# Radial Basis Functions III 

## Tom Lyche

Centre of Mathematics for Applications,
Department of Informatics,
University of Oslo
December 2, 2008

## Radial Function in $\mathbb{R}^{s}$

## Definition

Let $s \in \mathbb{N}$ and $\left\|\|\right.$ a norm on $\mathbb{R}^{s}$. A function $\Phi: \mathbb{R}^{s} \rightarrow \mathbb{R}$ is called radial if

$$
\Phi(\mathbf{x})=\varphi(\|\mathbf{x}\|), \quad \mathbf{x} \in \mathbb{R}^{s}
$$

for some univariate function $\varphi:[0, \infty) \rightarrow \mathbb{R}$.

- The norm is often the Euclidian norm $\left\|\|_{2}\right.$.
- \|\| \| \| \| $\|_{2}$ when nothing else is said.
- Radial: $\Phi(\mathbf{x})=\varphi(r)$ for all $\mathbf{x}$ with $\|\mathbf{x}\|=r$.


## Examples $\Phi(\mathbf{x})=\varphi(\|\mathbf{x}\|)$

$$
\varepsilon \in \mathbb{R}, \varepsilon \neq 0
$$

- Gauss $\varphi(r)=e^{-\varepsilon^{2} r^{2}}$,
- distance $\varphi(r)=r$,
- power $\varphi(r)=r^{2 m+1}, m \geq 0$,
- thin plate spline $\varphi(r)=r^{2} \log r$
- multiquadric $\varphi(r)=\sqrt{1+(\varepsilon r)^{2}}$,
- inverse multiquadric $\varphi(r)=1 / \sqrt{1+(\varepsilon r)^{2}}$,
- Wendland's $C^{0}$ compactly supported $\varphi(r)=(1-r)_{+}^{2}$
- Wendland's $C^{2}$ compactly supported

$$
\varphi(r)=(1-r)_{+}^{4}(4 r+1)
$$

## RBF interpolation in $\mathbb{R}^{s}$ with polynomial precision

Given

- Distinct points $\mathbf{x}_{1}, \ldots, \mathbf{x}_{N} \in \mathbb{R}^{s}$.
- Ordinate-values $f_{j}=f\left(\mathbf{x}_{j}\right)$ representing an unknown function $f$.
- A radial function $\Phi: \mathbb{R}^{s} \rightarrow \mathbb{R}$ given by $\Phi(\mathbf{x})=\varphi(\|\mathbf{x}\|)$
- A basis $q_{1}, \ldots, q_{M}$ of $\Pi_{m}\left(\mathbb{R}^{s}\right)$ (for example the monomials)
Find
- $\mathbf{c}=\left[c_{1}, \ldots, c_{N}\right]$ and $\mathbf{d}=\left[d_{1}, \ldots, d_{M}\right]$ such that
- $P_{f}(\mathbf{x}):=\sum_{k=1}^{N} c_{k} \Phi\left(\mathbf{x}-\mathbf{x}_{k}\right)+\sum_{k=1}^{M} d_{k} q_{k}(\mathbf{x})$ satisfies

$$
\begin{aligned}
& P_{f}\left(\mathbf{x}_{j}\right)=\sum_{k=1}^{N} c_{k} \Phi\left(\mathbf{x}_{j}-\mathbf{x}_{k}\right)+\sum_{k=1}^{M} d_{k} q_{k}\left(\mathbf{x}_{j}\right)=f_{j}, j=1, \ldots, N \\
& \sum_{k=1}^{N} c_{k} q_{j}\left(\mathbf{x}_{k}\right)=0, \quad j=1, \ldots, M
\end{aligned}
$$

- Note that $P_{c}-f$ for all $f \in \Pi\left(\mathbb{R}^{s}\right)$


## Linear system

$$
\left[\begin{array}{cc}
\mathbf{A} & \mathbf{B}^{T} \\
\mathbf{B} & \mathbf{0}
\end{array}\right]\left[\begin{array}{l}
\mathbf{c} \\
\mathbf{d}
\end{array}\right]=\left[\begin{array}{l}
\mathbf{f} \\
\mathbf{0}
\end{array}\right]
$$

- $\mathbf{A}=\left[\Phi\left(\mathbf{x}_{j}-\mathbf{x}_{k}\right)\right] \in \mathbb{R}^{N, N}, \mathbf{B}=\left[q_{j}\left(\mathbf{x}_{k}\right)\right] \in \mathbb{R}^{M, N}$.
- $N+M$ linear equations in $N+M$ unknowns.
- Symmetric coefficient matrix.
- Positive definite? Nonsingular?


## Positive definite on a subspace

Definition
Suppose $\mathbf{A} \in \mathbb{R}^{N, N}$ and $\mathcal{S}$ a subspace of $\mathbb{R}^{N}$. We say that $\mathbf{A}$ is positive definite on $\mathcal{S}$ if $\mathbf{A}^{\top}=\mathbf{A}$ and $\mathbf{c}^{\top} \mathbf{A c}>0$ for all nonzero $\mathbf{c} \in \mathcal{S}$.

- If $\mathbf{A}$ is positive definite on
$\mathcal{S}=\operatorname{ker}(\mathbf{B}):=\left\{\mathbf{c} \in \mathbb{R}^{N}: \mathbf{B c}=\mathbf{0}\right\}$ and $\mathbf{B} \in \mathbb{R}^{M, N}$ has linearly independent rows then the block matrix

$$
\left[\begin{array}{cc}
\mathbf{A} & \mathbf{B}^{T} \\
\mathbf{B} & \mathbf{0}
\end{array}\right]
$$

is nonsingular.

- Suppose $\mathcal{S}, \mathcal{T}$ are subspaces of $\mathbb{R}^{N}$ with $\mathcal{S} \subset \mathcal{T}$. If $\mathbf{A}$ is positive definite on $\mathcal{S}$ then $\mathbf{A}$ is positive definite on $\mathcal{T}$.


## B full rank?

- Definition

We say that a set of points $\mathbf{X}=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right\} \subset \mathbb{R}^{s}$ is $m$-unisolvent if $p \in \Pi_{m}\left(\mathbb{R}^{s}\right)$ and $p\left(\mathbf{x}_{k}\right)=0$ for $k=1, \ldots, N$ implies $p=0$.

- Lemma

Let $\mathbf{B}=\left[q_{j}\left(\mathbf{x}_{k}\right)\right] \in \mathbb{R}^{M, N}$, where $N \geq M, q_{1}, \ldots, q_{M}$ is a basis for $\Pi_{m}\left(\mathbb{R}^{s}\right)$, and $\mathbf{X}=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right\} \subset \mathbb{R}^{s}$ are distinct points in $\mathbb{R}^{s}$. Then $\mathbf{B}$ has linearly independent rows if and only if $\mathbf{X}$ is m-unisolvent.

- Proof: We have $\mathbf{a}^{\top} \mathbf{B}=\left[p\left(\mathbf{x}_{1}\right), \ldots, p\left(\mathbf{x}_{N}\right)\right]$ where $p(\mathbf{x})=\sum a_{j} q_{j}(\mathbf{x})$. Thus $\mathbf{a}^{\top} \mathbf{B}=\mathbf{0} \Rightarrow \mathbf{a}=\mathbf{0}$ if and only if $p\left(\mathbf{x}_{k}\right)=0 \quad k=1, \ldots, N \Rightarrow p=0$.


## Non-singularity via Fourier Transform

Definition
For a function $f \in L_{1}\left(\mathbb{R}^{s}\right)$ we define the (symmetric) Fourier transform of $f$ by

$$
\begin{equation*}
\hat{f}(\boldsymbol{\omega}):=\frac{1}{(2 \pi)^{s / 2}} \int_{\mathbb{R}^{s}} f(\mathbf{x}) e^{-i \boldsymbol{\omega} \cdot \mathbf{x}} d \mathbf{x}, \quad \boldsymbol{\omega} \in \mathbb{R}^{s} . \tag{1}
\end{equation*}
$$

and the inverse Fourier transform

$$
\begin{equation*}
f(\mathbf{x})=\frac{1}{(2 \pi)^{s / 2}} \int_{\mathbb{R}^{s}} \hat{f}(\boldsymbol{\omega}) e^{i \boldsymbol{\omega} \cdot \mathbf{x}} d \boldsymbol{\omega}, \quad \mathbf{x} \in \mathbb{R}^{s} . \tag{2}
\end{equation*}
$$

## Non-negative Fourier transform

Theorem
Let $\Phi(\mathbf{x})=\varphi(\|\mathbf{x}\|)$ be a radial function with nonnegative Fourier transform not identically zero. For any distinct points $\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}$ the matrix

$$
\mathbf{A}:=\left[\varphi\left(\left\|\mathbf{x}_{j}-\mathbf{x}_{k}\right\|\right)\right] \in \mathbb{R}^{N, N}
$$

is positive definite.

## The Gauss Kernel

Theorem
Suppose that $\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}, N \in \mathbb{N}$, are distinct points in $\mathbb{R}^{s}$, $s \in \mathbb{N}$. Then the matrix

$$
\mathbf{A}:=\left[e^{-\varepsilon\left\|\mathbf{x}_{j}-\mathbf{x}_{k}\right\|_{2}^{2}}\right] \in \mathbb{R}^{N, N}, \quad \varepsilon>0
$$

is positive definite.
Proof The Fourier transform can be calculated as

$$
\Phi(\mathbf{x}):=e^{-\varepsilon^{2}\|\boldsymbol{x}\|^{2}} \Rightarrow \hat{\Phi}(\boldsymbol{\omega}):=e^{-\|\boldsymbol{\omega}\|^{2} /\left(4 \varepsilon^{2}\right)} \geq 0 .
$$

Thus $\mathbf{A}$ is positive definite.

## Discussion

- The Fourier transform can be used for Gaussian- and compactly supported RBF's. But,
- The distance function and thin plate and other examples are not integrable so do not have a Fourier transform
- Can use nonnegativity of the generalized Fourier transform.
- Can use complete monmotonicity.


## Completely monotone functions

Definition
A function $g \in C^{\infty}(0, \infty)$ that satisfies

$$
(-1)^{\ell} g^{(\ell)}(r) \geq 0, \quad r>0, \quad \ell=0,1,2, \ldots
$$

is called completely monotone on $(0, \infty)$. If in addition $g \in C[0, \infty)$ then $g$ is said to be completely monotone on $[0, \infty)$.
Examples:

- $g(r)=e^{-\varepsilon r}, \varepsilon \geq 0, r \geq 0$
- $g(r)=r^{-1 / 2}, r>0$
- $g(r)=\int_{0}^{\infty} w(x) e^{-x r} d x, \quad r>0$, where $w$ is the Laplace transform of a piecewise continuous, nonnegative, and nonzero function.


## The main Theorem

Theorem
Let $\varphi \in C[0, \infty)$ and $\psi:=\varphi(\sqrt{ } \cdot) \in C^{\infty}(0, \infty)$ Suppose for a nonnegative integer $m$ that the derivative $\psi^{(m+1)}$ is the Laplace transform of a function $w$ that is piecewise continuous, nonnegative, and nonzero on $(0, \infty)$, i. e.,

$$
\psi^{(m+1)}(r)=\int_{0}^{\infty} w(x) e^{-x r} d x, \quad r>0 .
$$

Let $\mathbf{A}:=\left[\Phi\left(\mathbf{x}_{j}-\mathbf{x}_{k}\right)\right] \in \mathbb{R}^{N, N}$, where $\mathbf{X}=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right\}$ are distinct points in $\mathbb{R}^{s}$. Then $(-1)^{m+1} \mathbf{A}$, is positive definite on the subspace
$\mathcal{S}_{m}(\mathbf{X}):=\left\{\mathbf{c} \in \mathbb{R}^{N}: \sum_{k=1}^{N} c_{k} p\left(\mathbf{x}_{k}\right)=0, p \in \Pi_{m}\left(\mathbb{R}^{s}\right)\right\}$.

## Thin Plate

- $\varphi(r)=r^{2} \log r, \psi(r)=\frac{1}{2} r \log r$.
- $\psi^{\prime \prime}(r)=\frac{1}{2 r}$ is completely monotone
- $\psi^{\prime \prime}(r)=\frac{1}{2} \int_{0}^{\infty} e^{-x r} d x, w(x)=\frac{1}{2}$.
- $m=1, \mathbf{A}$ is positive definite on $\mathcal{S}_{1}(\mathbf{X})$
- Interpolation problem with reproduction of linear polynomials non-singular for all $s \geq 1, N \geq 2$, and any distinct $\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}$ in $\mathbb{R}^{s}$ that do not lie on a straight line.


## Power

- $\varphi(r)=r^{2 m+1}, \psi(r)=r^{m+1 / 2}, m \geq 0$.
- $\psi^{(m+1)}(r)=$ const $r^{-1 / 2}$ is completely monotone
- $\psi^{(m+1)}(r)=$ const $\int_{0}^{\infty} \frac{1}{\sqrt{\pi x}} e^{-x r} d x$.
- $(-1)^{m+1} \mathbf{A}$ is positive definite on $\mathcal{S}_{m}(\mathbf{X})$.
- Cubic: $m=1, \mathbf{A}$ is positive definite on $\mathcal{S}_{1}(\mathbf{X})$
- Interpolation problem with reproduction of linear polynomials non-singular for all $s \geq 1, N \geq 2$, and any distinct $\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}$ in $\mathbb{R}^{s}$ that do not lie on a straight line.


## A Lemma

$$
\mathbf{c}^{T}\left[\left\|\mathbf{x}_{j}-\mathbf{x}_{k}\right\|^{2 \ell}\right] \mathbf{c}=0, \mathbf{c} \in \mathcal{S}_{m}(\mathbf{X}), 0 \leq \ell \leq m .
$$

This was proved last time.

## "Proof' of Main Theorem

- Integrating we find $\psi^{(m)}(r)=\int_{0}^{\infty} w(x) e^{-x r} x^{-1} d x+a_{m}$, where $a_{m}$ is a constant. and $\psi^{(m-1)}(r)=\int_{0}^{\infty} w(x) e^{-x r} x^{-2} d x+a_{m} r+a_{m-1}$, where $a_{m-1}$ is another constant.
- continuing we find $\psi(r)=\int_{0}^{\infty} w(x) e^{-x r} x^{-m-1} d x+q(r)$, where $q(r)=a_{m} r^{m}+\cdots+a_{0}$ is a polynomial of degree
$\leq m$.
- Assuming that the integral exists we find

$$
\begin{aligned}
& (-1)^{m+1} \sum_{j, k} c_{j} c_{k} \psi\left(\left\|\mathbf{x}_{j}-\mathbf{x}_{k}\right\|^{2}\right) \\
= & (-1)^{m+1} \sum_{j, k} c_{j} c_{k} \int_{0}^{\infty} w(x) e^{-x\left\|\mathbf{x}_{j}-\mathbf{x}_{k}\right\|^{2}} x^{-m-1} d x \\
& +(-1)^{m+1} \sum_{j, k} c_{j} c_{k} q\left(\left\|\mathbf{x}_{j}-\mathbf{x}_{k}\right\|^{2}\right)
\end{aligned}
$$

## "Proof" continued

- By lemma
- $\sum_{j, k} c_{j} c_{k} q\left(\left\|\mathbf{x}_{j}-\mathbf{x}_{k}\right\|^{2}\right)=\sum_{\ell=0}^{m} a_{\ell} \sum_{j, k} c_{j} c_{k}\left\|\mathbf{x}_{j}-\mathbf{x}_{k}\right\|^{2 \ell}=0$
- $(-1)^{m+1} \mathbf{c}^{T} \mathbf{A} \mathbf{c}=\int_{0}^{\infty} \frac{w(x)}{x^{m+1}}\left(\sum_{j, k} c_{j} c_{k} e^{-x\left\|\mathbf{x}_{j}-\mathbf{x}_{k}\right\|^{2}}\right) d x$.
- Since $\left[e^{-x\left\|\mathbf{x}_{j}-\mathbf{x}_{k}\right\|^{2}}\right]$ is positive definite for $x>0$ the integral is positive "showing" the result.
- Need a refined argument to guarantee that the integrals exist.


## Proof of Main Theorem

- Let $\delta_{k}:(0, \infty) \rightarrow \mathbb{R}$ for $k \geq 0$ be given by

$$
\begin{aligned}
(-1)^{k+1} \delta_{k}(r) & :=\int_{0}^{1} w(x)\left(e^{-x r}-q_{k}(-x r)\right) x^{-k-1} d x \\
& +\int_{1}^{\infty} w(x) e^{-x r} x^{-k-1} d x
\end{aligned}
$$

where $q_{k}(t)=\sum_{\ell=0}^{k} \frac{t^{k}}{k!}$.

- To see that this is well defined we observe that $q_{k}(t)$ is the first few terms in the Taylor expansion of $e^{t}$ around $t=0$. Thus for $t<0$
- $e^{t}-q_{k}(t)=\frac{t^{k+1}}{(k+1)!} e^{c}$ with $t \leq c \leq 0$.
- Then for $0<x \leq 1$,
$\left|e^{-x r}-q_{k}(-x r)\right| x^{-k-1}=\frac{(x r)^{k+1}}{(k+1)!} x^{-k-1} e^{c} \leq \frac{r^{k+1}}{(k+1)!}$
- $\left|e^{-x r} x^{-k-1}\right| \leq e^{-x r}, x \geq 1$.
- We show that $\delta_{0}^{\prime}(r)=\psi^{(m+1)}(r)$ and $\delta_{k}^{\prime}=\delta_{k-1}$ for $k \geq 1$
- Since $q_{0}(t)=1$ we find the derivative

$$
\begin{aligned}
& \delta_{0}^{\prime}(r)= \\
& -\frac{d}{d r}\left(\int_{0}^{1} w(x)\left(e^{-x r}-1\right) x^{-1} d x+\int_{1}^{\infty} w(x) e^{-x r} x^{-1} d x\right) \\
& =\int_{0}^{1} w(x) e^{-x r} d x+\int_{1}^{\infty} w(x) e^{-x r} d x \\
& =\int_{0}^{\infty} w(x) e^{-x r} d x=\psi^{(m+1)}(r)
\end{aligned}
$$

$\delta_{1}^{\prime}(r)$

$$
\begin{aligned}
& =-\frac{d}{d r}\left(\int_{0}^{1} w(x)\left(e^{-x r}-1+x r\right) x^{-2} d x+\int_{1}^{\infty} w(x) e^{-x r} x^{-2} d x\right. \\
& =\int_{0}^{1} w(x)\left(e^{-x r}-1\right) x^{-1} d x+\int_{1}^{\infty} w(x) e^{-x r} x^{-1} d x \\
& =\delta_{0}(r)
\end{aligned}
$$

- Since $q_{k}^{\prime}(t)=q_{k-1}(t)$ we find $\frac{d}{d r} q_{k}(-x r)=-x q_{k-1}(-x r)$
- So $\delta_{k}^{\prime}(r)=\delta_{k-1}(r), k \geq 1$
- Thus $\delta_{m}^{(m+1)}(r)=\delta_{m-1}^{(m)}(r)=\cdots=\delta_{0}^{\prime}(r)=\psi^{(m+1)}(r)$


## Proof

- $\psi(r)=\delta_{m}(r)+q(r), \quad r \geq 0$, where $q \in \Pi_{m}\left(\mathbb{R}^{1}\right)$
- For $\mathbf{c} \in \mathcal{S}_{m}(\mathbf{X})$

$$
\begin{aligned}
& (-1)^{m+1} \mathbf{c}^{T} \mathbf{A} \mathbf{c}=(-1)^{m+1} \sum_{j, k} c_{j} c_{k} \psi\left(\left\|\mathbf{x}_{j}-\mathbf{x}_{k}\right\|^{2}\right) \\
= & (-1)^{m+1} \sum_{j, k} c_{j} c_{k}\left(\delta_{m}\left(\left\|\mathbf{x}_{j}-\mathbf{x}_{k}\right\|^{2}\right)+q\left(\left\|\mathbf{x}_{j}-\mathbf{x}_{k}\right\|^{2}\right)\right) \\
= & (-1)^{m+1} \sum_{j, k} c_{j} c_{k} \delta_{m}\left(\left\|\mathbf{x}_{j}-\mathbf{x}_{k}\right\|^{2}\right) \\
= & \sum_{j, k} c_{j} c_{k}\left(\int_{0}^{1} w(x)\left(e^{-x\left\|\mathbf{x}_{j}-\mathbf{x}_{k}\right\|^{2}}-q_{m}\left(-x\left\|\mathbf{x}_{j}-\mathbf{x}_{k}\right\|^{2}\right)\right) x^{-m-1} d x\right. \\
& \left.+\int_{1}^{\infty} w(x) e^{-x\left\|\mathbf{x}_{j}-\mathbf{x}_{k}\right\|^{2}} x^{-m-1} d x\right),
\end{aligned}
$$

## Proof

- $\sum_{j, k} c_{j} c_{k} q_{m}\left(\left\|\mathbf{x}_{j}-\mathbf{x}_{k}\right\|^{2}\right)=$

$$
\sum_{\ell=0}^{m} \frac{(-x)^{\ell}}{\ell!} \sum_{j, k} c_{j} c_{k}\left\|\mathbf{x}_{j}-\mathbf{x}_{k}\right\|^{2 \ell}=0
$$

- $(-1)^{m+1} \mathbf{c}^{T} \mathbf{A} \mathbf{c}=\int_{0}^{\infty} \frac{w(x)}{x^{m+1}}\left(\sum_{j, k} c_{j} c_{k} e^{-x\left\|\mathbf{x}_{j}-\mathbf{x}_{k}\right\|^{2}}\right) d x>0$
- Since $\left[e^{-x\left\|\mathbf{x}_{j}-\mathbf{x}_{k}\right\|^{2}}\right.$ ] is positive definite for $x>0$ the integral is positive showing the result.

