
Interpolation by polynomials and splines

Michael S. Floater

September 30, 2011

Abstract

These notes provide an introduction to the interpolation of points

and sometimes derivatives by polynomials and splines.

1 Lagrange interpolation

We sometimes want to interpolate a sequence of points x0,x1, . . . ,xn in R
d

with a smooth curve. One way to do this is to fit a polynomial. If the points
are sampled from some parametric curve f in sequence, the parameter values

t0, t1, . . . , tn, with ti < ti+1, such that xi = f(ti) may be available. Otherwise
we have to choose suitable parameter values. In either case, once the ti are
determined, we look for the polynomial p of degree ≤ n that satisfies the
interpolation conditions

p(ti) = xi, i = 0, 1, . . . , n.

In fact p is uniquely determined by these conditions. If we express p in the
form

p(t) =
n

∑

j=0

ajt
j , (1)

we see that there are n + 1 unknowns aj and the interpolation conditions
provide n+1 equations. These equations can be written as the linear system











1 t0 t20 · · · tn0
1 t1 t21 · · · tn1
...

...
1 tn t2n · · · tnn





















a0

a1
...
an











=











x0

x1
...

xn











.

1



The matrix on the left is known as the Vandermonde matrix and it can be
shown that its determinant is

∏

0≤i<j≤n

(tj − ti),

which is clearly positive and therefore non-zero. Thus the matrix is non-
singular and there is a unique interpolant p.

In a modelling context, we might want to find the interpolating polyno-
mial in some Bezier representation, such as

p(t) =

n
∑

j=0

cjB
n
i (t). (2)

We could find the cj by first finding the aj and then converting the monomial
form (1) to the Bezier form (2), or solve directly for the cj , which means
solving the linear system











Bn
0 (t0) Bn

1 (t0) Bn
2 (t0) · · · Bn

n(t0)
Bn

0 (t1) Bn
1 (t1) Bn

2 (t1) · · · Bn
n(t1)

...
...

Bn
0 (tn) Bn

1 (tn) Bn
2 (tn) · · · Bn

n(tn)





















c0

c1
...
cn











=











x0

x1
...

xn











.

If it is not important how we represent p we can avoid solving a linear
system by representing p in the Lagrange basis. The i-th Lagrange function
is the polynomial

Li(t) =
n

∏

j=0
j 6=i

t − tj
ti − tj

, i = 0, 1, . . . , n,

which evidently has the property that Li(ti) = 1 and Li(tk) = 0 if k 6= i.
Hence the interpolating polynomial is simply

p(t) =

n
∑

i=0

xiLi(t).

2



2 Hermite interpolation

It is often desirable to find an interpolating curve that also matches derivative
data. This is known as Hermite interpolation. An important special case is
to interpolate f and all its derivatives up to some order k at two points. If
the corresponding parameter values are a and b, this means finding p such
that

p(i)(a) = f (i)(a) and p(i)(b) = f (i)(b), i = 0, 1, . . . , k.

These conditions determine the polynomial p uniquely if its degree is at most
n = 2k + 1. The Bezier representation,

p(t) =
n

∑

j=0

cjB
n
j (u), (3)

where u = (t − a)/(b − a), is in this case quite convenient and easy to find.
In Chapter 2 we saw that

p(i)(a) =
n!

(n − i)!

∆ic0

(b − a)i
and p(i)(b) =

n!

(n − i)!

∆icn−i

(b − a)i
. (4)

Therefore, we need to find the coefficients c0, . . . , cn such that

∆ic0 = bi, ∆icn−i = bn−i, i = 0, 1, . . . , k,

where

bi :=
(n − i)!

n!
(b − a)if (i)(a),

bn−i :=
(n − i)!

n!
(b − a)if (i)(b).

One can show that the solutions are

ci =

i
∑

j=0

(

i

j

)

bj , cn−i =

i
∑

j=0

(−1)j

(

i

j

)

bn−j.

For example, in the cubic case, with k = 1 and n = 3,








c0

c1

c2

c3









=









b0

b0 + b1

b3 − b2

b3









=









f(a)
f(a) + (b − a)f ′(a)/3
f(b) − (b − a)f ′(b)/3

f(b)









. (5)

3



3 Piecewise cubic Hermite interpolation

An alternative to using polynomials for interpolation is to use piecewise poly-
nomials, which are better suited when the number of interpolation conditions
is high. For example, we can interpolate points xi = f(ti) and first deriva-
tives mi = f ′(ti), where t0 < t1 < · · · < tn, with a piecewise cubic curve s

with parameter domain [t0, tn] and C1 continuity by fitting a cubic to each
consecutive pair of data. One way of representing the individual cubics is in
Bernstein form. Thus, for t ∈ [ti, ti+1], we let s(t) = si(t), where

si(t) =
3

∑

j=0

cjB
3
j (u), (6)

and, using (5),








c0

c1

c2

c3









=









xi

xi + himi/3
xi+1 − himi+1/3

xi+1









, (7)

with hi = ti+1 − ti and u = (t − ti)/hi.
If the slopes mi are not known, it is usual to estimate them from the

points xj nearby. For example, a common choice is to set

mi =
xi+1 − xi−1

ti+1 − ti−1
, i = 1, . . . , n − 1.

This is a good approximation to f ′(ti) when the ti are uniformly spaced.
At the endpoints, a one-sided approximation is necessary, and we could, for
example, set

m0 =
x1 − x0

t1 − t0
, mn =

xn − xn−1

tn − tn−1
.

4 Cubic spline interpolation

An alternative way of choosing the interior slopes m1, . . . ,mn−1 is to deter-
mine them in such a way that the piecewise cubic curve s has C2 continuity
at the corresponding breakpoints. i.e.,

s′′i (ti) = s′′i−1(ti), i = 1, . . . , n − 1. (8)

4



It turns out that this system of n−1 equations in the unknowns m1, . . . ,mn−1

has a unique solution. To see this, observe that applying the derivative
formulas to the Bezier curve si in (6) gives

s′′i (ti) =
6

h2
i

∆c0, s′′i (ti+1) =
6

h2
i

∆c1,

with the cj given by (7). Thus the equation in (8) can be expressed as

himi−1 + 2(hi−1 + hi)mi + hi−1mi+1 = bi,

where

bi = 3

(

hi

hi−1
∆xi−1 +

hi−1

hi

∆xi

)

.

This gives us the linear system of equations














β1 γ1

α2 β2 γ2

. . .
. . .

. . .

αn−2 βn−2 γn−2

αn−1 βn−1





























m1

m2
...

mn−2

mn−1















=















b1 − h1m0

b2
...

bn−2

bn−1 − hn−2mn















,

where αi = hi, βi = 2(hi−1 + hi), and γi = hi−1. This is a tridiagonal system
that is strictly diagonally dominant, and therefore has a unique solution.

An alternative method of finding the C2 cubic spline interpolant s is to
represent it in terms of cubic B-splines. The number of B-splines we need
is 4 for the first interval [t0, t1], plus 1 for each subsequent interval [ti, ti+1],
giving a total of n + 3. We find that s can be expressed as

s(t) =
n+3
∑

i=1

ciN
3
i (t),

with respect to the knot vector

τ = (τ1, . . . , τn+7) = (t0, t0, t0, t0, t1, . . . , tn−1, tn, tn, tn, tn).

Then the conditions

s(ti) = xi, i = 0, 1, . . . , n,

and
s′(t0) = m0, s′(tn) = mn,

give n + 3 equations in the n + 3 unknowns c1, . . . , cn+3. The equations are
again linear and form a tridiagonal system which has a unique solution.

5


