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Radial Function in R*®

Definition
Let s € N and || || a norm on R®. A function ¢ : R®* — R is
called radial if

D(x) = p(llx[), xR,
for some univariate function ¢ : [0, 00) — R.

» The norm is often the Euclidian norm || ||».
» || || = || |l2 when nothing else is said.
» Radial: &(x) = ¢(r) for all x with ||x|| = r.



Examples ®(x) = (||x||)

ceeR, e#0
» Gauss p(r) = e =",

» distance o(r) =r,

> power ¢(r) = r>™1 m >0,

» thin plate spline ¢(r) = r?logr

» multiquadric (r) = \/1+ (cr)?,

> inverse multiquadric ¢(r) = 1/,/1+ (er)?,

» Wendland’s C° compactly supported ¢(r) = (1 —r)3

» Wendland’s C?> compactly supported
p(r)=(1-r)i(4r+1)



RBF interpolation in R® with polynomial precision

Given
» Distinct points xy,...,xy € R®.
» Ordinate-values f; = f(x;) representing an unknown
function f.

» A radial function @ : R* — R given by &(x) = ¢(||x]|)
» A basis g1, ..., qu of [1,(R®) (for example the
monomials)
Find
» c=c,...,cy] and d = [dy, . .., dy] such that
> Pr(x) = SO0 a®(x — xi) + S0, digi(x) satisfies

N M
Pf(Xj) = ch@(xj—xk)+2quk(xj) :6', j: ].,...
k=1 k=1

N
ZquJ'(Xk) ZO, _]: ].7
k=1

v NAtas +hat D — £ f~v Al £ —~ 1 (TDS)



Linear system

A B [c] |[f

B 0| |d (0’
A = [D(x; — x,)] € RVN B = [gj(x«)] € RMN.
N + M linear equations in N + M unknowns.

Symmetric coefficient matrix.

Positive definite? Nonsingular?



Positive definite on a subspace

Definition
Suppose A € RVN and S a subspace of RV, We say that A is
positive definite on S if AT = A and ¢” Ac > 0 for all nonzero

ceS.

» If A is positive definite on
S =ker(B) := {c € RV : Bc = 0} and B € RM" has
linearly independent rows then the block matrix

A BT
B 0
is nonsingular.

» Suppose S, 7 are subspaces of RY with S C 7. If Ais
positive definite on S then A is positive definite on 7.



B full rank?

» Definition
We say that a set of points X = {xy,...,xy} C R is
m-unisolvent if p € M,,(R®) and p(xx) =0for k=1,..., N
implies p = 0.

» Lemma
Let B = [gj(xx)] € RMN, where N > M, qy,...,qum is a basis
for N, (R*), and X = {xy,...,xy} C R* are distinct points in
R*®. Then B has linearly independent rows if and only if X is
m-unisolvent.
» Proof: We have a’B = [p(x;), ..., p(xn)] where
p(x) = > a;q;(x). Thusa’B =0 =-a =0 if and only if
p(xk)=0 k=1,... N=p=0.



Non-singularity via Fourier Transform

Definition
For a function f € L;(IR®) we define the (symmetric) Fourier
transform of f by

?(w) = W /Rs f(x)e ™*dx, w €. (1)

and the inverse Fourier transform

f(x) = ﬁ /RS flw)e*dw, xeR°. (2)



Non-negative Fourier transform

Theorem

Let &(x) = ¢(||x||) be a radial function with nonnegative
Fourier transform not identically zero. For any distinct points
X1,...,Xy the matrix

A = [p(llx; — xill)] € R™Y,

is positive definite.



The Gauss Kernel

Theorem
Suppose that xy,...,xy, N € N, are distinct points in R?,
s € N. Then the matrix

A = [e_‘SHXJ_XkH%] E RN7N7 e > O

is positive definite.

Proof The Fourier transform can be calculated as
B(x) = e = = P(w) = eI/ > g,

Thus A is positive definite.



Discussion

» The Fourier transform can be used for Gaussian- and
compactly supported RBF's. But,

» The distance function and thin plate and other examples
are not integrable so do not have a Fourier transform

» Can use nonnegativity of the generalized Fourier
transform.

» Can use complete monmotonicity.



Completely monotone functions

Definition
A function g € C*°(0, c0) that satisfies

(-1)'g9(r)>0, r>0, ¢=01,2,...

is called completely monotone on (0, c0). If in addition
g € C[0,00) then g is said to be completely monotone on
[0, 00).
Examples:
» g(r)=e,e>0,r>0
» g(r)=r"2r>0
» g(r) = J; w(x)e™dx, r >0, where w is the Laplace
transform of a piecewise continuous, nonnegative, and
nonzero function.



The main Theorem

Theorem

Let o € C[0,00) and ¢ := (/%) € C=(0, 00) Suppose for a
nonnegative integer m that the derivative (1) js the
Laplace transform of a function w that is piecewise
continuous, nonnegative, and nonzero on (0, 00), i.e.,

M (r) :/ w(x)e dx, r>0.
0

Let A := [®(x; — xx)] € RVN, where X = {xy,...,xn} are
distinct points in R®. Then (—1)™TtA, is positive definite on
the subspace

Sm(X) :={ceR" : 2V cp(xk) =0, p € My(R%)}.



Thin Plate

> o(r) =r?logr, ¥(r) = 3rlogr.

> "(r) = ir is completely monotone

> (r) =3 [T e dx, w(x) = 1.

» m=1, A is positive definite on S1(X)

» Interpolation problem with reproduction of linear

polynomials non-singular for all s > 1,N > 2, and any
distinct xq,...,xy in R® that do not lie on a straight line.



Power

(r) — p2m+l w( )_ rm+1/2, m > 0.
Jr

~1/2

(r) = constr is completely monotone

(r) = const [© \/%e_xrdx.
» (—1)™"1A is positive definite on S,(X).
» Cubic: m =1, A is positive definite on S;(X)

» Interpolation problem with reproduction of linear
polynomials non-singular for all s > 1,N > 2, and any
distinct xq,...,xy in R® that do not lie on a straight line.

)
+1)



A Lemma

c’[lIx; — x«[|*lc =0, c € Sp(X), 0 <L < m.

This was proved last time.



"Proof’ of Main Theorem

> Integrating we find (™ fo Ye " x tdx + ap,
where a,, is a constant. and
P D(r) = [ w(x)e™"x2dx + apmr + am-1, where
am_1 is another constant

» continuing we find ¢(r) = [;° w(x)e ™" x~™ tdx + q(r),
where g(r) = apr™ + -4 ag is a ponnomiaI of degree
< m.

> Assuming that the integral exists we find

'"“ZCJCH/J Ix; — xil|?)

L 2
=(—1)m" E chk/ w(x)e XXl =m=1 g

+ (D)™ gea(llx — xl?)
J,k



"Proof’ continued

» By lemma
> ik Gara(lx—xell?) = D000 ae X2 Gkl —xk[[* = 0

- (F1)7ET A = [ (5, e

» Since [e *I%—*I"] is positive definite for x > 0 the
integral is positive "showing” the result.

» Need a refined argument to guarantee that the integrals
exist.



Proof of Main Theorem
> Let 4 : (0,00) — R for kK > 0 be given by

(=15, (r) ::/O w(x) (e — qu(—xr))x *tdx
+ /100 w(x)e ™ x *tdx,

kot
where qi(t) = > ;o -
» To see that this is well defined we observe that qx(t) is

the first few terms in the Taylor expansion of e’ around
t=0. Thusfor t<0

> et — qi(t) = (kH)e with t < ¢ < 0.
» Then for 0 < x <1,
—Xr —k— — k+1
&7 — qi(—xr)|x ¥t = (k) X let < Czsy
> ’e—xrx—k—l‘ S e—xr, X Z 1.
» We show that §y(r) = ¥(™3)(r) and &) = 6,1 for k > 1

(xr)k+1




0

» Since qo(t) = 1 we find the derivative

0o(r) = 1
— %(/o w(x)(e™ —1)x tdx + /1OO w(x)e " x*dx)
= /01 w(x)e " dx + /100 w(x)e " dx

= /00 w(x)e dx = w(mﬂ)(r)
0



d1(r)

4 /0 () (e — 14 xr)x—2dx + /1 " w(x)ex2dx
_ /0 () (e — 1)xdx+ /1 " w(x)ex 1dx

= do(r).

> Since g} (t) = q1(t) we find Lqi(—xr) = —xq_1(—xr)
> So 0)(r) = 0k_1(r), k > 1
> Thus 837" (r) = 5374 (r) = - - = 6(r) = (1)



Proof

> )(r) = dn(r) +q(r), r >0, where g € M,(R?)
» For c € 5,(X)

=( Z \xj—xku>+q(ux,-—xku2)>
=(= ’”“Zcfckém (IIx; — xi1?)
J,k
! 2
= Z CjCk(/ W(X)(e_XHXj—Xk” _ qm(_Xij _ Xk||2))X_m_1dX
J.k 0

1



Proof

> JkCJqum(ij—Xk\F) =
Zz o o ijCjCkaj_kaM:O
> ( 1)m+1 TAC — [ w(x) (Ej,k Cjcke—xij—kaz)dX >0

Xm+1

> Since [e I’ ] is positive definite for x > 0 the
integral is positive showing the result.



