Assignment 2 for INF4360, 2011

Michael S. Floater

To be completed by Tuesday 25 October. Solutions can be handed to me in the lecture or sent electronically to michaelf@ifi.uio.no.

1. Let $\mathbf{p}(t) = \sum_{i=0}^{n} \mathbf{c}_{i} B_{i}^{n}(t), \mathbf{c}_{i} \in \mathbb{R}^{d}$, be a Bezier curve in \mathbb{R}^{d} . Show that its length,

$$L = \int_0^1 \|\mathbf{p}'(t)\| \, dt,$$

is less than or equal to the length of its control polygon.

2. Consider the two tensor-product Bezier surfaces,

$$\mathbf{p}(s,t) = \sum_{i=0}^{m} \sum_{j=0}^{n} \mathbf{c}_{ij} B_i^m(s) B_j^n(t), \qquad (s,t) \in [0,1] \times [0,1],$$
$$\mathbf{q}(s,t) = \sum_{i=0}^{m} \sum_{j=0}^{n} \mathbf{d}_{ij} B_i^m(s-1) B_j^n(t), \qquad (s,t) \in [1,2] \times [0,1],$$

with control points $\mathbf{c}_{ij}, \mathbf{d}_{ij} \in \mathbb{R}^3$. What are the conditions on the control points that ensure that \mathbf{p} and \mathbf{q} join with C^1 continuity on the common edge $s = 1, 0 \leq t \leq 1$?

3. B-splines: find the coefficients $c_i \in \mathbb{R}$ such that

$$t^2 = \sum_{i=1}^{n} c_i N_i^3(t), \qquad t_4 \le t \le t_{n+1},$$

over some knot vector $t_1, t_2, \ldots, t_{n+4}$,

4. (a) Write a computer program which, given a, b, with a < b, and $\mathbf{c}_0, \ldots, \mathbf{c}_n \in \mathbb{R}^2$, plots the Bezier curve $\mathbf{p}(t) = \sum_{i=0}^n \mathbf{c}_i B_i(u)$, where u = (t-a)/(b-a).

(b) Use the program to plot the composite curve $\mathbf{s}:[0,2]\to\mathbb{R}^2,$ with pieces

$$\mathbf{p}(t) = \sum_{i=0}^{2} \mathbf{c}_{i} B_{i}^{2}(t), \qquad 0 \le t < 1,$$
$$\mathbf{q}(t) = \sum_{i=0}^{2} \mathbf{d}_{i} B_{i}^{2}(t-1), \qquad 1 \le t < 2,$$

where $\mathbf{c}_0 = (-1, 1)$, $\mathbf{c}_1 = (-1, 0)$, $\mathbf{c}_2 = (0, 0)$, and $\mathbf{d}_0 = (0, 0)$, $\mathbf{d}_1 = (1, 0)$, $\mathbf{d}_2 = (2, 1)$. What is the order of continuity of \mathbf{s} at (0, 0)?

(c) The *curvature* of a parametric curve \mathbf{r} in \mathbb{R}^2 is

$$\kappa(\mathbf{r}(t)) = \frac{\mathbf{r}'(t) \times \mathbf{r}''(t)}{\|\mathbf{r}'(t)\|^3},$$

where $(a_1, a_2) \times (b_1, b_2) := a_1b_2 - a_2b_1$. What are the curvatures of **p** and **q** at (0, 0)?