Radial Basis Functions III

Tom Lyche

Centre of Mathematics for Applications, Department of Informatics, University of Oslo

December 2, 2008

Radial Function in \mathbb{R}^{s}

Definition

Let $s \in \mathbb{N}$ and $\| \|$ a norm on \mathbb{R}^s . A function $\Phi : \mathbb{R}^s \to \mathbb{R}$ is called radial if

$$\Phi(\mathbf{x}) = \varphi(\|\mathbf{x}\|), \quad \mathbf{x} \in \mathbb{R}^{s},$$

for some univariate function $\varphi : [0, \infty) \to \mathbb{R}$.

- The norm is often the Euclidian norm $\| \|_2$.
- $\| \| = \| \|_2$ when nothing else is said.
- Radial: $\Phi(\mathbf{x}) = \varphi(r)$ for all \mathbf{x} with $\|\mathbf{x}\| = r$.

Examples $\Phi(\mathbf{x}) = \varphi(\|\mathbf{x}\|)$

- $\varepsilon \in \mathbb{R}$, $\varepsilon \neq 0$
 - Gauss $\varphi(r) = e^{-\varepsilon^2 r^2}$,
 - distance $\varphi(r) = r$,
 - power $\varphi(r) = r^{2m+1}$, $m \ge 0$,
 - thin plate spline $\varphi(r) = r^2 \log r$
 - multiquadric $\varphi(r) = \sqrt{1 + (\varepsilon r)^2}$,
 - ▶ inverse multiquadric $\varphi(r) = 1/\sqrt{1 + (\varepsilon r)^2}$,
 - ▶ Wendland's C^0 compactly supported $\varphi(r) = (1 r)^2_+$
 - Wendland's C^2 compactly supported $\varphi(r) = (1 r)^4_+(4r + 1)$

RBF interpolation in \mathbb{R}^s with polynomial precision

Given

- Distinct points $\mathbf{x}_1, \ldots, \mathbf{x}_N \in \mathbb{R}^s$.
- ► Ordinate-values f_j = f(x_j) representing an unknown function f.
- A radial function $\Phi : \mathbb{R}^s \to \mathbb{R}$ given by $\Phi(\mathbf{x}) = \varphi(\|\mathbf{x}\|)$
- A basis q₁,..., q_M of Π_m(ℝ^s) (for example the monomials)

Find

▶
$$\mathbf{c} = [c_1, \dots, c_N]$$
 and $\mathbf{d} = [d_1, \dots, d_M]$ such that
▶ $P_f(\mathbf{x}) := \sum_{k=1}^N c_k \Phi(\mathbf{x} - \mathbf{x}_k) + \sum_{k=1}^M d_k q_k(\mathbf{x})$ satisfies
 $P_f(\mathbf{x}_j) = \sum_{k=1}^N c_k \Phi(\mathbf{x}_j - \mathbf{x}_k) + \sum_{k=1}^M d_k q_k(\mathbf{x}_j) = f_j, \quad j = 1, \dots, N$
 $\sum_{k=1}^N c_k q_j(\mathbf{x}_k) = 0, \quad j = 1, \dots, M$

Note that $P_c - f$ for all $f \in \Pi$ (\mathbb{R}^s)

Linear system

$\begin{bmatrix} \textbf{A} & \textbf{B}^{\mathcal{T}} \\ \textbf{B} & \textbf{0} \end{bmatrix} \begin{bmatrix} \textbf{c} \\ \textbf{d} \end{bmatrix} = \begin{bmatrix} \textbf{f} \\ \textbf{0} \end{bmatrix}, \label{eq:starses}$

- ► $\mathbf{A} = [\Phi(\mathbf{x}_j \mathbf{x}_k)] \in \mathbb{R}^{N,N}, \ \mathbf{B} = [q_j(\mathbf{x}_k)] \in \mathbb{R}^{M,N}.$
- N + M linear equations in N + M unknowns.
- Symmetric coefficient matrix.
- Positive definite? Nonsingular?

Positive definite on a subspace

Definition Suppose $\mathbf{A} \in \mathbb{R}^{N,N}$ and S a subspace of \mathbb{R}^N . We say that \mathbf{A} is positive definite on S if $\mathbf{A}^T = \mathbf{A}$ and $\mathbf{c}^T \mathbf{A} \mathbf{c} > 0$ for all nonzero $\mathbf{c} \in S$.

▶ If **A** is positive definite on $S = \text{ker}(\mathbf{B}) := {\mathbf{c} \in \mathbb{R}^N : \mathbf{B}\mathbf{c} = \mathbf{0}}$ and $\mathbf{B} \in \mathbb{R}^{M,N}$ has linearly independent rows then the block matrix

$$\begin{bmatrix} \mathbf{A} & \mathbf{B}^T \\ \mathbf{B} & \mathbf{0} \end{bmatrix}$$

is nonsingular.

Suppose S, T are subspaces of ℝ^N with S ⊂ T. If A is positive definite on S then A is positive definite on T.

B full rank?

Definition

We say that a set of points $\mathbf{X} = {\mathbf{x}_1, \dots, \mathbf{x}_N} \subset \mathbb{R}^s$ is *m*-unisolvent if $p \in \prod_m(\mathbb{R}^s)$ and $p(\mathbf{x}_k) = 0$ for $k = 1, \dots, N$ implies p = 0.

Lemma

Let $\mathbf{B} = [q_j(\mathbf{x}_k)] \in \mathbb{R}^{M,N}$, where $N \ge M$, q_1, \ldots, q_M is a basis for $\prod_m(\mathbb{R}^s)$, and $\mathbf{X} = {\mathbf{x}_1, \ldots, \mathbf{x}_N} \subset \mathbb{R}^s$ are distinct points in \mathbb{R}^s . Then **B** has linearly independent rows if and only if **X** is *m*-unisolvent.

• **Proof**: We have $\mathbf{a}^T \mathbf{B} = [p(\mathbf{x}_1), \dots, p(\mathbf{x}_N)]$ where $p(\mathbf{x}) = \sum a_j q_j(\mathbf{x})$. Thus $\mathbf{a}^T \mathbf{B} = \mathbf{0} \Rightarrow \mathbf{a} = \mathbf{0}$ if and only if $p(\mathbf{x}_k) = 0$ $k = 1, \dots, N \Rightarrow p = 0$.

Non-singularity via Fourier Transform

Definition

For a function $f \in L_1(\mathbb{R}^s)$ we define the (symmetric) Fourier transform of f by

$$\widehat{f}(oldsymbol{\omega}) := rac{1}{(2\pi)^{s/2}} \int_{\mathbb{R}^s} f(\mathbf{x}) e^{-ioldsymbol{\omega}\cdot\mathbf{x}} d\mathbf{x}, \quad oldsymbol{\omega} \in \mathbb{R}^s.$$
 (1)

and the inverse Fourier transform

$$f(\mathbf{x}) = rac{1}{(2\pi)^{s/2}} \int_{\mathbb{R}^s} \hat{f}(\boldsymbol{\omega}) e^{i\boldsymbol{\omega}\cdot\mathbf{x}} d\boldsymbol{\omega}, \quad \mathbf{x} \in \mathbb{R}^s.$$
 (2)

Non-negative Fourier transform

Theorem

Let $\Phi(\mathbf{x}) = \varphi(||\mathbf{x}||)$ be a radial function with nonnegative Fourier transform not identically zero. For any distinct points $\mathbf{x}_1, \ldots, \mathbf{x}_N$ the matrix

$$\mathbf{A} := [\varphi(\|\mathbf{x}_j - \mathbf{x}_k\|)] \in \mathbb{R}^{N,N},$$

is positive definite.

The Gauss Kernel

Theorem

Suppose that $\mathbf{x}_1, \ldots, \mathbf{x}_N$, $N \in \mathbb{N}$, are distinct points in \mathbb{R}^s , $s \in \mathbb{N}$. Then the matrix

$$\mathbf{A} := [e^{-\varepsilon \|\mathbf{x}_j - \mathbf{x}_k\|_2^2}] \in \mathbb{R}^{N,N}, \quad \varepsilon > 0$$

is positive definite.

Proof The Fourier transform can be calculated as

$$\Phi(\mathbf{x}) := e^{-arepsilon^2 \|\mathbf{x}\|^2} \Rightarrow \hat{\Phi}(oldsymbol{\omega}) := e^{-\|oldsymbol{\omega}\|^2/(4arepsilon^2)} \ge 0.$$

Thus **A** is positive definite.

Discussion

- The Fourier transform can be used for Gaussian- and compactly supported RBF's. But,
- The distance function and thin plate and other examples are not integrable so do not have a Fourier transform
- Can use nonnegativity of the generalized Fourier transform.
- Can use complete monmotonicity.

Completely monotone functions

Definition

A function $g \in C^\infty(0,\infty)$ that satisfies

$$(-1)^{\ell}g^{(\ell)}(r) \geq 0, \quad r > 0, \quad \ell = 0, 1, 2, \dots$$

is called completely monotone on $(0, \infty)$. If in addition $g \in C[0, \infty)$ then g is said to be completely monotone on $[0, \infty)$.

Examples:

•
$$g(r) = e^{-\varepsilon r}, \ \varepsilon \ge 0, \ r \ge 0$$

• $g(r) = r^{-1/2}, \ r > 0$

g(r) = ∫₀[∞] w(x)e^{-xr}dx, r > 0, where w is the Laplace transform of a piecewise continuous, nonnegative, and nonzero function.

The main Theorem

Theorem

Let $\varphi \in C[0,\infty)$ and $\psi := \varphi(\sqrt{\cdot}) \in C^{\infty}(0,\infty)$ Suppose for a nonnegative integer m that the derivative $\psi^{(m+1)}$ is the Laplace transform of a function w that is piecewise continuous, nonnegative, and nonzero on $(0,\infty)$, i. e.,

$$\psi^{(m+1)}(r)=\int_0^\infty w(x)e^{-xr}dx,\quad r>0.$$

Let $\mathbf{A} := [\Phi(\mathbf{x}_j - \mathbf{x}_k)] \in \mathbb{R}^{N,N}$, where $\mathbf{X} = {\mathbf{x}_1, \dots, \mathbf{x}_N}$ are distinct points in \mathbb{R}^s . Then $(-1)^{m+1}\mathbf{A}$, is positive definite on the subspace

$$\mathcal{S}_m(\mathbf{X}) := \{ \mathbf{c} \in \mathbb{R}^N : \sum_{k=1}^N c_k p(\mathbf{x}_k) = 0, \ p \in \Pi_m(\mathbb{R}^s) \}.$$

Thin Plate

•
$$\varphi(r) = r^2 \log r$$
, $\psi(r) = \frac{1}{2}r \log r$.

• $\psi''(r) = \frac{1}{2r}$ is completely monotone

•
$$\psi''(r) = \frac{1}{2} \int_0^\infty e^{-xr} dx$$
, $w(x) = \frac{1}{2}$.

• m = 1, **A** is positive definite on $S_1(\mathbf{X})$

Interpolation problem with reproduction of linear polynomials non-singular for all s ≥ 1,N ≥ 2, and any distinct x₁,..., x_N in ℝ^s that do not lie on a straight line.

Power

Interpolation problem with reproduction of linear polynomials non-singular for all s ≥ 1, N ≥ 2, and any distinct x₁,..., x_N in ℝ^s that do not lie on a straight line.

A Lemma

$$\mathbf{c}^{\mathsf{T}}[\|\mathbf{x}_j - \mathbf{x}_k\|^{2\ell}]\mathbf{c} = 0, \ \mathbf{c} \in \mathcal{S}_m(\mathbf{X}), \ 0 \leq \ell \leq m.$$

This was proved last time.

"Proof" of Main Theorem

- Integrating we find $\psi^{(m)}(r) = \int_0^\infty w(x)e^{-xr}x^{-1}dx + a_m$, where a_m is a constant. and $\psi^{(m-1)}(r) = \int_0^\infty w(x)e^{-xr}x^{-2}dx + a_mr + a_{m-1}$, where a_{m-1} is another constant.
- continuing we find $\psi(r) = \int_0^\infty w(x)e^{-xr}x^{-m-1}dx + q(r)$, where $q(r) = a_m r^m + \cdots + a_0$ is a polynomial of degree $\leq m$.
- Assuming that the integral exists we find

$$(-1)^{m+1} \sum_{j,k} c_j c_k \psi(\|\mathbf{x}_j - \mathbf{x}_k\|^2)$$

= $(-1)^{m+1} \sum_{j,k} c_j c_k \int_0^\infty w(x) e^{-x \|\mathbf{x}_j - \mathbf{x}_k\|^2} x^{-m-1} dx$
+ $(-1)^{m+1} \sum_{j,k} c_j c_k q(\|\mathbf{x}_j - \mathbf{x}_k\|^2)$

"Proof' continued

By lemma

$$\sum_{j,k} c_j c_k q(\|\mathbf{x}_j - \mathbf{x}_k\|^2) = \sum_{\ell=0}^m a_\ell \sum_{j,k} c_j c_k \|\mathbf{x}_j - \mathbf{x}_k\|^{2\ell} = 0$$

•
$$(-1)^{m+1} \mathbf{c}^T \mathbf{A} \mathbf{c} = \int_0^\infty \frac{w(x)}{x^{m+1}} \left(\sum_{j,k} c_j c_k e^{-x \|\mathbf{x}_j - \mathbf{x}_k\|^2} \right) dx.$$

- Since [e<sup>-x||x_j-x_k||²] is positive definite for x > 0 the integral is positive "showing" the result.
 </sup>
- Need a refined argument to guarantee that the integrals exist.

Proof of Main Theorem

▶ Let $\delta_k : (0,\infty) \to \mathbb{R}$ for $k \ge 0$ be given by

$$(-1)^{k+1}\delta_k(r) := \int_0^1 w(x) (e^{-xr} - q_k(-xr)) x^{-k-1} dx$$

 $+ \int_1^\infty w(x) e^{-xr} x^{-k-1} dx,$

where $q_k(t) = \sum_{\ell=0}^k \frac{t^k}{k!}$.

- To see that this is well defined we observe that q_k(t) is the first few terms in the Taylor expansion of e^t around t = 0. Thus for t < 0</p>
- $e^t q_k(t) = \frac{t^{k+1}}{(k+1)!}e^c$ with $t \leq c \leq 0$.

Then for
$$0 < x \le 1$$
,
 $|e^{-xr} - q_k(-xr)|x^{-k-1} = \frac{(xr)^{k+1}}{(k+1)!}x^{-k-1}e^c \le \frac{r^{k+1}}{(k+1)!}$

- $|e^{-xr}x^{-k-1}| \le e^{-xr}, x \ge 1.$
- ▶ We show that $\delta_0'(r) = \psi^{(m+1)}(r)$ and $\delta_k' = \delta_{k-1}$ for $k \ge 1$

• Since $q_0(t) = 1$ we find the derivative

$$\begin{split} \delta_0'(r) &= \\ &- \frac{d}{dr} \Big(\int_0^1 w(x) \big(e^{-xr} - 1 \big) x^{-1} dx + \int_1^\infty w(x) e^{-xr} x^{-1} dx \Big) \\ &= \int_0^1 w(x) e^{-xr} dx + \int_1^\infty w(x) e^{-xr} dx \\ &= \int_0^\infty w(x) e^{-xr} dx = \psi^{(m+1)}(r) \end{split}$$

$\delta_{1}'(r) = -\frac{d}{dr} \Big(\int_{0}^{1} w(x) \big(e^{-xr} - 1 + xr \big) x^{-2} dx + \int_{1}^{\infty} w(x) e^{-xr} x^{-2} dx \Big)$ $= \int_{0}^{1} w(x) \big(e^{-xr} - 1 \big) x^{-1} dx + \int_{1}^{\infty} w(x) e^{-xr} x^{-1} dx$ $= \delta_{0}(r).$

Since q'_k(t) = q_{k-1}(t) we find d/dr q_k(-xr) = -xq_{k-1}(-xr)
 So δ'_k(r) = δ_{k-1}(r), k ≥ 1
 Thus δ^(m+1)_m(r) = δ^(m)_{m-1}(r) = ··· = δ'₀(r) = ψ^(m+1)(r)

Proof

$$\psi(r) = \delta_m(r) + q(r), r \ge 0$$
, where $q \in \Pi_m(\mathbb{R}^1)$
For c ∈ S_m(X)

$$(-1)^{m+1} \mathbf{c}^{T} \mathbf{A} \mathbf{c} = (-1)^{m+1} \sum_{j,k} c_{j} c_{k} \psi(\|\mathbf{x}_{j} - \mathbf{x}_{k}\|^{2})$$

= $(-1)^{m+1} \sum_{j,k} c_{j} c_{k} (\delta_{m}(\|\mathbf{x}_{j} - \mathbf{x}_{k}\|^{2}) + q(\|\mathbf{x}_{j} - \mathbf{x}_{k}\|^{2}))$
= $(-1)^{m+1} \sum_{j,k} c_{j} c_{k} \delta_{m}(\|\mathbf{x}_{j} - \mathbf{x}_{k}\|^{2})$
= $\sum_{j,k} c_{j} c_{k} (\int_{0}^{1} w(x) (e^{-x \|\mathbf{x}_{j} - \mathbf{x}_{k}\|^{2}} - q_{m}(-x \|\mathbf{x}_{j} - \mathbf{x}_{k}\|^{2})) x^{-m-1} dx$
+ $\int_{1}^{\infty} w(x) e^{-x \|\mathbf{x}_{j} - \mathbf{x}_{k}\|^{2}} x^{-m-1} dx),$

Proof