Assignment 2 for INF4360, 2011

Michael S. Floater

To be completed by Tuesday 25 October. Solutions can be handed to me in the lecture or sent electronically to michaelf@ifi.uio.no.

1. Let $\mathbf{p}(t)=\sum_{i=0}^{n} \mathbf{c}_{i} B_{i}^{n}(t), \mathbf{c}_{i} \in \mathbb{R}^{d}$, be a Bezier curve in \mathbb{R}^{d}. Show that its length,

$$
L=\int_{0}^{1}\left\|\mathbf{p}^{\prime}(t)\right\| d t
$$

is less than or equal to the length of its control polygon.
2. Consider the two tensor-product Bezier surfaces,

$$
\begin{gathered}
\mathbf{p}(s, t)=\sum_{i=0}^{m} \sum_{j=0}^{n} \mathbf{c}_{i j} B_{i}^{m}(s) B_{j}^{n}(t), \quad(s, t) \in[0,1] \times[0,1], \\
\mathbf{q}(s, t)=\sum_{i=0}^{m} \sum_{j=0}^{n} \mathbf{d}_{i j} B_{i}^{m}(s-1) B_{j}^{n}(t), \quad(s, t) \in[1,2] \times[0,1],
\end{gathered}
$$

with control points $\mathbf{c}_{i j}, \mathbf{d}_{i j} \in \mathbb{R}^{3}$. What are the conditions on the control points that ensure that \mathbf{p} and \mathbf{q} join with C^{1} continuity on the common edge $s=1,0 \leq t \leq 1$?
3. B-splines: find the coefficients $c_{i} \in \mathbb{R}$ such that

$$
t^{2}=\sum_{i=1}^{n} c_{i} N_{i}^{3}(t), \quad t_{4} \leq t \leq t_{n+1}
$$

over some knot vector $t_{1}, t_{2}, \ldots, t_{n+4}$,
4. (a) Write a computer program which, given a, b, with $a<b$, and $\mathbf{c}_{0}, \ldots, \mathbf{c}_{n} \in \mathbb{R}^{2}$, plots the Bezier curve $\mathbf{p}(t)=\sum_{i=0}^{n} \mathbf{c}_{i} B_{i}(u)$, where $u=(t-a) /(b-a)$.
(b) Use the program to plot the composite curve s: $[0,2] \rightarrow \mathbb{R}^{2}$, with pieces

$$
\begin{gathered}
\mathbf{p}(t)=\sum_{i=0}^{2} \mathbf{c}_{i} B_{i}^{2}(t), \quad 0 \leq t<1 \\
\mathbf{q}(t)=\sum_{i=0}^{2} \mathbf{d}_{i} B_{i}^{2}(t-1), \quad 1 \leq t<2
\end{gathered}
$$

where $\mathbf{c}_{0}=(-1,1), \mathbf{c}_{1}=(-1,0), \mathbf{c}_{2}=(0,0)$, and $\mathbf{d}_{0}=(0,0), \mathbf{d}_{1}=$ $(1,0), \mathbf{d}_{2}=(2,1)$. What is the order of continuity of \mathbf{s} at $(0,0)$?
(c) The curvature of a parametric curve \mathbf{r} in \mathbb{R}^{2} is

$$
\kappa(\mathbf{r}(t))=\frac{\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime}(t)}{\left\|\mathbf{r}^{\prime}(t)\right\|^{3}}
$$

where $\left(a_{1}, a_{2}\right) \times\left(b_{1}, b_{2}\right):=a_{1} b_{2}-a_{2} b_{1}$. What are the curvatures of \mathbf{p} and \mathbf{q} at $(0,0)$?

