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These notes provide an introduction to Bezier curves.

1 Bernstein polynomials

Recall that a real polynomial of a real variable x ∈ R, with degree ≤ n, is a
function of the form

p(x) = a0 + a1x + · · ·+ anx
n =

n
∑

i=0

aix
i, ai ∈ R.

We will denote by πn the linear (vector) space of all such polynomials. The
actual degree of p is the largest i for which ai is non-zero. The functions
1, x, . . . , xn form a basis for πn, known as the monomial basis, and the di-

mension of the space πn is therefore n + 1.
Bernstein polynomials are an alternative basis for πn, and are used to

construct Bezier curves. The i-th Bernstein polynomial of degree n is

Bn
i (x) =

(

n

i

)

xi(1 − x)n−i, (1)

where 0 ≤ i ≤ n and
(

n

i

)

=
n!

i!(n − i)!
.

The first few examples are
B0

0(x) = 1,

B1
0(x) = 1 − x, B1

1(x) = x,
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B2
0(x) = (1 − x)2, B2

1(x) = 2x(1 − x), B2
2(x) = x2,

B3
0(x) = (1−x)3, B3

1(x) = 3x(1−x)2, B3
2(x) = 3x2(1−x), B3

3(x) = x3.

These polynomials are defined for all x ∈ R, but are usually restricted to
x ∈ [0, 1] in practice. They have various important properties. They are
linearly independent, for if

n
∑

i=0

cix
i(1 − x)n−i = 0, x ∈ (0, 1),

then, by dividing by (1 − x)n and letting y = x/(1 − x), we see that

n
∑

i=0

ciy
i = 0, y > 0,

which implies that c0 = c1 = · · · = cn = 0. Since there are n + 1 Bernstein
polynomials of degree n, they do indeed form a basis for πn. They are
symmetric in the sense that

Bn
i (x) = Bn

n−i(1 − x).

They are positive for x in the open interval (0, 1) and at the endpoints,

Bn
i (0) =

{

1 i = 0;

0 i = 1, . . . , n,
and Bn

i (1) =

{

0 i = 0, . . . , n − 1;

1 i = n.
(2)

They form a partition of unity : by the Binomial theorem,

n
∑

i=0

Bn
i (x) = (x + (1 − x))n = 1n = 1.

They satisfy the recursion formula,

Bn
i (x) = xBn−1

i−1 (x) + (1 − x)Bn−1
i (x), (3)

which follows from the definition (1) and the binomial identity

(

n

i

)

=

(

n − 1

i − 1

)

+

(

n − 1

i

)

.
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In (3) and elsewhere we define

Bn
−1 = Bn

n+1 = 0.

The computation of the Bernstein polynomials up to degree n can be ar-
ranged in the following triangular scheme, with each column being computed
from the previous column, starting from the left:

1 = B0
0 B1

0 B2
0 · · · Bn

0

B1
1 B2

1 · · · Bn
1

B2
2 · · · Bn

2
. . .

...
Bn

n

2 Bezier curves

Since the n + 1 Bernstein polynomials of degree n form a basis for πn, every
polynomial p in πn can be represented in Bernstein form, i.e, as

p(x) =
n
∑

i=0

ciB
n
i (x),

for some coefficients ci ∈ R. When modelling geometry in some Euclidean
space R

d we often model a curve, or part of a curve, as a parametric polyno-
mial,

p(t) =
n
∑

i=0

ait
i, ai ∈ R

d. (4)

In practice the Euclidean space will often be R
2 or R

3. Such a curve also has
a Bernstein representation,

p(t) =

n
∑

i=0

ciB
n
i (t), ci ∈ R

d. (5)

A polynomial curve expressed in this form is known as a Bezier curve and
the points ci are known as the control points of p. The curve is usually
restricted to the parameter domain (parameter interval) [0, 1], in which case
p is a parametric curve p : [0, 1] → R

d. The polygon formed by connecting
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the sequence of control points c0, c1, . . . , cn is known as the control polygon

of p. To a large extent the shape of a Bezier curve relects the shape of its
control polygon, which is why it is a popular choice for designing geometry in
an interactive graphical environment. As the user moves the control points
interactively, the shape of the Bezier curve tends to change in an intuitive
and predictable way.

Various properties of Bezier curves follow from properties of the Bernstein
polynomials, for example symmetry:

p(t) =

n
∑

i=0

cn−iB
n
i (1 − t).

From (2), we obtain the endpoint property of Bezier curves,

p(0) = c0, p(1) = cn.

Since the Bernstein polynomials sum to one, every point p(t) is an affine

combination of the control points c0, . . . , cn. From this it follows that Bezier
curves are affinely invariant, i.e., if Φ is an affine map in R

d then the mapped
curve Φ(p) has control points Φ(ci). Since the Bernstein polynomials are
non-negative in [0, 1], every point p(t) is a convex combination of the control
points c0, . . . , cn, and therefore, the Bezier curve p (restricted to the parame-
ter domain t ∈ [0, 1]) lies in the convex hull of its control points. By treating
each of the d coordinates of p separately, a similar reasoning shows that p

also lies in the bounding box

[a1, b1] × [a2, b2] × · · · × [ad, bd],

where, if the point ci has coordinates ci1, . . . , cid,

ak = min
0≤i≤n

cik and bk = max
0≤i≤n

cik, k = 1, . . . , d.

Bounding boxes are used in various algorithms, and are easier to compute
than convex hulls.

3 The de Casteljau algorithm

One way of computing a point p(t) of the Bezier curve p is first to evaluate
the Bernstein polynomials Bn

i at the parameter value t, and then to use the
formula (5).
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Another, more direct method, is de Casteljau’s algorithm. We first set
c0

i = ci, and then for each r = 1, . . . , n, let

cr
i = (1 − t)cr−1

i + tcr−1
i+1 , i = 0, 1, . . . , n − r. (6)

The last point computed in this algorithm is the point on the curve:

p(t) = cn
0 .

We can show this by showing more generally that for any r = 1, . . . , n,

p(t) =
n−r
∑

i=0

cr
i B

n−r
i (t). (7)

This equation clearly holds for r = 0, and for r ≥ 1 we use induction on r.
Applying the recursion formula (3) to (7) gives

p(t) =
n−r
∑

i=0

cr
i

(

tBn−r−1
i−1 (t) + (1 − t)Bn−r−1

i (t)
)

=

n−r−1
∑

i=0

(

tcr
i+1 + (1 − t)cr

i

)

Bn−r−1
i (t),

which is (7) with r replaced by r + 1. Like the recursive algorithm for com-
puting Bernstein polynomials, the de Casteljau algorithm can be viewed as
a triangular scheme, here arranged row-wise, with each row being computed
from the row above:

c0
0 c0

1 c0
2 · · · c0

n

c1
0 c1

1 · · · c1
n−1

. . . . .
.

cn−1
0 cn−1

1

cn
0

For example with n = 3, t = 2/3, d = 1 and

[c0 c1 c2 c3] = [4 0 4 18],

the weights in (6) are t = 2/3 and 1 − t = 1/3, and the algorithm has three
steps,

[4 0 4 18] → [4/3 8/3 40/3] → [20/9 88/9] → [196/27].
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4 Derivatives

Differentiation of the expression for the Bernstein polynomial in (1) with
respect to x gives

d

dx
Bn

i (x) = n
(

Bn−1
i−1 (x) − Bn−1

i (x)
)

, (8)

and so if we differentiate the Bezier curve in (5) with respect to its parameter
t we find

p′(t) = n

(

n−1
∑

i=0

ci+1B
n−1
i (t) −

n−1
∑

i=0

ciB
n−1
i (t)

)

. (9)

Thus one way of expressing the derivative is as

p′(t) = n

n−1
∑

i=0

∆ciB
n−1
i (t), (10)

where ∆ denotes the forward difference operator,

∆ci = ci+1 − ci.

This means that the derivative of p is itself a Bezier curve with control points
(which we now view as vectors) n∆ci. For each t ∈ [0, 1], the tangent vector
p′(t) lies in the convex cone of the vectors ∆ci, and by the endpoint property
of Bezier curves,

p′(0) = n∆c0 and p′(1) = n∆cn−1.

An alternative way of expressing the derivative is in terms of the inter-
mediate points (6) of the de Casteljau algorithm. The intermediate point cr

i

depends on t and so we write it as cr
i (t). This point is itself the result of

applying the de Casteljau algorithm at t in r steps to the points ci, . . . , ci+r,
and therefore

cr
i (t) =

r
∑

j=0

ci+jB
r
j (t).

Setting r = n − 1, it follows from (9) that

p′(t) = n
(

cn−1
1 (t) − cn−1

0 (t)
)

= n∆cn−1
0 (t). (11)
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5 Higher derivatives

Applying the derivative formula (10) repeatedly leads to

p(r)(t) =
dr

dtr
p(t) =

n!

(n − r)!

n−r
∑

i=0

∆rciB
n−r
i (t),

for any r = 1, . . . , n, where ∆r is the r-th forward difference operator

∆rci = ∆r−1ci+1 − ∆r−1ci.

At the endpoints of the curve, the r-th derivative depends only on the first
or last r + 1 control points:

p(r)(0) =
n!

(n − r)!
∆rc0 and p(r)(1) =

n!

(n − r)!
∆rcn−r.

Alternatively, in terms of the intermediate de Casteljau points, differen-
tiating (11) repeatedly gives

p(r)(t) =
n!

(n − r)!
∆rcn−r

0 (t).

6 Integration

Integrating the dervative formula (8) with respect to x in [0, 1] gives

Bn
i (1) − Bn

i (0) = n

(
∫ 1

0

Bn−1
i−1 (x) dx −

∫ 1

0

Bn−1
i (x) dx

)

,

and since the left hand side is zero for any i = 1, . . . , n − 1, we deduce that
∫ 1

0

Bn−1
i−1 (x) dx =

∫ 1

0

Bn−1
i (x) dx.

Thus the integral on [0, 1] of each Bernstein polynomial of the same degree is
constant. Since the Bernstein polynomials of degree n sum to one and there
are n + 1 of them,

∫ 1

0

Bn
i (x) dx =

1

n + 1
.

It follows that the integral over t in [0, 1] of the Bezier curve p in (5) is
∫ 1

0

p(t) dt =
c0 + c1 + · · · + cn

n + 1
,

which is the barycentre of the control points c0, . . . , cn.
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7 Conversion to Bezier form

Sometimes we need to convert a polynomial from monomial form to Bezier
form and vice versa.

Suppose we start with the monomial form (4) and want to convert it to
the Bezier form (5). We use the fact that

1 = (1 − t + t)n−i =
n−i
∑

j=0

(

n − i

j

)

tj(1 − t)n−i−j ,

to show that

p(t) =

n
∑

i=0

ai

n−i
∑

j=0

(

n − i

j

)

ti+j(1 − t)n−i−j

=
n
∑

i=0

ai

n
∑

j=i

(

n − i

j − i

)

tj(1 − t)n−j,

=
n
∑

j=0

j
∑

i=0

ai

(

n − i

j − i

)

tj(1 − t)n−j,

and therefore

cj =
1
(

n

j

)

j
∑

i=0

(

n − i

j − i

)

ai.

Conversely, suppose we want to convert the Bezier form (5) to the mono-
mial form (4). To do this, observe that

(1 − t)n−i =
n−i
∑

j=0

(

n − i

j

)

(−1)jtj ,
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and so

p(t) =
n
∑

i=0

ci

(

n

i

) n−i
∑

j=0

(

n − i

j

)

(−1)jti+j

=

n
∑

i=0

ci

(

n

i

) n
∑

j=i

(

n − i

j − i

)

(−1)j−itj,

=

n
∑

j=0

j
∑

i=0

ci

(

n

i

)(

n − i

j − i

)

(−1)j−itj ,

and it follows that

aj =

j
∑

i=0

(

n

i

)(

n − i

j − i

)

(−1)j−ici.

This can alternatively we written as

aj =

j
∑

i=0

(

n

j

)(

j

i

)

(−1)j−ici =

(

n

j

)

∆jc0.
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