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Radial Function in Rs

Definition
Let s ∈ N and ‖ ‖ a norm on Rs . A function Φ : Rs → R is
called radial if

Φ(x) = ϕ(‖x‖), x ∈ Rs ,

for some univariate function ϕ : [0,∞)→ R.

I The norm is often the Euclidian norm ‖ ‖2.

I ‖ ‖ = ‖ ‖2 when nothing else is said.

I Radial: Φ(x) = ϕ(r) for all x with ‖x‖ = r .



Examples Φ(x) = ϕ(‖x‖)

ε ∈ R, ε 6= 0

I Gauss ϕ(r) = e−ε
2r2

,

I distance ϕ(r) = r ,

I power ϕ(r) = r 2m+1, m ≥ 0,

I thin plate spline ϕ(r) = r 2 log r

I multiquadric ϕ(r) =
√

1 + (εr)2,

I inverse multiquadric ϕ(r) = 1/
√

1 + (εr)2,

I Wendland’s C 0 compactly supported ϕ(r) = (1− r)2
+

I Wendland’s C 2 compactly supported
ϕ(r) = (1− r)4

+(4r + 1)



RBF interpolation in Rs with polynomial precision
Given

I Distinct points x1, . . . , xN ∈ Rs .
I Ordinate-values fj = f (xj) representing an unknown

function f .
I A radial function Φ : Rs → R given by Φ(x) = ϕ(‖x‖)
I A basis q1, . . . , qM of Πm(Rs) (for example the

monomials)
Find

I c = [c1, . . . , cN ] and d = [d1, . . . , dM ] such that
I Pf (x) :=

∑N
k=1 ckΦ(x− xk) +

∑M
k=1 dkqk(x) satisfies

Pf (xj) =
N∑

k=1

ckΦ(xj − xk) +
M∑

k=1

dkqk(xj) =fj , j = 1, . . . ,N

N∑
k=1

ckqj(xk) =0, j = 1, . . . ,M .

I Note that Pf = f for all f ∈ Πm(Rs)



Linear system

I [
A BT

B 0

] [
c
d

]
=

[
f
0

]
,

I A = [Φ(xj − xk)] ∈ RN,N , B = [qj(xk)] ∈ RM,N .

I N + M linear equations in N + M unknowns.

I Symmetric coefficient matrix.

I Positive definite? Nonsingular?



Positive definite on a subspace

Definition
Suppose A ∈ RN,N and S a subspace of RN . We say that A is
positive definite on S if AT = A and cTAc > 0 for all nonzero
c ∈ S.

I If A is positive definite on
S = ker(B) := {c ∈ RN : Bc = 0} and B ∈ RM,N has
linearly independent rows then the block matrix[

A BT

B 0

]
is nonsingular.

I Suppose S, T are subspaces of RN with S ⊂ T . If A is
positive definite on S then A is positive definite on T .



B full rank?

I Definition
We say that a set of points X = {x1, . . . , xN} ⊂ Rs is
m-unisolvent if p ∈ Πm(Rs) and p(xk) = 0 for k = 1, . . . ,N
implies p = 0.

I Lemma
Let B = [qj(xk)] ∈ RM,N , where N ≥ M, q1, . . . , qM is a basis
for Πm(Rs), and X = {x1, . . . , xN} ⊂ Rs are distinct points in
Rs . Then B has linearly independent rows if and only if X is
m-unisolvent.

I Proof: We have aTB = [p(x1), . . . , p(xN)] where
p(x) =

∑
ajqj(x). Thus aTB = 0⇒ a = 0 if and only if

p(xk) = 0 k = 1, . . . ,N ⇒ p = 0.



Non-singularity via Fourier Transform

Definition
For a function f ∈ L1(Rs) we define the (symmetric) Fourier
transform of f by

f̂ (ω) :=
1

(2π)s/2

∫
Rs

f (x)e−iω·xdx, ω ∈ Rs . (1)

and the inverse Fourier transform

f (x) =
1

(2π)s/2

∫
Rs

f̂ (ω)e iω·xdω, x ∈ Rs . (2)



Non-negative Fourier transform

Theorem
Let Φ(x) = ϕ(‖x‖) be a radial function with nonnegative
Fourier transform not identically zero. For any distinct points
x1, . . . , xN the matrix

A := [ϕ(‖xj − xk‖)] ∈ RN,N ,

is positive definite.



The Gauss Kernel

Theorem
Suppose that x1, . . . , xN , N ∈ N, are distinct points in Rs ,
s ∈ N. Then the matrix

A := [e−ε‖xj−xk‖22] ∈ RN,N , ε > 0

is positive definite.

Proof The Fourier transform can be calculated as

Φ(x) := e−ε
2‖x‖2 ⇒ Φ̂(ω) := e−‖ω‖

2/(4ε2) ≥ 0.

Thus A is positive definite.



Discussion

I The Fourier transform can be used for Gaussian- and
compactly supported RBF’s. But,

I The distance function and thin plate and other examples
are not integrable so do not have a Fourier transform

I Can use nonnegativity of the generalized Fourier
transform.

I Can use complete monmotonicity.



Completely monotone functions

Definition
A function g ∈ C∞(0,∞) that satisfies

(−1)`g (`)(r) ≥ 0, r > 0, ` = 0, 1, 2, . . .

is called completely monotone on (0,∞). If in addition
g ∈ C [0,∞) then g is said to be completely monotone on
[0,∞).

Examples:

I g(r) = e−εr , ε ≥ 0, r ≥ 0

I g(r) = r−1/2, r > 0

I g(r) =
∫∞

0
w(x)e−xrdx , r > 0, where w is the Laplace

transform of a piecewise continuous, nonnegative, and
nonzero function.



The main Theorem

Theorem
Let ϕ ∈ C [0,∞) and ψ := ϕ(

√
·) ∈ C∞(0,∞) Suppose for a

nonnegative integer m that the derivative ψ(m+1) is the
Laplace transform of a function w that is piecewise
continuous, nonnegative, and nonzero on (0,∞), i. e.,

ψ(m+1)(r) =

∫ ∞
0

w(x)e−xrdx , r > 0.

Let A := [Φ(xj − xk)] ∈ RN,N , where X = {x1, . . . , xN} are
distinct points in Rs . Then (−1)m+1A, is positive definite on
the subspace
Sm(X) := {c ∈ RN :

∑N
k=1 ckp(xk) = 0, p ∈ Πm(Rs)}.



Thin Plate

I ϕ(r) = r 2 log r , ψ(r) = 1
2
r log r .

I ψ′′(r) = 1
2r

is completely monotone

I ψ′′(r) = 1
2

∫∞
0

e−xrdx , w(x) = 1
2
.

I m = 1, A is positive definite on S1(X)

I Interpolation problem with reproduction of linear
polynomials non-singular for all s ≥ 1,N ≥ 2, and any
distinct x1, . . . , xN in Rs that do not lie on a straight line.



Power

I ϕ(r) = r 2m+1, ψ(r) = rm+1/2, m ≥ 0.

I ψ(m+1)(r) = const r−1/2 is completely monotone

I ψ(m+1)(r) = const
∫∞

0
1√
πx

e−xrdx .

I (−1)m+1A is positive definite on Sm(X).

I Cubic: m = 1, A is positive definite on S1(X)

I Interpolation problem with reproduction of linear
polynomials non-singular for all s ≥ 1,N ≥ 2, and any
distinct x1, . . . , xN in Rs that do not lie on a straight line.



A Lemma

cT [‖xj − xk‖2`]c = 0, c ∈ Sm(X), 0 ≤ ` ≤ m.

This was proved last time.



”Proof” of Main Theorem
I Integrating we find ψ(m)(r) =

∫∞
0

w(x)e−xrx−1dx + am,
where am is a constant. and
ψ(m−1)(r) =

∫∞
0

w(x)e−xrx−2dx + amr + am−1, where
am−1 is another constant.

I continuing we find ψ(r) =
∫∞

0
w(x)e−xrx−m−1dx + q(r),

where q(r) = amrm + · · ·+ a0 is a polynomial of degree
≤ m.

I Assuming that the integral exists we find

(−1)m+1
∑
j ,k

cjckψ(‖xj − xk‖2)

=(−1)m+1
∑
j ,k

cjck

∫ ∞
0

w(x)e−x‖xj−xk‖2x−m−1dx

+ (−1)m+1
∑
j ,k

cjckq(‖xj − xk‖2)



”Proof” continued

I By lemma

I
∑

j ,k cjckq(‖xj−xk‖2) =
∑m

`=0 a`
∑

j ,k cjck‖xj−xk‖2` = 0

I (−1)m+1cTAc =
∫∞

0
w(x)
xm+1

(∑
j ,k cjcke−x‖xj−xk‖2

)
dx .

I Since [e−x‖xj−xk‖2] is positive definite for x > 0 the
integral is positive ”showing” the result.

I Need a refined argument to guarantee that the integrals
exist.



Proof of Main Theorem
I Let δk : (0,∞)→ R for k ≥ 0 be given by

(−1)k+1δk(r) :=

∫ 1

0

w(x)
(
e−xr − qk(−xr)

)
x−k−1dx

+

∫ ∞
1

w(x)e−xrx−k−1dx ,

where qk(t) =
∑k

`=0
tk

k!
.

I To see that this is well defined we observe that qk(t) is
the first few terms in the Taylor expansion of et around
t = 0. Thus for t < 0

I et − qk(t) = tk+1

(k+1)!
ec with t ≤ c ≤ 0.

I Then for 0 < x ≤ 1,
|e−xr − qk(−xr)|x−k−1 = (xr)k+1

(k+1)!
x−k−1ec ≤ rk+1

(k+1)!

I |e−xrx−k−1| ≤ e−xr , x ≥ 1.
I We show that δ′0(r) = ψ(m+1)(r) and δ′k = δk−1 for k ≥ 1



δ′0

I Since q0(t) = 1 we find the derivative

δ′0(r) =

− d

dr

( ∫ 1

0

w(x)
(
e−xr − 1

)
x−1dx +

∫ ∞
1

w(x)e−xrx−1dx
)

=

∫ 1

0

w(x)e−xrdx +

∫ ∞
1

w(x)e−xrdx

=

∫ ∞
0

w(x)e−xrdx = ψ(m+1)(r)



δ′1

I

δ′1(r)

= − d

dr

( ∫ 1

0

w(x)
(
e−xr − 1 + xr

)
x−2dx +

∫ ∞
1

w(x)e−xrx−2dx
)

=

∫ 1

0

w(x)
(
e−xr − 1

)
x−1dx +

∫ ∞
1

w(x)e−xrx−1dx

= δ0(r).

I Since q′k(t) = qk−1(t) we find d
dr

qk(−xr) = −xqk−1(−xr)

I So δ′k(r) = δk−1(r), k ≥ 1

I Thus δ
(m+1)
m (r) = δ

(m)
m−1(r) = · · · = δ′0(r) = ψ(m+1)(r)



Proof

I ψ(r) = δm(r) + q(r), r ≥ 0, where q ∈ Πm(R1)

I For c ∈ Sm(X)

(−1)m+1cTAc = (−1)m+1
∑
j ,k

cjckψ(‖xj − xk‖2)

=(−1)m+1
∑
j ,k

cjck

(
δm(‖xj − xk‖2) + q(‖xj − xk‖2)

)
=(−1)m+1

∑
j ,k

cjckδm(‖xj − xk‖2)

=
∑
j ,k

cjck

( ∫ 1

0

w(x)
(
e−x‖xj−xk‖2 − qm(−x‖xj − xk‖2)

)
x−m−1dx

+

∫ ∞
1

w(x)e−x‖xj−xk‖2x−m−1dx
)
,



Proof

I
∑

j ,k cjckqm(‖xj − xk‖2) =∑m
`=0

(−x)`

`!

∑
j ,k cjck‖xj − xk‖2` = 0

I (−1)m+1cTAc =
∫∞

0
w(x)
xm+1

(∑
j ,k cjcke−x‖xj−xk‖2

)
dx > 0

I Since [e−x‖xj−xk‖2] is positive definite for x > 0 the
integral is positive showing the result.


