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Abstract

These notes provide an introduction to the subdivision rules for
uniform splines, including the Chaikin algorithm. We also explain the
Lane-Reisenfeld algorithm.

1 Introduction
One way of defining uniform B-splines is recursively as follows. The B-spline

N? is the function

NO(a) = (1)

1 0<z<;
0 otherwise,

and for d > 1, the B-spline N is defined as

N(z) = /0 NL(g — 1) dt. @)

We see that N° is non-negative, piecewise-constant, with support [0, 1]. For
general d, one can show by induction on d that N is a non-negative, piecewise
polynomial of degree d, of smoothness C9°1 at the breakpoints (‘knots’)
0,1,...,d + 1, and has support [0,d + 1]. One can also show by induction

that -
/ Ne(z)dx =1,

> Nz —i)=1.
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The B-splines of degree 1 and 2 are

T 0<z<1;
N z)={2—2 1<z<2; (3)
0 otherwise,
and ,
= 0<xr<1;
3 2
—5 4 3z — 1< <2
Ni(z)={ 2708 ~ST=5 (4)
(=3 +1) 2<z<3;
0 otherwise.

Another way of expressing (2) is clearly as
N(z) = / NOMHNT(z — £) dt.

Thus, if we recall that the convolution p®q of two functions p and ¢ is defined
as

(r®q)(z) = / ()l — ) dt,

we can express (2) simply as
N%=N°® N1, (5)
Thus N7 is the d-fold convolution of N9 with itself:

N'=N"@N°®--- @ N°.
a1

2 Subdivision

A uniform spline is any linear combination of integer translates of a B-spline
of a certain degree. Thus,

s(z) = Z ciN%(z — 1) (6)
€7
is a spline, which is clearly a piecewise polynomial of degree d, with smooth-

ness C4~!. The breakpoints, or knots, of s are the integers because the trans-
lated B-spline N%(x —4) has knots at the integers in its support, [i,7+d+ 1].
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Notice that for a fixed degree d, the spline s is completely determined by
its coefficient vector

(e ( ..,C_1,Cp,C1, .. .)T.
The idea of subdivision is to represent the spline s in terms of the scaled

B-splines N%(2z — i) whose knots are at the half-integers. The support of
N2z —1i) is [i/2, (i+d+1)/2]. We would like to find the coefficients b; such

that
= biN%(2x —i). (7)
i€Z
To do this we will establish the refinement relation
N(x) :Zstd(Zx—z'). (8)
i€z
In fact, by considering the supports of the B-splines in this equation it is

clear that we must have s¢ = 0 for i < 0 and i > d + 1, and so if (8) holds

we must have
d+1

= Z stNY(2z
i=0

Assuming for the time being that (8) holds, let us see how we can use it
to find the coefficients b; from the coefficients ¢;. Starting from (6) we have

T) = ZCde(ﬁ—j) = ZCjZS?Nd(Q(l’—j) — 1)
—ZCJZSZ 2 N (2x — i)
= ZZSZ ch]Nd 2x — 1)

and equating this with (7), and using the fact that the B-splines N(2z — i)
are linearly independent, we can equate coefficients, giving

b; = Z 3?72]'%" 9)
J

This formula tells us how to convert the coarse representation of s in (6) to
the finer representation in (7). If, like the coarse coefficients we arrange the
fine coefficients in a column vector

b = (...7b—17b07b17"’)T7
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we can express (9) in vector and matrix notation as
b = Sc.

The matrix

5= (Sg—2j)ij7
which is infinite in both dimensions, is known as the subdivision matriz. The
subdivision scheme (9) can be split into two parts, for coefficients b; with

even and odd indices. We find

bai = Z Sai-5)Ci = Z sLaiCiti = Z 55— (10)
j j J

and
baiv1 = Z Sg(ifj)+1cj = Z 56£2j+1cj+i = Z ngﬂcifj- (11)
J J J
So
bQi = sgci -+ SgCZ‘_l =+ .. s (12)
b2i+1 = SCllCi + Sgci—l + .- (13)

3 The refinement relation

It is easy to see from (1) that
N°(z) = N°(22) + N°(2x — 1), (14)

and using (3) a simple calculation shows that
1 1
N'(z) = 5Nl(m:) + N' 2z — 1)+ §N1(2x —-2). (15)

Thus s§ = s = 1 and sj = 1/2, s = 1, and s} = 1/2. We will derive the
general formula for s¢ using the recurrence relation (2). We do this by first
showing how the coefficients of degree d relate to those of degree d — 1.

Lemma 1 If the refinement relation (8) holds for degree d — 1 with coeffi-
cients 3?71 then it also holds for degree d and the coefficients are
d ].
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Proof. Using (8), we have
1
N(z) = / S s ING (e — ) — i) dt
0

= ngl/o NN 2z —t) — ) dt.

But
1
/Nd‘l(Z(x—t)—i)dt
01 ,
25/ NN 22 —u — i) du
1 - 2
:5( Ndl(Zx—u—i)du+/ Nd1(2x—u—i)du>
0 1
1 !
:5/ (N 2z —u—i)du+ N"'(2z —u—i—1)) du
0
1
=5 (N?(2z — i) + N2z —i — 1)),
and so

Z siTH (N2 — i) + N2z — i — 1))

D (s s N (22 — ).

i

Iterating the formula of Lemma 1 from s) = s = 1 immediately gives

Theorem 1 The refinement relation (8) holds with coefficients

1 (d+1
st = — ), o<i<d+t
24\ g



The first few examples, with s? = (s¢); are

s =(1,1),
1 1

Sl: _717_7
(33)

, (1331

s T=\|-,—,—,—
4'4°4°4)"

, (11311

s’=1=,=,-,=,= .
8727472°8

Corresponding to these, the first few subdivision matrices are

1000 - Lo
L1 69 0 .
. 2 2

1000 2200 .

G0 _ 0100 - gl 011 .
0100 -] ot o |
0010 - 2 27
§300 D
i1 11

6 _ 03 1o 6 _ ol 1o
o1 2 ¢ ) o 1 2 1

L BT 8 ¢4 %

00 31 00 41

oo 13 o

The Lane-Riesenfeld algorithm is an elegant way of implementing the
subdivision scheme and follows from Lemma 1. In this algorithm we initially
set

0 _ 10 _ .
by; = b2i+1 = G,

and then, for k =1,...,d, we let
b = (b + b)) /2.

Then b; = b¢ is the required coefficient.
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We can also view this algorithm in terms of matrices. The subdivision
matrix can be expressed as

St=AA---AS°,

d
where A is the ‘averaging’ matrix
11
Rt
S O A
00 % L.

and we can view S° as a ‘doubling’ matrix. Thus to compute the new co-
efficients b from the old, c, one first applies S° to ¢, which has the effect
of ‘doubling’ the coefficients in c, and one then applies the matrix A, which
replaces all points by their mid-points, d times.

4 Convergence

Suppose now that starting from a spline
s(x) =) N —4),

we apply several steps of subdivision. If we subdivide s once, we obtain the
finer representation

s(z) = Z et N2z — i),

(2

where

1 _ 2: d 0
J

with s¢ given by Theorem 1. We can continue in this way, subdividing again
and again, so that in general

s(z) = Z N 2Fx — i),
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where
c? = sff_Qjc?_l
j
At each level of subdivision, k, we can form a polygon p;, a piecewise
linear function with the value ¢ at the point 27%i. It can be shown that the

sequence of polygons (py)r converges to s, i.e.,

s(z) = klim pr(x), x e R.
This provides a way of plotting the spline s. After a few steps of subdivision,
we simply plot the polygon pi. If k is large enough, p, will appear to be a
smooth function.



