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In this lecture, we review the definitions and properties of barycentric co-
ordinates on triangles, and study generalizations to convex, and non-convex
polygons. These generalized coordinates have various applications in com-
puter graphics, including curve, surface, and image deformation, and param-
eterization of triangular meshes.

1 Triangular coordinates

Let T be a triangle in R
2 with vertices v1,v2,v3. For convenience we will

assume that v1,v2,v3 are in anti-clockwise order around the boundary of
T , as in Figure 1. It has been known for a long time, and was at least
known by Mobius, that any point x in T can be expressed uniquely as a
convex combination of the three vertices. In other words, there are unique
real values λ1, λ2, λ3 ≥ 0 such that

λ1 + λ2 + λ3 = 1, (1)

and
λ1v1 + λ2v2 + λ3v3 = x. (2)

To see this, observe that the scalar equation (1) and the vector equation (2)
together form a linear system of three equations,
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Figure 1: Point in a triangle.

where vj = (v1
j , v

2
j ), j = 1, 2, 3, and x = (x1, x2). Since the signed area of

the triangle T is given by
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the assumption that T is non-degenerate implies that the matrix in (3) is
non-singular, and Cramer’s rule gives the unique solution

λ1 =
A(x,v2,v3)

A(v1,v2,v3)
, λ2 =

A(v1,x,v3)

A(v1,v2,v3)
, λ3 =

A(v1,v2,x)

A(v1,v2,v3)
. (5)

The values λi are called the barycentric coordinates of the point x. Observe
that due to the anti-clockwise ordering of the vertices v1,v2,v3, all four areas
in (5) are non-negative and therefore λ1, λ2, λ3 have the important property of
being non-negative. Had the vertices been ordered clockwise, all the areas in
(5) would have had the opposite sign but we would again have λ1, λ2, λ3 ≥ 0.

The three areas in the numerators in (5) are shown in Figure 2 where Ai

denotes the triangle area A(x,vi+1,vi+2) with indices regarded cyclically: if
j = k + 3m, with k ∈ {1, 2, 3} and m ∈ Z, then vj := vk.

Viewed as functions of x, we see from (5) that the λi are linear polyno-
mials, and from now on we treat them as functions of x. Using either (2) or
(5) we see that they have the Lagrange property,

λi(vj) = δij . (6)

2



v 3

v 1
v

2

A

A

A

1

2

3

x

Figure 2: Areas of triangles formed by x.
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Figure 3: Values of λ1 at the vertices.

Here, δij denotes the Kronecker delta function that has value 1 when i = j
and value 0 when i 6= j. The values of λ1 at the vertices are shown in
Figure 3.

The linear polynomials λ1, λ2, λ3 are clearly well-defined for all x ∈ R
2.

However, they are are not all positive outside T . Their signs are shown in
Figure 4.

2 Polygonal coordinates

Let Ω ⊂ R
2 be a convex polygon in the plane, regarded as a closed set,

with vertices v1,v2, . . . ,vn, n ≥ 3, in an anticlockwise ordering. Figure 5
shows an example with n = 5. We will call any set of functions λi : Ω → R,
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Figure 4: Signs of λ1, λ2, λ3.
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Figure 5: Example of a convex polygon.
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i = 1, . . . , n, barycentric coordinates if they satisfy, for all x ∈ Ω, the three
properties

λi(x) ≥ 0, i = 1, 2, . . . , n, (7)

n
∑

i=1

λi(x) = 1 (8)

and
n

∑

i=1

λi(x)vi = x. (9)

In the special case that n = 3, the λi are the unique triangular coordinates
of (5). For n ≥ 4, and for general x ∈ Ω, there is no unique choice of
the n values λ1(x), . . . , λn(x) that satisfies the three conditions. In most
applications we would like functions λi that are as smooth as possible.

Even though barycentric coordinates are not unique for n ≥ 4, they share
some general properties that follow from the three defining axioms (7), (8)
and (9). First, given a function f : Ω → R, we can define an approximation
g = I(f), by the formula

g(x) =
n

∑

i=1

λi(x)f(vi), x ∈ Ω.

The operator I has linear precision in the sense that if f is a linear polynomial
then g = f . This comes from the barycentric property (9) combined with
(8): if

f(x) = a · x + b,

then

g(x) =
n

∑

i=1

λi(x)(a · vi + b) = a ·
n

∑

i=1

λi(x)vi + b
n

∑

i=1

λi(x) = f(x).

Another property is the Lagrange property, λi(vj) = δij, and the λi are
linear along each edge of Ω. To see this, observe that since the triangle area
A(x,vj,vj+1) is linear in x, the linear preicsion property implies

n
∑

i=1

λi(x)A(vi,vj,vj+1) = A(x,vj ,vj+1),
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and so if x belongs to the edge [vj ,vj+1],
∑

i6=j,j+1

λi(x)A(vi,vj,vj+1) = 0.

Since A(vi,vj,vj+1) > 0 for i 6= j, j + 1 by the convexity of Ω, and since
λi(x) ≥ 0 by (7) it follows that λi(x) = 0 for all i 6= j, j + 1. This implies
that from (9),

λj(x)vj + λj+1(x)vj+1 = x.

3 Wachspress coordinates

These are barycentric coordinates over convex polygons that are rational
functions, and are defined by

λi(x) =
wi(x)

∑n

j=1
wj(x)

, x ∈ Ω, (10)

where
wi(x) = Bi

∏

j 6=i−1,i

Aj(x), (11)

and
Ai(x) := A(x,vi,vi+1) and Bi := A(vi−1,vi,vi+1).

The triangle areas Ai and Bi are shown in Figure 6. Since Aj is linear in x

we see that wi is a polynomial of degree n− 2. It follows that the numerator
of λi has degree n − 2. Thus the denominator,

W (x) =

n
∑

j=1

wj(x), (12)

has degree at most n − 2, but in fact its degree is n − 3. This follows from
the barycentric property λi which we prove in the next section.

Wachspress coordinates are clearly smooth (C∞) and also rational poly-
nomials in the coordinates x1 and x2 of the point x = (x1, x2) with degree at
most n − 2.

We note that in the case that Ω is a regular polygon, the areas B1, . . . , Bn

are equal in which case they can be removed from the formula and we have
simply

wi(x) =
∏

j 6=i−1,i

Aj(x). (13)

6



v
i

v
i−1

x B i

v i+1

A i

A i−1

Figure 6: Triangles areas

To establish the barycentric property (9) for the Wachspress coordinates
(10), it helps first to express the coordinates in a different form. Multiplying
wi by a constant in i does not change λi, and so dividing wi by

∏n

j=1
Aj gives

the alternative form

λi(x) =
w̃i(x)

∑n

j=1
w̃j(x)

, w̃i(x) =
Bi

Ai−1(x)Ai(x)
, (14)

which is valid for x ∈ Int(Ω). In contrast to wi, the rational function w̃i

depends only on the three local vertices vi−1, vi, and vi+1.

Theorem 1 With w̃i as in (14),

n
∑

i=1

w̃i(x)(vi − x) = 0, x ∈ Int(Ω). (15)

Proof. We express x as a barycentric combination of vi−1, vi, and vi+1,

x =
Ai(x)

Bi

vi−1 +
(Bi − Ai−1(x) − Ai(x))

Bi

vi +
Ai−1(x)

Bi

vi+1,

and rearrange this equation in the form

Bi

Ai−1(x)Ai(x)
(vi − x) =

1

Ai−1(x)
(vi − vi−1) −

1

Ai(x)
(vi+1 − vi).

Summing both sides of this equation over i = 1, . . . , n gives the result. 2
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Figure 7: A Wachspress barycentric mapping

The barycentric property (9) follows from this. Another consequence is
that

n
∑

i=1

w̃i(x)vi = x

n
∑

i=1

w̃i(x),

and so
n

∑

i=1

wi(x)vi = x

n
∑

i=1

wi(x).

Then, since the left hand side is a (vector) polynomial of degree ≤ n−2, the
sum W (x) =

∑n

i=1
wi(x) must be a polynomial of degree ≤ n − 3.

4 Barycentric mapping

Barycentric coordinates such as Wachspress coordinates can be used to de-
form one polygon into another. We can map the ‘source’ polygon Ω into the
‘target’ polygon Ω′, with vertives v′

1, . . . ,v
′
n by the mapping

φ(x) =
∑

i

λi(x)v′
i.

Figure 7 shows such a Wachspress mapping. Such a mapping can be used
to deform a smooth curve. One can enclose the curve in a polygon, and
then deform the curve by moving the vertices of the polygon, in a similar
way to modelling with Bezier and spline curves. Figure 8 shows the result of
applying the mapping above to a circle.
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Figure 8: Curve deformation

4.1 Wachspress coordinates outside the polygon

Do Wachspress coordinates extend outside the polygon? We saw that barycen-
tric coordinates over a triangle continue to be well-defined outside the trian-
gle, even though they are no longer all positive there.

Wachspress coordinates, however, may not even be well-defined outside
the polygon. Consider the example of Fig 9, where n = 4, and Ω is a
quadrilateral. The lines through the fours sides of the quadrilateral intersect
in the two points p and q. By definition, we see that A2(p) = A4(p) = 0.
Therefore, wi(p) = 0 for all i = 1, 2, 3, 4, and so W (p) = 0. Similarly,
A1(q) = A3(q) = 0, and so W (q) = 0 We showed earlier that the polynomial
W has degree ≤ n−2, which in this quadrilateral case is degree 1. Thus, W is
zero along the line L through p and q and we conclude that the Wachspress
coordinates λ1, . . . , λ4 are not well-defined on the line L.

5 Mean value coordinates

Can we find coordinates that are well-defined for points both inside and
outside the polygon, and ideally, also for a non-convex polygon? One answer
is mean value coordinates. We consider initially the case that Ω is again
convex and x is inside. The mean value coordinates of x are then

λi(x) =
wi(x)

∑n

j=1
wj(x)

, x ∈ Ω, (16)
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Figure 9: Singularities of Wachspress coordinates

where

wi(x) =
tan(αi−1(x)/2) + tan(αi(x)/2)

‖vi − x‖
, (17)

and ‖ · ‖ denotes the Euclidean norm in R
2 and αi(x) is the angle at x in the

triangle [x,vi,vi+1], illustrated in Figure 10.
Note that the tangents in the formula do not need to be evaluated directly.

Instead, using the notation di = vi − x, ri = ‖di‖, and ei = di/ri, we can
write

sin αi = ei × ei+1, and cos αi = ei · ei+1,

where × and · denote cross and dot products of vectors in R
2, and then use

either of the two formulas

tan(α/2) = (1 − cos α)/ sinα = sin α/(1 + cosα).

Nevertheless, the mean value weight (17) requires computing square roots in
order to evaluate ri−1, ri, and ri+1.

To show that mean value coordinates satisfy the barycentric property (9)
it is enough to show
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Figure 10: Angles in mean value formula

Theorem 2 With wi as in (17),

n
∑

i=1

wi(x)(vi − x) = 0, x ∈ Int(Ω). (18)

Proof. With x ∈ Int(Ω) fixed, equation (18) is equivalent to

n
∑

i=1

(

tan(αi−1/2) + tan(αi/2)
)

ei = 0,

which can be rewritten as
n

∑

i=1

tan(αi/2)(ei + ei+1) = 0. (19)

To show that this equation holds, express the unit vector ei as ei = (cos θi, sin θi).
Then αi = θi+1 − θi, and so

tan
(αi

2

)

(ei + ei+1) = tan

(

θi+1 − θi

2

)

(cos θi + cos θi+1, sin θi + sin θi+1)

= (sin θi+1 − sin θi, cos θi − cos θi+1),

the last line following from the addition and subtraction formulas for sines
and cosines. Summing this expression over i = 1, . . . , n gives equation (19)
as required. 2
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An advantage of mean value coordinates over Wachspress coordinates
is that they are well defined (and positive) even when Ω is a star-shaped
polygon, as long as x is in its kernel. This means that mean value coordinates
can be used to express a vertex in a (planar) triangular mesh as a convex
combination of its neighbouring vertices. This was the original motivation
for mean value coordinates and they have used for this purpose in order to
parameterize (non-planar) triangular meshes.

Another advantage of mean value coordinates, is that they are still well-
defined, though not in general positive, for arbitrary polygons, and in fact
for any x in R

2, provided that the angle αi in the formula is taken to be the
signed angle formed by the two vectors vi −x and vi+1 −x. The coordinates
are not in general positive, but they still sum to one and have the Lagrange
property on the boundary of the polygon. This means that they can be used
for deforming polygons, even when the source polygon is not convex.

Figure 11 show the use of mean value coordinates to deform a digital
image (to ‘straighten’ the leaning tower of pisa).
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Figure 11: Image warping using MV coordinates.
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