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In this lecture we introduce spline curves and study some of their basic
properties.

1 Spline curves

For any integers d ≥ 0 and n ≥ 1, we call a sequence (t1, t2, . . . , tn+d+1),
ti ∈ R, a knot vector if ti ≤ ti+1 and ti < ti+d+1. Such a sequence of knots
together with a sequence of control points ci ∈ R

m, i = 1, . . . , n, define a
spline curve

s(t) =
n∑

i=1

ciN
d

i (t), t ∈ R, (1)

where the functions Nd
i are B-splines. These B-splines can be defined recur-

sively:

N0

i (t) =

{

1 t ∈ [ti, ti+1);

0 otherwise,
(2)

and for d ≥ 1,

Nd

i (t) =
t − ti

ti+d − ti
Nd−1

i (t) +
ti+d+1 − t

ti+d+1 − ti+1

Nd−1

i+1 (t). (3)

We use the convention here that

N r−1

i =
N r−1

i

ti+r − ti
= 0, if ti+r = ti.

From this recursion it follows that Nd
i is a piecewise polynomial of degree d,

which is positive in (ti, ti+d+1) and zero outside [ti, ti+d+1].
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2 Evaluation

Similar to Bezier curves, there are two ways of evaluating a spline curve.
One way is to use the recursion (3) and then the formula (1). Suppose
t ∈ [tk, tk+1). Then,

s(t) =

k∑

i=k−d

ciN
d

i (t),

and we only need to compute Nd
k−d(t), . . . , N

d
k (t), for all the other B-splines

are zero in [tk, tk+1). The recursion (3) can then be carried out in a triangular
scheme,

1 = N0
k

N1
k−1

N2
k−2

· · · Nd
k−d

N1
k

N2
k−1

· · · Nd

k−d+1

N2
k

· · · Nd
k−d+2

. . .
...

Nd
k

Alternatively, one can use a more direct recursion algorithm. Let c0
i = ci,

i = k − d, . . . , k. Then for r = 1, . . . , d, and i = k − d + r, . . . , k, let

cr

i =
ti+d+1−r − t

ti+d+1−r − ti
cr−1

i−1
+

t − ti

ti+d+1−r − ti
cr−1

i
. (4)

One can show that the last point computed is the point on the curve, cd
k =

s(t). Similar to the de Casteljau algorithm, this can be shown by showing,
more generally, by induction on r, that

s(t) =
k∑

i=k−d+r

cr

i N
d−r

i
(t). (5)

This algorithm can also be arranged in a triangular scheme, here row-wise,

c0
k−d

c0
k−d+1

c0
k−d+2

· · · c0
k

c1
k−d+1

c1
k−d+2

· · · c1
k

. . . . .
.

cd−1

k−1
cd−1

k

cd
k
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3 Control points from the polar form

In analogy to Bezier curves we can express control points of spline curves in
terms of polar forms. Recall that the d-variate polar form P[p](x1, . . . , xd)
of the polynomial

p(x) =
d∑

i=0

aix
i, ai ∈ R, (6)

is

P[p](x1, . . . , xd) =

d∑

i=0

aiSi(x1, . . . , xd),

where Si is the symmetric polynomial

Si(x1, . . . , xd) =
∑

1≤k1<k2<···<ki≤d

xk1
xk2

· · ·xki

/(
d

i

)

. (7)

Consider again the spline curve s restricted to some non-empty interval
[tk, tk+1). In this interval s is a polynomial which we can denote by sk,

sk(t) =

k∑

i=k−d

ciN
d

i (t), t ∈ [tk, tk+1).

Theorem 1 For i = k − d, . . . , k,

ci = P[sk](ti+1, . . . , ti+d).

To prove this let

cr

i = P[sk](ti+1, . . . , ti+d−r, t, . . . , t
︸ ︷︷ ︸

r

).

Since P[sk] is multi-affine and symmetric, and since

t = (1 − α)ti + αti+d−r+1,

where

α =
t − ti

ti+d−r+1 − ti
,
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it follows that cr
i satisfies the recursion (4). Therefore,

cd

k =
k∑

i=k−d

c0

i N
d

i (t),

and so, by the diagonal property of P[sk],

sk(t) =

k∑

i=k−d

c0

i N
d

i (t) =

k∑

i=k−d

P[sk](ti+1, . . . , ti+d)N
d

i (t).

Moreover, this equation also shows that any polynomial of degree ≤ d in the
interval [tk, tk+1) can be expressed as a linear combination of the polynomials
Nd

k−d
, . . . , Nd

k
, and since there are d+1 of these, it follows that Nd

k−d
, . . . , Nd

k
,

when restricted to [tk, tk+1), form a basis for πd. Hence the theorem follows.

4 Derivatives and smoothness

Some simple calculations show that from (7),

Si(x1, . . . , xd−1, b) − Si(x1, . . . , xd−1, a) = (b − a)
i

d
Si−1(x1, . . . , xd−1),

and therefore, since

p′(x) =

d∑

i=1

iaix
i−1, (8)

we deduce that

P[p](x1, . . . , xd−1, b) −P[p](x1, . . . , xd−1, a) = (b − a)
1

d
P[p′](x1, . . . , xd−1),

which gives a formula for the polar form of the first derivative p′ in terms of
the polar form of p, for any b 6= a.

Consider again the first derivative of the spline segment sk. Since it is a
polynomial of degree ≤ d− 1, there must be coefficients dk−d+1, . . . ,dk such
that

s′k(t) =

k∑

i=k−d+1

diN
d−1

i (t).
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We can now use the polar form to determine these coefficients,

di = P[s′k](ti+1, . . . , ti+d−1).

Using the formula above with a = ti and b = ti+d, it follows that

di =
d

ti+d − ti
(ci − ci−1).

Since these coefficients are independent of k, it follows that

s′(t) =

k∑

i=k−d+1

diN
d−1

i
(t), t ∈ R.

We can continue to differentiate in this way, and thus express the higher
derivatives of s as splines of lower degree.

Consider now the smoothness of s. Suppose first that

ti < ti+1 = · · · = ti+d < ti+d+1,

in which case we say that

z := ti+1 = · · · = ti+d

is a d-fold knot, or that the knot z has multiplicity d. We can use polar forms
to show that s is continuous at z. Consider the control point ci. From the
theorem, we can express it in terms of the polar form of either the segment
si or the adjacent segment si+d, and we find

ci = P[si](ti+1, . . . , ti+d) = P[si](z, . . . , z
︸ ︷︷ ︸

d

) = si(z),

and
ci = P[si+d](ti+1, . . . , ti+d) = P[si+d](z, . . . , z

︸ ︷︷ ︸

d

) = si+d(z),

and therefore s is indeed continuous at z.
It follows that the (d − r)-th derivative of s, being a linear combination

of the B-splines N r
i , is continuous at an r-fold knot. Thus, s has smoothness

d − r at a knot of multiplicity r. In particular, at a simple knot, i.e., at a
knot with multiplicity 1, s has smoothness Cd−1.
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