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Abstract

These notes provide an introduction to the interpolation of points
and sometimes derivatives by polynomials and splines.

1 Lagrange interpolation

We sometimes want to interpolate a sequence of points Xg, X, . .., X, in R?
with a smooth curve. One way to do this is to fit a polynomial. If the points
are sampled from some parametric curve f in sequence, the parameter values
to,t1, ..., ty, with t; < t;11, such that x; = f(¢;) may be available. Otherwise
we have to choose suitable parameter values. In either case, once the t; are
determined, we look for the polynomial p of degree < n that satisfies the
interpolation conditions

p(ti):Xz’7 i:O,l,...,n.

In fact p is uniquely determined by these conditions. If we express p in the
form

pi) = > at), &

we see that there are n + 1 unknowns a; and the interpolation conditions
provide n+ 1 equations. These equations can be written as the linear system

1 to tg cee tg ap Xo
1 tl t% s t? ap X1
1 t, t2 - " |a, X,



The matrix on the left is known as the Vandermonde matrix and it can be
shown that its determinant is

IT &-).

0<i<j<n

which is clearly positive and therefore non-zero. Thus the matrix is non-
singular and there is a unique interpolant p.

In a modelling context, we might want to find the interpolating polyno-
mial in some Bezier representation, such as

p(t) = >, Bi(1) @

We could find the c; by first finding the a; and then converting the monomial
form (1) to the Bezier form (2), or solve directly for the c;, which means
solving the linear system

By (to) Bi(te) Bi(te) --- Bh(to)| |co Xo
By(ty) Bi(ti) Bi(ti) --- Bp(t)| [er]|  |x
Bg(tn> B{L@n) Bg@ﬂ) T B:zl(tn) Cn Xn

If it is not important how we represent p we can avoid solving a linear
system by representing p in the Lagrange basis. The i-th Lagrange function
is the polynomial

L
Li(t):Ht‘_tjl, i=0,1,...,n,
i J

<
= O

<

which evidently has the property that L;(t;) = 1 and L;(tx) = 0 if k& # i.
Hence the interpolating polynomial is simply

p(t) = inLi(t).



2 Hermite interpolation

It is often desirable to find an interpolating curve that also matches derivative
data. This is known as Hermite interpolation. An important special case is
to interpolate f and all its derivatives up to some order k at two points. If
the corresponding parameter values are a and b, this means finding p such
that

p?(a) =fD(a) and p®(b) =D (), i=0,1,.... k.

These conditions determine the polynomial p uniquely if its degree is at most
n = 2k + 1. The Bezier representation,

p(t) = D¢} (u), )

where v = (t —a)/(b — a), is in this case quite convenient and easy to find.
In Chapter 2 we saw that

_ ! A'c , n!  Alc,_;
(@) — n 0 d (%) b) = n—i 4
PO = hin—a ™ PO W
Therefore, we need to find the coefficients cq, ..., c, such that

AiCO :bi7 AiCn_i :bn—i7 ’iZO,l,...,k,

where

b, = (n;i)!(b — a)'t9(a),

by ;e U — Dy~ ayie o (b).

One can show that the solutions are

For example, in the cubic case, with £ =1 and n = 3,

Co bo f(a)

| _ |bo+bi| _ |f(a)+(b—a)f(a)/3 )
co by — by £(b) — (b— a)f'(b)/3| -

cs by £(b)



3 Piecewise cubic Hermite interpolation

An alternative to using polynomials for interpolation is to use piecewise poly-
nomials, which are better suited when the number of interpolation conditions
is high. For example, we can interpolate points x; = f(¢;) and first deriva-
tives m; = f'(¢;), where ty < t; < -+ < t,, with a piecewise cubic curve s
with parameter domain [ty,t,] and C' continuity by fitting a cubic to each
consecutive pair of data. One way of representing the individual cubics is in
Bernstein form. Thus, for t € [t;,t;11], we let s(t) = s;(t), where

s(t) = > e;B)(u), (6)

and, using (5),

Co X;

C1 _ X; + hlmz/?) (7)
(o Xit1 — him /3|

C3 Xi+1

If the slopes m; are not known, it is usual to estimate them from the
points x; nearby. For example, a common choice is to set
Xit1 — X
mizu, 1=1,...,n—1.
tit1 — tia
This is a good approximation to f'(¢;) when the ¢; are uniformly spaced.
At the endpoints, a one-sided approximation is necessary, and we could, for

example, set
X1 — Xp Xp — Xp—1

my = , m,=—.
T —t " by =t

4 Cubic spline interpolation

An alternative way of choosing the interior slopes my, ..., m,_; is to deter-
mine them in such a way that the piecewise cubic curve s has C? continuity
at the corresponding breakpoints. i.e.,

s'(t) =s! | (t), i=1,....n—1. (8)

(2



It turns out that this system of n—1 equations in the unknowns my, ..., m,_;
has a unique solution. To see this, observe that applying the derivative
formulas to the Bezier curve s; in (6) gives
6 6
S;/(tz) = ?ACO, S;/(tzqu) = ?Acl,
2 :

)

with the c; given by (7). Thus the equation in (8) can be expressed as
him;_y +2(hi—y + hy)m; + h;_ym,y, = by,

where ) .
b, =3 —Ax; ; + —LAx; | .
<h@-1 Y

This gives us the linear system of equations

_51 4! 171 my ] [ by — himg

ay o V2 my b,

g Pn—2 TYn—2 my o b,_2
| Op—1 ﬁn—l i _mn—l_ bn—l - hn—Zmn_

where o; = h;, B; = 2(hi—1 + h;), and 7; = h;_1. This is a tridiagonal system
that is strictly diagonally dominant, and therefore has a unique solution.

An alternative method of finding the C? cubic spline interpolant s is to
represent it in terms of cubic B-splines. The number of B-splines we need
is 4 for the first interval [to, ¢1], plus 1 for each subsequent interval [¢;,¢;11],
giving a total of n + 3. We find that s can be expressed as

n+3

s(t) = Zc@-Nf(t),

with respect to the knot vector
= (T, Tosr) = (tosto, tos tos by -+ o s bnety Es bty ).
Then the conditions
s(t;) = x;, 1=0,1,...,n,

and
S,(tO) = Iy, S/(tn) = 1My,

give n + 3 equations in the n + 3 unknowns cy, ..., c, 3. The equations are
again linear and form a tridiagonal system which has a unique solution.



