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Abstract

These notes provide an introduction to the subdivision rules for
uniform splines, including the Chaikin algorithm. We also explain the
Lane-Reisenfeld algorithm.

1 Introduction

One way of defining uniform B-splines is recursively as follows. The B-spline
N? is the function
1 0<z<1;
N()=q =0 1)
0 otherwise,

and for d > 1, the B-spline N is defined as

Ni(z) = /0 1 Nz — t) dt. 2)

We see that N is non-negative, piecewise-constant, with support [0,1]. For
general d, one can show by induction on d that N¢ is a non-negative, piecewise
polynomial of degree d, of smoothness C%! at the breakpoints (‘knots’)
0,1,...,d+ 1, and has support [0,d 4+ 1]. One can also show by induction

that -
/ N(z)dx =1,

ZNd(:c—i) =1

1€Z

and



The B-splines of degree 1 and 2 are

T 0<z<1;
N (z)=42—2z 1<z<2 (3)
0 otherwise,
and ,
3 0<z<1;
3 2
-5+ 3x — 1<x<2;
NZ(x): 12+ Tr—T <z : (4)
5(=3+2)? 2<z<3;
0 otherwise.

Another way of expressing (2) is clearly as
N(z) = / NOMND (z — £) dt.

Thus, if we recall that the convolution p®q of two functions p and ¢ is defined
as

(r®)(x) = / ()l — ) dt,

we can express (2) simply as
N4 =N®@ N* 1, (5)
Thus N¢ is the d-fold convolution of N° with itself:

Nd:g\f(]@NO@.-.@N(j.
a1

2 Subdivision

A uniform spline is any linear combination of integer translates of a B-spline
of a certain degree. Thus,

s(x) =Y N — i) (6)
i€Z
is a spline, which is clearly a piecewise polynomial of degree d, with smooth-

ness C“~!. The breakpoints, or knots, of s are the integers because the trans-
lated B-spline N¢(z —1i) has knots at the integers in its support, [i,4+d+1].
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Notice that for a fixed degree d, the spline s is completely determined by
its coefficient vector
c=(...,c_1,c0,c,...)".
The idea of subdivision is to represent the spline s in terms of the scaled

B-splines N¢(2z — i) whose knots are at the half-integers. The support of
N2z —1i)is [i/2, (i +d+1)/2]. We would like to find the coefficients b; such

that
= biNY(2z —1i). (7)
1€EL
To do this we will establish the refinement relation
Né(z) = Z SN2z — ). (8)
i€Z
In fact, by considering the supports of the B-splines in this equation it is

clear that we must have s¢ = 0 for i < 0 and i > d + 1, and so if (8) holds

we must have
d+1

N(z) = sIN* 2z —i).
=0
Assuming for the time being that (8) holds, let us see how we can use it
to find the coefficients b; from the coefficients ¢;. Starting from (6) we have

s(z) = Zc]Nd z—Jj) ZC]Z SN (2(x — j) — 1)
—Zc] s 2]Nd(Qx—z)
—ZZ s¢ 2jc]Nd 2x — 1)

and equating this with (7), and using the fact that the B-splines N(2z — i)
are linearly independent, we can equate coefficients, giving

d
bi = Z Si— 2]0] (9)
J
This formula tells us how to convert the coarse representation of s in (6) to

the finer representation in (7). If, like the coarse coefficients we arrange the
fine coefficients in a column vector

b= (...,bfl7b07b17"')T’
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we can express (9) in vector and matrix notation as
b = S’.

The matrix

§¢ = (S?f2j)ij7
which is infinite in both dimensions, is known as the subdivision matriz. The
subdivision scheme (9) can be split into two parts, for coefficients b; with

even and odd indices. We find

bi = Z Sg(i—j)cj = Z sT0iCi = Z S5;Cid: (10)
j

J J
and
boiy1 = Z Sg(i—j)-{-lcj = Z Si2j+1cj+i = Z ng+1cifj- (11)
J J J
So
by = spei + sjci + - (12)
b2i+1 = ScllCi + Sgci—l + - (13)

3 The refinement relation

It is easy to see from (1) that
N%(x) = N°(2z) + N°(2z — 1), (14)

and using (3) a simple calculation shows that
1 1
N'(x) = 5Nl(2:c) + N2z — 1) + §N1(2x —2). (15)

Thus s = s{ =1 and s} = 1/2, s} = 1, and s3 = 1/2. We will derive the
general formula for s¢ using the recurrence relation (2). We do this by first
showing how the coefficients of degree d relate to those of degree d — 1.

Lemma 1 If the refinement relation (8) holds for degree d — 1 with coeffi-
cients s then it also holds for degree d and the coefficients are



Proof. Using (8), we have
1
Ni(z) = / D SN2 — 1) — i) dt
0 -

=> st /1 N2z —t) —4) dt.

But
1
/Nd—1(2(x—t)—z')dt
o1 ,
25/ NN 22 —u — i) du
1 - 2
:5(/ Nd_1(2x—u—i)du+/ Nd_l(Z:E—u—i)du)
0 1
1
:5/ (NT' 2z —u—i)du+ N""' 2z —u—1i—1)) du
0
1
=5 (N*(2x — i) + N2z —i — 1)),
and so

Ni(z) = % > s (NY2a — i) + N2z — i — 1))

i

1
=3 D (s 4 s )N (22 — ).

i

Iterating the formula of Lemma 1 from s) = s = 1 immediately gives

Theorem 1 The refinement relation (8) holds with coefficients

1 /d+1
g (*,
1

‘=5 ) 0<i<d+1.



d

i

The first few examples, with s? = (s

s =(1,1),
1 1

sl _717_ )
2 2

, (1331

s T =\\—-,—, -,
4'4°4°4)"

, (11311

s ==, =,—, =, = .
8727472’

Corresponding to these, the first few subdivision matrices are

); are

S0 =

co~Rr—, OO -
I e =R ==
coococo o -

nn

2

I
oo o owe -
O ONI- == .

N elNolNeoll S

NI == O O
N O O O O -

O O O Orimelw -
O OB ok o= -
Bln—= O O O O
N
[3¢)
I
O O Ol
O 0N [
o NN [o0 = .
C NE0R O O .

R EA ORI O O -

The Lane-Riesenfeld algorithm is an elegant way of implementing the
subdivision scheme and follows from Lemma 1. In this algorithm we initially
set

0 _ 10 _ .
by; = b2i+1 = G,

and then, for k =1,...,d, we let
b = (0 + ) /2.

Then b; = b¢ is the required coefficient.
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We can also view this algorithm in terms of matrices. The subdivision
matrix can be expressed as

ST=AA-.-AS°,
d

where A is the ‘averaging’ matrix

I

I
O Ol .
O N[N .
- NI O .
NIk O O -

and we can view S° as a ‘doubling’ matrix. Thus to compute the new co-
efficients b from the old, c, one first applies S° to ¢, which has the effect
of ‘doubling’ the coefficients in ¢, and one then applies the matrix A, which
replaces all points by their mid-points, d times.

4 Convergence

Suppose now that starting from a spline
s(x) =) eINUx — i),

we apply several steps of subdivision. If we subdivide s once, we obtain the
finer representation

s(x) = Z et N2z — i),

where

1_ } : d 0
J

with s¢ given by Theorem 1. We can continue in this way, subdividing again
and again, so that in general

s(z) = Z N2k w — i),



where

kE_ d k-1
c; = E CHIDH G
J

At each level of subdivision, k, we can form a polygon p,, a piecewise
linear function with the value cf at the point 27%i. It can be shown that the
sequence of polygons (p), converges to s, i.e.,

s(z) = klim pr(x), z € R.
This provides a way of plotting the spline s. After a few steps of subdivision,
we simply plot the polygon p. If k is large enough, p, will appear to be a
smooth function.



