Spline curves

Michael S. Floater

September 20, 2011

In this lecture we introduce spline curves and study some of their basic properties.

1 Spline curves

For any integers $d \geq 0$ and $n \geq 1$, we call a sequence $\left(t_{1}, t_{2}, \ldots, t_{n+d+1}\right)$, $t_{i} \in \mathbb{R}$, a knot vector if $t_{i} \leq t_{i+1}$ and $t_{i}<t_{i+d+1}$. Such a sequence of knots together with a sequence of control points $\mathbf{c}_{i} \in \mathbb{R}^{m}, i=1, \ldots, n$, define a spline curve

$$
\begin{equation*}
\mathbf{s}(t)=\sum_{i=1}^{n} \mathbf{c}_{i} N_{i}^{d}(t), \quad t \in \mathbb{R} \tag{1}
\end{equation*}
$$

where the functions N_{i}^{d} are B-splines. These B-splines can be defined recursively:

$$
N_{i}^{0}(t)= \begin{cases}1 & t \in\left[t_{i}, t_{i+1}\right) \tag{2}\\ 0 & \text { otherwise }\end{cases}
$$

and for $d \geq 1$,

$$
\begin{equation*}
N_{i}^{d}(t)=\frac{t-t_{i}}{t_{i+d}-t_{i}} N_{i}^{d-1}(t)+\frac{t_{i+d+1}-t}{t_{i+d+1}-t_{i+1}} N_{i+1}^{d-1}(t) . \tag{3}
\end{equation*}
$$

We use the convention here that

$$
N_{i}^{r-1}=\frac{N_{i}^{r-1}}{t_{i+r}-t_{i}}=0, \quad \text { if } t_{i+r}=t_{i} .
$$

From this recursion it follows that N_{i}^{d} is a piecewise polynomial of degree d, which is positive in $\left(t_{i}, t_{i+d+1}\right)$ and zero outside $\left[t_{i}, t_{i+d+1}\right]$.

2 Evaluation

Similar to Bezier curves, there are two ways of evaluating a spline curve. One way is to use the recursion (3) and then the formula (1). Suppose $t \in\left[t_{k}, t_{k+1}\right)$. Then,

$$
\mathbf{s}(t)=\sum_{i=k-d}^{k} \mathbf{c}_{i} N_{i}^{d}(t)
$$

and we only need to compute $N_{k-d}^{d}(t), \ldots, N_{k}^{d}(t)$, for all the other B-splines are zero in $\left[t_{k}, t_{k+1}\right)$. The recursion (3) can then be carried out in a triangular scheme,

$$
\begin{array}{ccccc}
1=\begin{array}{ccc}
N_{k}^{0} & N_{k-1}^{1} & N_{k-2}^{2} \\
& N_{k}^{1} & N_{k-1}^{2} \\
& & \cdots \\
& & N_{k}^{2} \\
& \cdots & N_{k-d}^{d} \\
& & \\
k-d+1 \\
& & \\
& & \\
& & \\
& & \\
& & N_{k}^{d}
\end{array} .
\end{array}
$$

Alternatively, one can use a more direct recursion algorithm. Let $\mathbf{c}_{i}^{0}=\mathbf{c}_{i}$, $i=k-d, \ldots, k$. Then for $r=1, \ldots, d$, and $i=k-d+r, \ldots, k$, let

$$
\begin{equation*}
\mathbf{c}_{i}^{r}=\frac{t_{i+d+1-r}-t}{t_{i+d+1-r}-t_{i}} \mathbf{c}_{i-1}^{r-1}+\frac{t-t_{i}}{t_{i+d+1-r}-t_{i}} \mathbf{c}_{i}^{r-1} . \tag{4}
\end{equation*}
$$

One can show that the last point computed is the point on the curve, $\mathbf{c}_{k}^{d}=$ $\mathbf{s}(t)$. Similar to the de Casteljau algorithm, this can be shown by showing, more generally, by induction on r, that

$$
\begin{equation*}
\mathbf{s}(t)=\sum_{i=k-d+r}^{k} \mathbf{c}_{i}^{r} N_{i}^{d-r}(t) . \tag{5}
\end{equation*}
$$

This algorithm can also be arranged in a triangular scheme, here row-wise,

$$
\begin{array}{ccccccc}
\mathbf{c}_{k-d}^{0} & & \mathbf{c}_{k-d+1}^{0} & & \mathbf{c}_{k-d+2}^{0} & & \cdots \\
\mathbf{c}_{k-d+1}^{1} & & \mathbf{c}_{k-d+2}^{1} & & & & \mathbf{c}_{k}^{0} \\
& \ddots & & & & \mathbf{c}_{k}^{1}
\end{array}
$$

3 Control points from the polar form

In analogy to Bezier curves we can express control points of spline curves in terms of polar forms. Recall that the d-variate polar form $\mathcal{P}[p]\left(x_{1}, \ldots, x_{d}\right)$ of the polynomial

$$
\begin{equation*}
p(x)=\sum_{i=0}^{d} a_{i} x^{i}, \quad a_{i} \in \mathbb{R}, \tag{6}
\end{equation*}
$$

is

$$
\mathcal{P}[p]\left(x_{1}, \ldots, x_{d}\right)=\sum_{i=0}^{d} a_{i} S_{i}\left(x_{1}, \ldots, x_{d}\right),
$$

where S_{i} is the symmetric polynomial

$$
\begin{equation*}
S_{i}\left(x_{1}, \ldots, x_{d}\right)=\sum_{1 \leq k_{1}<k_{2}<\cdots<k_{i} \leq d} x_{k_{1}} x_{k_{2}} \cdots x_{k_{i}} /\binom{d}{i} . \tag{7}
\end{equation*}
$$

Consider again the spline curve \mathbf{s} restricted to some non-empty interval $\left[t_{k}, t_{k+1}\right)$. In this interval \mathbf{s} is a polynomial which we can denote by \mathbf{s}_{k},

$$
\mathbf{s}_{k}(t)=\sum_{i=k-d}^{k} \mathbf{c}_{i} N_{i}^{d}(t), \quad t \in\left[t_{k}, t_{k+1}\right)
$$

Theorem 1 For $i=k-d, \ldots, k$,

$$
\mathbf{c}_{i}=\mathcal{P}\left[\mathbf{s}_{k}\right]\left(t_{i+1}, \ldots, t_{i+d}\right)
$$

To prove this let

$$
\mathbf{c}_{i}^{r}=\mathcal{P}\left[\mathbf{s}_{k}\right](t_{i+1}, \ldots, t_{i+d-r}, \underbrace{t, \ldots, t}_{r}) .
$$

Since $\mathcal{P}\left[\mathbf{s}_{k}\right]$ is multi-affine and symmetric, and since

$$
t=(1-\alpha) t_{i}+\alpha t_{i+d-r+1},
$$

where

$$
\alpha=\frac{t-t_{i}}{t_{i+d-r+1}-t_{i}},
$$

it follows that \mathbf{c}_{i}^{r} satisfies the recursion (4). Therefore,

$$
\mathbf{c}_{k}^{d}=\sum_{i=k-d}^{k} \mathbf{c}_{i}^{0} N_{i}^{d}(t)
$$

and so, by the diagonal property of $\mathcal{P}\left[\mathbf{s}_{k}\right]$,

$$
\mathbf{s}_{k}(t)=\sum_{i=k-d}^{k} \mathbf{c}_{i}^{0} N_{i}^{d}(t)=\sum_{i=k-d}^{k} \mathcal{P}\left[\mathbf{s}_{k}\right]\left(t_{i+1}, \ldots, t_{i+d}\right) N_{i}^{d}(t) .
$$

Moreover, this equation also shows that any polynomial of degree $\leq d$ in the interval $\left[t_{k}, t_{k+1}\right)$ can be expressed as a linear combination of the polynomials $N_{k-d}^{d}, \ldots, N_{k}^{d}$, and since there are $d+1$ of these, it follows that $N_{k-d}^{d}, \ldots, N_{k}^{d}$, when restricted to $\left[t_{k}, t_{k+1}\right)$, form a basis for π_{d}. Hence the theorem follows.

4 Derivatives and smoothness

Some simple calculations show that from (7),

$$
S_{i}\left(x_{1}, \ldots, x_{d-1}, b\right)-S_{i}\left(x_{1}, \ldots, x_{d-1}, a\right)=(b-a) \frac{i}{d} S_{i-1}\left(x_{1}, \ldots, x_{d-1}\right)
$$

and therefore, since

$$
\begin{equation*}
p^{\prime}(x)=\sum_{i=1}^{d} i a_{i} x^{i-1} \tag{8}
\end{equation*}
$$

we deduce that

$$
\mathcal{P}[p]\left(x_{1}, \ldots, x_{d-1}, b\right)-\mathcal{P}[p]\left(x_{1}, \ldots, x_{d-1}, a\right)=(b-a) \frac{1}{d} \mathcal{P}\left[p^{\prime}\right]\left(x_{1}, \ldots, x_{d-1}\right)
$$

which gives a formula for the polar form of the first derivative p^{\prime} in terms of the polar form of p, for any $b \neq a$.

Consider again the first derivative of the spline segment \mathbf{s}_{k}. Since it is a polynomial of degree $\leq d-1$, there must be coefficients $\mathbf{d}_{k-d+1}, \ldots, \mathbf{d}_{k}$ such that

$$
\mathbf{s}_{k}^{\prime}(t)=\sum_{i=k-d+1}^{k} \mathbf{d}_{i} N_{i}^{d-1}(t)
$$

We can now use the polar form to determine these coefficients,

$$
\mathbf{d}_{i}=\mathcal{P}\left[\mathbf{s}_{k}^{\prime}\right]\left(t_{i+1}, \ldots, t_{i+d-1}\right) .
$$

Using the formula above with $a=t_{i}$ and $b=t_{i+d}$, it follows that

$$
\mathbf{d}_{i}=\frac{d}{t_{i+d}-t_{i}}\left(\mathbf{c}_{i}-\mathbf{c}_{i-1}\right) .
$$

Since these coefficients are independent of k, it follows that

$$
\mathbf{s}^{\prime}(t)=\sum_{i=k-d+1}^{k} \mathbf{d}_{i} N_{i}^{d-1}(t), \quad t \in \mathbb{R}
$$

We can continue to differentiate in this way, and thus express the higher derivatives of \mathbf{s} as splines of lower degree.

Consider now the smoothness of \mathbf{s}. Suppose first that

$$
t_{i}<t_{i+1}=\cdots=t_{i+d}<t_{i+d+1},
$$

in which case we say that

$$
z:=t_{i+1}=\cdots=t_{i+d}
$$

is a d-fold knot, or that the knot z has multiplicity d. We can use polar forms to show that \mathbf{s} is continuous at z. Consider the control point \mathbf{c}_{i}. From the theorem, we can express it in terms of the polar form of either the segment \mathbf{s}_{i} or the adjacent segment \mathbf{s}_{i+d}, and we find

$$
\mathbf{c}_{i}=\mathcal{P}\left[\mathbf{s}_{i}\right]\left(t_{i+1}, \ldots, t_{i+d}\right)=\mathcal{P}\left[\mathbf{s}_{i}\right](\underbrace{z, \ldots, z}_{d})=\mathbf{s}_{i}(z),
$$

and

$$
\mathbf{c}_{i}=\mathcal{P}\left[\mathbf{s}_{i+d}\right]\left(t_{i+1}, \ldots, t_{i+d}\right)=\mathcal{P}\left[\mathbf{s}_{i+d}\right](\underbrace{z, \ldots, z}_{d})=\mathbf{s}_{i+d}(z),
$$

and therefore \mathbf{s} is indeed continuous at z.
It follows that the $(d-r)$-th derivative of \mathbf{s}, being a linear combination of the B-splines N_{i}^{r}, is continuous at an r-fold knot. Thus, s has smoothness $d-r$ at a knot of multiplicity r. In particular, at a simple knot, i.e., at a knot with multiplicity 1 , \mathbf{s} has smoothness C^{d-1}.

