addition $g \in C[0, \infty)$ then g is said to be completely monotone on $[0, \infty)$.
Examples:

- $g(r)=e^{-\varepsilon r}, \varepsilon \geq 0, r \geq 0$
- $g(r)=r^{-1 / 2}, r>0$

Characterization of completely monotone functions

- There is a general result stating that g is completely monotone if and only if it is the Laplace transform of a finite nonnegative Borel measure on $[0, \infty)$. This is known as the Hausdorff-Bernstein-Widdler theorem, see Wendland 2005.
- We will only use a sufficient condition, namely that many completely monotone functions g are the Laplace transform of an admissible function w

$$
g:[0, \infty) \rightarrow \mathbb{R}, \quad g(r):=\int_{0}^{\infty} w(x) e^{-x r} d x
$$

- We say that $w:(0, \infty) \rightarrow \mathbb{R}$ is admissible, if it is piecewise continuous, nonnegative, nonzero and the Laplace transform g of w exists.

Positive definite on a subspace

Theorem

Let $\varphi \in C[0, \infty)$ and $\psi:=\varphi(\sqrt{\cdot}) \in C^{\infty}(0, \infty)$ Suppose for a nonnegative integer m that the derivative $\psi^{(m+1)}$ is the Laplace transform of an admissible function w, i. e.,

$$
\psi^{(m+1)}(r)=\int_{0}^{\infty} w(x) e^{-x r} d x, \quad r>0
$$

Let $\mathbf{A}:=\left[\Phi\left(\mathbf{x}_{j}-\mathbf{x}_{k}\right)\right] \in \mathbb{R}^{N, N}$, where $\mathbf{X}=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right\}$ are distinct points in \mathbb{R}^{s}. Then $(-1)^{m+1} \mathbf{A}$, is positive definite on the subspace
$\mathcal{S}_{m}(\mathbf{X}):=\left\{\mathbf{c} \in \mathbb{R}^{N}: \sum_{k=1}^{N} c_{k} p\left(\mathbf{x}_{k}\right)=0, p \in \Pi_{m}\left(\mathbb{R}^{s}\right)\right\}$.

Example Distance in \mathbb{R}^{s}

- $\varphi(r)=r, \psi(r)=\sqrt{r}$.
- $\psi^{\prime}(r)=\frac{1}{2} r^{-1 / 2}$ is completely monotone
- $\psi^{\prime}(r)=\int_{0}^{\infty} w(x) e^{-x r} d x, w(x)=\frac{1}{2 \sqrt{\pi x}}$.
- For $\int_{0}^{\infty}=\frac{e^{-} x}{\sqrt{x}} d x=2 \int_{0}^{\infty} e^{-y^{2}} d y=\int_{-\infty}^{\infty} e^{-y^{2}} d y=\sqrt{\pi}$
- so $\int_{0}^{\infty} \frac{e^{-r x}}{\sqrt{\pi x}} d x=\frac{r^{-1 / 2}}{\sqrt{\pi}} \int_{0}^{\infty} \frac{e^{-y}}{\sqrt{y}} d y=r^{-1 / 2}$.
- w is admissible.
- $m=0,-\mathbf{A}$ is positive definite on $\mathcal{S}_{0}=\left\{\mathbf{c}: \sum_{k} c_{k}=0\right\}$
- From theorem last time it follows that \mathbf{A} is nonsingular (nonzero eigenvalues) for all $s \geq 1, N \geq 2$, and any distinct $\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}$ in \mathbb{R}^{s}.
- Interpolation problem with reproduction of Π_{m} also non-singular for all $m \geq 0, s \geq 1, N \geq 2$, and any distinct $\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}$ in \mathbb{R}^{s}.

Example Cubic

- $\varphi(r)=r^{3}, \psi(r)=r^{3 / 2}$.
- $\psi^{\prime \prime}(r)=\frac{3}{4} r^{-1 / 2}$ is completely monotone
- $\psi^{\prime \prime}(r)=\int_{0}^{\infty} w(x) e^{-x r} d x, w(x)=\frac{3}{4 \sqrt{\pi x}}$.
- w is admissible.
- $m=1, \mathbf{A}$ is positive definite on $\mathcal{S}_{1}(\mathbf{X})$
- Interpolation problem with reproduction of linear polynomials non-singular for all $s \geq 1, N \geq 2$, and any distinct $\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}$ in \mathbb{R}^{s} that do not lie on a straight line.

Example Thin plate

- $\varphi(r)=r^{2} \log r, \psi(r)=\frac{1}{2} r \log r$.
- $\psi^{\prime \prime}(r)=\frac{1}{2 r}$ is completely monotone
- $\psi^{\prime \prime}(r)=\frac{1}{2} \int_{0}^{\infty} e^{-x r} d x, w(x)=\frac{1}{2}$.
- w is admissible.
- $m=1, \mathbf{A}$ is positive definite on $\mathcal{S}_{1}(\mathbf{X})$
- Interpolation problem with reproduction of linear polynomials non-singular for all $s \geq 1, N \geq 2$, and any distinct $\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}$ in \mathbb{R}^{s} that do not lie on a straight line.

Example Inverse Multiquadrics

- $\varphi(r)=1 / \sqrt{1+(\varepsilon r)^{2}}, \psi(r)=1 / \sqrt{1+\varepsilon^{2} r}, \varepsilon \neq 0$
- ψ is completely monotone.
- $\psi(r)=\int_{0}^{\infty} w(x) e^{-x r} d x, w$ admissible.
- \mathbf{A} is positive definite.

Example Multiquadrics

- $\varphi(r)=\sqrt{1+(\varepsilon r)^{2}}, \psi(r)=\sqrt{1+\varepsilon^{2} r}$,
- ψ^{\prime} is completely monotonic and the Laplace transform of an admissible function w.
- $-\mathbf{A}$ is positive definite on \mathcal{S}_{0}.
- A is non-singular with $N-1$ positive and one negative eigenvalue.

Summary of Examples

- Gauss $\varphi(r)=e^{-\varepsilon^{2} r^{2}}, m=-1, \mathbf{A}$ is positive definite
- inverse multiquadric $\varphi(r)=1 / \sqrt{1+(\varepsilon r)^{2}}, m=-1, \mathbf{A}$ is positive definite
- multiquadric $\varphi(r)=\sqrt{1+(\varepsilon r)^{2}}, m=0-\mathbf{A}$ is positive definite on \mathcal{S}_{0}
- distance $\varphi(r)=r, m=0-\mathbf{A}$ is positive definite on \mathcal{S}_{0}
- cubic power $\varphi(r)=r^{3}, m=1 \mathbf{A}$ is positive definite on \mathcal{S}_{1}
- thin plate spline $\varphi(r)=r^{2} \log r m=1 \mathbf{A}$ is positive definite on \mathcal{S}_{1}.

Lemma

Lemma
$\mathbf{c}^{T}\left[\left\|\mathbf{x}_{j}-\mathbf{x}_{k}\right\|^{2 \ell}\right] \mathbf{c}=0, \mathbf{c} \in \mathcal{S}_{m}(\mathbf{X}), 0 \leq \ell \leq m$.

- Proof:
- $\left\|\mathbf{x}_{j}-\mathbf{x}_{k}\right\|^{2 \ell}=\left(\left\|\mathbf{x}_{j}\right\|^{2}+\left\|\mathbf{x}_{k}\right\|^{2}-2 \mathbf{x}_{j}^{T} \mathbf{x}_{k}\right)^{\ell}$,
- $\left\|\mathbf{x}_{j}-\mathbf{x}_{k}\right\|^{2 \ell}=\sum_{\alpha+\beta+\gamma=\ell} \frac{\ell!}{\alpha!\beta!\gamma!}\left\|\mathbf{x}_{j}\right\|^{2 \alpha}\left\|\mathbf{x}_{k}\right\|^{2 \beta}\left(-2 \mathbf{x}_{j}^{T} \mathbf{x}_{k}\right)^{\gamma}$

$$
\mathbf{c}^{T}\left[\left\|\mathbf{x}_{j}-\mathbf{x}_{k}\right\|^{2 \ell}\right] \mathbf{c}
$$

$$
=\sum_{j, k} c_{j} c_{k} \sum_{\alpha+\beta+\gamma=\ell} \frac{\ell!}{\alpha!\beta!\gamma!}\left\|\mathbf{x}_{j}\right\|^{2 \alpha}\left\|\mathbf{x}_{k}\right\|^{2 \beta}\left(-2 \mathbf{x}_{j}^{T} \mathbf{x}_{k}\right)^{\gamma}
$$

$$
=\sum_{\alpha+\beta+\gamma=\ell} \frac{\ell!}{\alpha!\beta!\gamma!} \sum_{j, k} c_{j} c_{k}\left\|\mathbf{x}_{j}\right\|^{2 \alpha}\left\|\mathbf{x}_{k}\right\|^{2 \beta}\left(-2 \mathbf{x}_{j}^{T} \mathbf{x}_{k}\right)^{\gamma}
$$

Proof continued

- Divide α, β, γ sum into two sums $\alpha \leq \beta$ and $\beta<\alpha$. Consider first the $\alpha \leq \beta$ sum.
- $q_{\alpha \beta \gamma}(\mathbf{x}):=\sum_{k=1}^{N} c_{k}\|\mathbf{x}\|^{2 \alpha}\left\|\mathbf{x}_{k}\right\|^{2 \beta}\left(-2 \mathbf{x}^{T} \mathbf{x}_{k}\right)^{\gamma}, \mathbf{x} \in \mathbb{R}^{s}$.
- $q_{\alpha \beta \gamma} \in \Pi_{2 \alpha+\gamma}\left(\mathbb{R}^{s}\right) \subset \Pi_{m}\left(\mathbb{R}^{s}\right)$ for $\alpha \leq \beta$.
- Indeed, If $\alpha \leq \beta$ then $2 \alpha+\gamma=2 \alpha+2 \beta+\gamma-2 \beta=\ell+\alpha-\beta \leq m$.
- So $\sum_{j=1}^{N} q_{\alpha \beta \gamma}\left(\mathbf{x}_{j}\right)=0$
- $\sum_{j, k} c_{j} c_{k}\left\|\mathbf{x}_{j}\right\|^{2 \alpha}\left\|\mathbf{x}_{k}\right\|^{2 \beta}\left(-2 \mathbf{x}_{j}^{T} \mathbf{x}_{k}\right)^{\gamma}=0$ for $\alpha \leq \beta$
- By symmetry this also holds for $\alpha>\beta$ and the lemma follows.

