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In this lecture we recall the schemes for subdivision of B-spline curves and
describe corresponding schemes for tensor-product spline surfaces defined by
rectangular meshes of control points. We then extend some of these to irregular
control meshes, leading to the Catmull-Clark and Doo-Sabin shcemes. We also
describe the Loop subdivision scheme for generating a surface from a triangular
control mesh.

1 Curve subdivision

Recall that a subdivision curve is a curve generated by iterative refinement of a
given polygon, called the control polygon. The limit curve can be rendered by
simply rendering the polygon resulting from sufficiently many refinements. Both
Bezier curves and spline curves are examples of subdivision curves. Consider,
for example, Chaikin’s scheme, which generates a C1 quadratic spline curve
(with uniform knots). We begin with a control polygon . . . , vi−1, vi, vi+1, . . ., as
in Figure 1(a). We then generate a refined polygon by the rule

v1
2i =

3

4
vi−1 +

1

4
vi,

v1
2i+1 =

1

4
vi−1 +

3

4
vi,

as shown in in Figure 1(b).
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Figure 1: Left: (a) initial polygon. Right: (b) the first refinement.
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Figure 2: The limit curve.

The full subdivision scheme is as follows.

1. Set v0
i = vi, for all i ∈ Z.

2. For n = 1, 2, . . ., set

vn
2i =

3

4
vn−1

i−1 +
1

4
vn−1

i ,

vn
2i+1 =

1

4
vn−1

i−1 +
3

4
vn−1

i

The number of points doubles at each iteration. The limiting curve is shown in
Figure 2.

The general (linear) subdivision scheme is

vn
i =

∑

k∈Z

ai−2kvn−1

k ,

where a0, a1, . . . , am is the (finite) subdivision mask (all other ai are zero). The
mask for Chaikin’s scheme is

(
a0 a1 a2 a3

)
=

(
1

4

3

4

3

4

1

4

)
.

The mask can be split into two masks, one for even and one for odd indices,

vn
2i =

∑

k∈Z

a2kvn−1

i−k ,

vn
2i+1 =

∑

k∈Z

a2k+1v
n−1

i−k .

In Chaikin’s scheme, these equations become

vn
2i = a0v

n−1

i + a2v
n−1

i−1 =
1

4
vn−1

i +
3

4
vn−1

i−1 ,

vn
2i+1 = a1v

n−1

i + a3v
n−1

i−1
=

3

4
vn−1

i +
1

4
vn−1

i−1
,
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Figure 3: One refinement of cubic subdivision.

and the two masks are

(
a0 a2

)
=

(
1

4

3

4

)
and

(
a1 a3

)
=

(
3

4

1

4

)
.

Another example is a C2 cubic spline curve (again with uniform knots). The
mask is

(
a0 a1 a2 a3 a4

)
=

1

8

(
1 4 6 4 1

)
.

If we split into the two masks (a0, a2, a4) and (a1, a3), we get the scheme

vn
2i =

1

8
(vn−1

i + 6vn−1

i−1 + vn−1

i−2 ),

vn
2i+1 =

1

2
(vn−1

i + vn−1

i−1
),

see Figure 3. A uniform Cd−1 spline curve of degree d can be generated by the
mask

(
a0 a1 · · · ad+1

)
=

1

2d

(
d+1

0

d+1

1
· · ·

d+1

d+1

)
.

2 Surface subdivision

We can generate a tensor-product spline surface from its rectangular mesh of
control points by repeatedyl subdividing first in one direction and then in the
other. For example, for C1 biquadratic surfaces the resulting scheme is

vn
2i,2j =

1

16
(9vn−1

i−1,j−1 + 3vn−1

i,j−1 + 3vn−1

i−1,j + vn−1

i,j )

vn
2i+1,2j =

1

16
(3vn−1

i−1,j−1 + 9vn−1

i,j−1 + vn−1

i−1,j + 3vn−1

i,j )

vn
2i,2j+1 =

1

16
(3vn−1

i−1,j−1 + vn−1

i,j−1 + 9vn−1

i−1,j + 3vn−1

i,j )

vn
2i+1,2j+1 =

1

16
(vn−1

i−1,j−1
+ 3vn−1

i,j−1
+ 3vn−1

i−1,j + 9vn−1

i,j ),
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Figure 4: Biquadratic subdivision step.
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Figure 5: Bicubic subdivision step.

see Figure 4.
There are four submasks

1

16

(
3 1
9 3

)

,
1

16

(
1 3
3 9

)

,
1

16

(
9 3
3 1

)

,
1

16

(
3 9
1 3

)

.

They are tensor-products of the quadratic curve masks. For example

1

16

(
3 1
9 3

)

=
1

4

(
1
3

)
1

4

(
3 1

)
.

Consider next bicubic spline surfaces. The mask for cubic curves is

(
a0 a1 a2 a3 a4

)
=

1

8

(
1 4 6 4 1

)
.

and the two submasks are

1

8

(
1 6 1

)
and

1

2

(
1 1

)
.
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If we take tensor-products of these two submasks we get the four bicubic masks

1

64





1 6 1
6 36 6
1 6 1





︸ ︷︷ ︸

Mask A

,
1

16





1 1
6 6
1 1



 ,
1

16

(
1 6 1
1 6 1

)

︸ ︷︷ ︸

Masks B

,
1

4

(
1 1
1 1

)

︸ ︷︷ ︸

Mask C

.

These are used to compute the four new points
(

vn
2i+1,2j vn

2i+1,2j+1

vn
2i,2j vn

2i,2j+1

)

from the old points




vn−1

i−2,j vn−1

i−1,j vn−1

i,j

vn−1

i−2,j−1 vn−1

i−1,j−1 vn−1

i,j−1

vn−1

i−2,j−2 vn−1

i−1,j−2 vn−1

i,j−2



 .

3 Catmull-Clark subdivision

Catmull-Clark subdivision is a generalization of the C2 bicubic scheme for
rectangular meshes to a arbitrary quadrilateral meshes. The limit surface is C2

except at extraordinary points. It is enough to define the masks associated with
Figure 7. In the figure, 5 faces meet at the vertex v. In general there will be N
faces. In the ‘canonical’ case we have N = 4. As for the N = 4 bicubic case,
there are three types of points: vertex points v, edge points e, and face points
f , and there are three associated masks. The algorithm goes in three steps.

Step 1. Compute the new face points. We use Mask C as before:

fn
i =

1

4
(vn−1 + en−1

i + en−1

i+1 + fn−1

i ).

Step 2. Compute the new edge points. We use Mask B as before:

en
i =

1

16
(en−1

i−1 + fn−1

i−1 + 6vn−1 + 6en−1

i + en−1

i+1 + fn−1

i ).

Using the new face points fn
i computed in the first step, this computation

reduces to

en
i =

1

4
(vn−1 + en−1

i + fn
i−1 + fn

i ).

Step 3. Compute the new vertex point. For N = 4 the rule for Mask A is

vn =
1

64

(

36vn−1 + 6

4∑

i=1

en−1

i +

4∑

i=1

fn−1

i

)

,

which can be expressed as

vn =
1

4

(

2vn−1 +
1

4

4∑

i=1

en−1

i +
1

4

4∑

i=1

fn
i

)

.
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Figure 6: Catmull-Clark scheme.
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Figure 7: Vertices in Catmull-Clark scheme.
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Figure 8: Doo-Sabin scheme.

Catmull and Clark proposed the generalization

vn =
1

N

(

(N − 2)vn−1 +
1

N

N∑

i=1

en−1

i +
1

N

N∑

i=1

fn
i

)

.

This formula ensures C1 continuity at the extraordinary points. It can be shown
that C2 continuity at extraordinary points is impossible without using larger
masks.

4 Doo-Sabin subdivision

Doo-Sabin subdivision surfaces generalize C1 biquadratic spline surfaces to ar-
bitrary quadrilateral meshes. Tangent plane (C1) continuity is again achieved
at the extrordinary points. We will not give the details, just illustrate with
Figure 8.
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Figure 9: Loop scheme.

5 Loop subdivision

This is a subdivision scheme for arbitrary triangular meshes, based on so-called
‘box-splines’ (which is beyond the scope of this course), specifically C2 quartic
‘box-splines; see Figure 9. In this scheme we only compute vertex points and
edge points, so there are only two masks. After one subdivision step each former
triangle is replaced by four, a so-called 1-4 split; see Figure 10. Suppose we
have the situation of Figure 11. Here, the number N of neighbouring triangles is
5. The ‘canonical’ case is N = 6 in which case the scheme reduces to ‘box-spline’
subdivision, yielding a C2 surface. The algorithm has just two steps.

Step 1. Compute the new edge points by the rule

en
i =

1

8
(3vn−1 + 3en−1

i + en−1

i−1 + en−1

i+1 ).

Step 2. Compute the new vertex points. The rule for ‘box-splines’ in the case
N = 6 is

vn =
5

8
vn−1 +

3

8

(1

6

6∑

i=1

en−1

i

)

.
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Figure 10: A 1-4 split.
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Figure 11: Vertices in the Loop scheme.
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Loop proposed the formula

vn = αNvn−1 + (1 − αN )
( 1

N

N∑

i=1

en−1

i

)

for general N , and showed that with the weighting

αN =
(3

8
+

1

4
cos(2π/N)

)2

+
3

8
,

the limit surface is C1 at the extraordinary points. The surface is a generaliza-
tion of a box-spline surface because α6 = 5

8
.
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