
Bezier curves and surfaces

Michael S. Floater

August 25, 2011

These notes continue a study of Bezier curves and introduce tensor-
product Bezier surfaces.

1 Bezier curves on general domains

It is often useful to define a Bezier curve over a parameter domain other than
[0, 1]. We can define a Bezier curve p : [a, b] → R

d for an arbitrary interval
[a, b] by the formula

p(t) =
n

∑

i=0

ciB
n
i (u), ci ∈ R

d, (1)

where

u =
t − a

b − a
, (2)

with control points ci ∈ R
d and Bn

i is, as before, the Bernstein polynomial

Bn
i (x) =

(

n

i

)

xi(1 − x)n−i.

Many of the properties of this more general Bezier curve are similar to
those of the canonical one in which a = 0, b = 1. For example, the endpoint
property is now

p(a) = c0, p(b) = cn.

The de Casteljau algorithm is similar to before, but is now, with c0
i = ci,

cr
i = (1 − u)cr−1

i + ucr−1
i+1 , i = 0, 1, . . . , n − r,

1



yielding p(t) = cn
0 .

Differentation and integration can be dealt with by the chain rule. Since

d

dt
=

1

L

d

du
,

where
L = b − a,

differentiating (1) results in the formula

p′(t) =
n

L

n−1
∑

i=0

∆ciB
n−1
i (u).

Or, treating the de Casteljau point cr
i as a function of t,

p′(t) =
n

L

(

cn−1
1 (t) − cn−1

0 (t)
)

=
n

L
∆cn−1

0 (t).

Similarly, the r-th derivative is

p(r)(t) =
n!

(n − r)!Lr

n−r
∑

i=0

∆rciB
n−r
i (u),

with the special cases

p(r)(a) =
n!

(n − r)!Lr
∆rc0 and p(r)(b) =

n!

(n − r)!Lr
∆rcn−r, (3)

or in terms of the de Casteljau points,

p(r)(t) =
n!

(n − r)!Lr
∆rcn−r

0 (t).

The integral formula becomes

∫ b

a

p(t) dt = L
c0 + c1 + · · ·+ cn

(n + 1)
.

2



2 Joining curves together

If we tried to model a complex curve with a single Bezier curve we would
need a polynomial of high degree. It is easier in practice to create complex
geometry by joining together several Bezier curves, each with relatively low
degree. Degrees such as two and three often (though not always) provide
enough flexibility. Due to the Bernstein basis, the conditions for joining
Bezier curves together smoothly are quite simple: they would not be so
simple if we used the monomial basis for example.

Suppose we restrict the Bezier curve p in (1) to the parameter interval
[a, b] and we want to join to it a second Bezier curve, q, defined on the
adjacent interval [b, c], i.e.,

q(t) =
n

∑

i=0

diB
n
i (v), di ∈ R

d,

where

v =
t − b

c − b
.

We would like the composite curve

s(t) :=

{

p(t), a ≤ t < b;

q(t), b ≤ t < c;

to be at least continuous at the breakpoint t = b. For s to be continuous, we
require that q(b) = p(b), which, by the endpoint property of Bezier curves
is simply the condition

d0 = cn. (4)

How do we make p and q join with higher orders of smoothness (continuity)?
The curves p and q join with continuity of order k at t = b, written Ck, if

q(r)(b) = p(r)(b) for all r = 0, 1, . . . , k.

This is equivalent to saying that s is Ck at t = b. From equation (3) this
condition is equivalent to

∆rd0

(c − b)r
=

∆rcn−r

(b − a)r
, r = 0, 1, . . . , k. (5)

3



For example, the condition for C1 smoothness is (4) combined with

d1 − d0

c − b
=

cn − cn−1

b − a
.

This equation and (4) uniquely determine the two points d0 and d1 from the
points cn and cn−1,

d0 = cn, d1 = (1 − µ)cn−1 + µcn, (6)

where

µ =
c − a

b − a
.

The coefficient µ is easy to remember because it is the ‘coordinate’ of c with
respect to the interval [a, b], analogous to u being the coordinate of t in (2).
Notice, however, that while both coefficients u and 1−u are non-negative in
(2) for t ∈ [a, b], the coefficient (1 − µ) in (6) is negative because c > b.

After a lengthier calculation using r = 2 in (5) it can be shown that the
condition for C2 continuity can be expressed as the two equations in (6) plus
the equation

d2 = (1 − µ)2cn−2 + 2(1 − µ)µcn−1 + µ2cn.

We will derive this equation in a different way later.

3 Tensor-product spaces

If we take the tensor-product of the two vector spaces of polynomials πm and
πn, we obtain a new vector space

πm,n = πm ⊗ πn.

This space contains all polynomials of two variables whose degree in the
first variable is at most m and in the second at most n. A basis for these
bivariate polynomials can be constructed by taking products of bases for πm

and πn. For example, the monomial bases for π2 and π1 are {1, x, x2} and
{1, y} respectively, so that a basis for π2,1 is

{1, x, x2, y, xy, x2y}.

4



Thus a polynomial in πm,n can be expressed in the form

p(x, y) =
m

∑

i=0

n
∑

j=0

ai,jx
iyj.

An alternative representation is to use products of Bernstein polynomials,

p(x, y) =
m

∑

i=0

n
∑

j=0

ci,jB
m
i (x)Bn

j (y).

4 Tensor-product Bezier surfaces

We define a tensor-product Bezier surface in R
d as a parametric polynomial

surface p : [a1, b1] × [a2, b2] → R
d by the formula

p(s, t) =
m

∑

i=0

n
∑

j=0

ci,jB
m
i (u)Bn

j (v), ci,j ∈ R
d, (7)

where

u =
s − a1

b1 − a1
, v =

t − a2

b2 − a2
. (8)

In practice, the Euclidean space R
d will usually be R

3. The control net of
p is the network of points and line segments consisting of the control points
ci,j and all line segments of the form [ci,j, ci+1,j] and [ci,j, ci,j+1].

Bezier surfaces have various properties, some analogous to Bezier curves.
On each of the four boundaries of the parameter domain [a1, b1]× [a2, b2] the
surface p is a Bezier curve whose control polygon is one of the four boundaries
of the control net of p. For example,

p(s, a2) =

m
∑

i=0

ci,0B
m
i (u).

At the corners of the parameter domain, the surface equals one of the corner
control points, for example

p(a1, a2) = c0,0.

Since the tensor-product Bernstein polynomials

Bi,j = Bm
i ⊗ Bn

j ,

5



sum to one:

m
∑

i=0

n
∑

j=0

Bi,j(u, v) =

m
∑

i=0

n
∑

j=0

Bm
i (u)Bn

j (v) =

m
∑

i=0

Bm
i (u)

n
∑

j=0

Bn
j (v) = 1,

every point p(s, t) is an affine combination of the control points ci,j and so
Bezier surfaces are affinely invariant. Since the Bi,j are also non-negative in
[0, 1], the surface p also has the convex hull and bounding box poperties.

5 The de Casteljau algorithm

Given a parameter pair (s, t) ∈ [a1, b1] × [a2, b2], one way of computing the
point p(s, t) is to evaluate the Bernstein polynomials Bm

i and Bn
j at u and

v respectively and then apply the formula (7). Alternatively one can apply
de Casteljau’s algorithm to the rows of points in the control net, in each of
the two directions. We apply m steps of the algorithm with respect to u and
n with respect to v. The last point generated will be the point p(s, t) no
matter how we order these m + n steps. Consider an example. Let m = 2,
n = 3, and





c00 c01 c02 c03

c10 c11 c12 c13

c20 c21 c22 c23



 =





0 0 0 6
18 2 0 8
4 0 4 18



 ,

and suppose that u = 1/2 and v = 2/3 in (8). Applying de Castlejau’s
algorithm first with respect to u gives





0 0 0 6
18 2 0 8
4 0 4 18



 →

[

9 1 0 7
11 1 2 13

]

→
[

10 1 1 10
]

.

Then, applying the algorithm with respect to v gives

[

10 1 1 10
]

→
[

4 1 7
]

→
[

2 5
]

→
[

4
]

,

so that p(s, t) = 4. Alternatively, we could apply the algorithm first with
respect to v, giving





0 0 0 6
18 2 0 8
4 0 4 18



 →





0 0 4
22/3 1/3 16/3
1/3 8/3 40/3



 →





0 8/3
26/9 34/9
20/9 88/9



 →





16/9
94/27
196/27



 ,

6



and then with respect to u,





16/9
94/27
196/27



 →

[

71/27
145/27

]

→
[

4
]

.

7


