
Least Squares Approximation

Michael S. Floater

November 7, 2011

Abstract

For some kinds of data it is better to approximate than to inter-

polate. In these notes we look at how to approximate data using least

squares methods.

1 Univariate data

We begin by considering univariate data: a sequence of increasing real values
x1 < · · · < xm, together with arbitrary real values z1, . . . , zm. We wish to
approximate this data by a function

s(x) =
n

∑

i=1

Bi(x)ci, ci ∈ R.

The functions B1, . . . , Bn are defined over some interval [a, b] containing the
xk and could for example be B-splines, Bernstein polynomials, monomials,
radial functions etc. Loosely speaking we say that s approximates the data
if s(xk) ≈ zk. One reason to approximate the data rather than interpolate it
is that it could be noisy: there could be noise in the values zk and the points
xk. Another is that m might be very large and by chooising n to be much
smaller than m, we end up reducing the amount of data: replacing the m
values zk (and the xk) by the n values ci.

The basic least squares method consists of finding a coefficient vector
c = (c1, . . . , cn)T which minimizes the sum of squared errors

m
∑

k=1

(s(xk) − zk)
2, (1)

1

but sometimes there is no unique solution and it is usual to add a smoothing
term such as

J(c) =

∫ b

a

(s′′(x))2dx (2)

(assuming the functions B1, . . . , Bn are C2). This also helps to smooth out
the data when it contains noise. There are many possible smoothing terms
used in practice but usually they can be expressed as

J(c) = cT Ec

for some n × n symmetric positive semidefinite matrix E. This is the case
for the smoothing term in (2), which can be rewritten as

J(c) =

∫ b

a

(

n
∑

i=1

B′′

i (x)ci

)(

n
∑

j=1

B′′

j (x)cj

)

dx =
n

∑

i=1

n
∑

j=1

Eijcicj

where

Eij =

∫ b

a

B′′

i (x)B′′

j (x)dx. (3)

It is clear that Eij = Eji, and cT Ec ≥ 0 for any c ∈ R
n since J(c) ≥ 0.

So we will concentrate on minimizing the more general functional

F (c) =

m
∑

k=1

(s(xk) − zk)
2 + λcT Ec, (4)

for some real λ > 0.
A minimum of F (c) occurs at a point c where all partial derivatives are

zero, a critical point. The equations ∂F/∂ci = 0 are called the normal

equations of the least squares problem. By differentiating F in (4) explicitly
and rearranging the subsequent expression, the normal equations can be
rewritten as the single matrix equation

(BT B + λE)c = BT z, (5)

where z = (z1, . . . , zm)T and B is the m × n matrix

B = (Bj(xi))i=1,...,m,j=1,...,n =

B1(x1) . . . Bn(x1)
...

...
B1(xm) . . . Bn(xm)

.

2

Then the solution to the least squares problem is the solution c to (5). The
n × n matrix G = BT B, whose ij-th element is

Gij =

m
∑

k=1

Bi(xk)Bj(xk),

is easily seen to be symmetric and because

cT Gc = ‖Bc‖2
2 ≥ 0,

it is also positive semidefinite. Therefore, assuming that E is also symmetric
and positive semidefinite, as is the case when E is given by (3), the combined
matrix,

A = BT B + λE,

is symmetric and positive semidefinite.
If A is also positive definite, i.e., that cT Ac = 0 implies c = 0, then the

normal equations have a unique solution. This will be the case for example
if m ≥ n and the matrix B has full rank n. i.e., n of its rows are linearly
independent, because then G is positive definite. However, we do not need
to check this if we use the smoothing term (2), for there is then a very simple
criterion for positive-definiteness, namely that the number of points in the

data set is at least two, i.e., m ≥ 2. To see this suppose that cT Ac = 0. Then
both cT Gc = 0 and cEc = 0. Since cT Gc = 0 we have Bc = 0 and therefore
s(xk) = 0 for all k = 1, . . . , m. Since cT Ec = 0 we have J(c) = 0 and therefore
s′′(x) = 0. We conclude that s is a linear polynomial, s(x) = α + βx, such
that s(xk) = 0. If m ≥ 2, this is only possible if s = 0, i.e., c = 0.

2 B-splines

Let us now suppose that the functions B1, . . . , Bn in (1) are B-splines in
which case the function s in (1) is a spline. In this case the matrix B in (5)
is sparse.

We write Bi,K = Bi to indicate that the B-splines have order K and they
are defined over some knot sequence

t1, t2, . . . , tn+K .

3

We make the usual assumptions that ti ≤ ti+1 and ti < ti+K . One way of
defining the B-splines is recursively by the Cox-de Boor algorithm. We define

Bi,1(x) =

{

1 ti ≤ x < ti+1;

0 otherwise,

and, for K ≥ 2,

Bi,K(x) =
x − ti

ti+K−1 − ti
Bi,K−1(x) +

ti+K − x

ti+K − ti+1
Bi+1,K−1(x). (6)

The piecewise polynomial Bi,K has support [ti, ti+K] and is (strictly) positive
in the open interval (ti, ti+K). If we are applying the smoothing integral in
(2) to the interval [a, b], it is natural to let

t1 = · · · = tK = a, tn+1 = · · · tn+K = b.

2.1 Solving the linear system

The size of the matrix
A = G + λE

in (5) is n× n (and independent of m) and so we should take care about the
structure of A when n is large. With the smoothing term given by (2), A is
sparse because the product BiBj is zero if the interiors of the supports of Bi

and Bj are disjoint, which occurs when |j − i| ≥ K. Therefore all elements
Aij of A are zero outside a diagonal band of width 2K − 1. This fact can
be exploited by the equation solver. One could for example write a tailored
Gauss elimination or Cholesky decomposition.

2.2 Constructing A

The computational time required to construct the matrix A may also be
considerable when m is large. In fact, if m is, for example, of the order
of 106 while n is of the order of 10, it could take considerably more CPU
time to compute the elements Aij than to solve equation (5). The bottleneck
in this case is the construction of G and so we should try to minimize the
computational cost of constructing G. An obvious way of computing the
elements of G is to compute each Gij in turn, but it is much more efficient
to process each xk in turn, compute all the B-splines whose supports contain
it, applying the Cox de Boor algorithm (6) just once, and then add the
contribution Bi(xk)Bj(xk) to the current value of Gij.

4

3 Bivariate data

Since the method does not depend on any particular ordering of the points
x1, . . . , xm, it is quite easy to generalize it to the approximation of bivariate
‘scattered data’. Suppose we have distinct points x1, . . . ,xm in R

2, where
xk = (xk, yk), and associated values z1, . . . , zm. We could approximate this
data in a least squares sense by a tensor-product spline

s(x, y) =

n1
∑

i=1

n2
∑

j=1

Bi(x)Cj(y)cij, (7)

where B1, . . . , Bn1
are B-splines defined on an interval [a1, b1] contained the

xk and C1, . . . , Cn2
are B-splines over an interval [a2, b2] containing the yk.

Defining
c = (c1,1, . . . , cn1,1, c1,2, . . . , cn1,n2

)T ,

the task is to find the coefficient vector c, of length n = n1n2, which minimizes

F (c) =

m
∑

k=1

(s(xk, yk) − zk)
2 + λcTEc,

for some symmetric, positive semi-definite n × n matrix E. Similar to the
univariate case, a minimum of F occurs when c is the solution of the normal
equations (5) where now B is the m × n matrix

B =

B1(x1)C1(y1) B2(x1)C1(y1) . . . Bn1
(x1)Cn2

(y1)
...

...
...

B1(xm)C1(ym) B2(xm)C1(ym) . . . Bn1
(xm)Cn2

(ym)

,

so

G(j−1)n1+i,(s−1)n1+r =

m
∑

k=1

Bi(xk)Cj(yk)Br(xk)Cs(yk)

for i, r = 1, . . . , n1 and j, s = 1, . . . , n2.
For the smoothing term we could take the thin plate spline energy

J(c) =

∫ b1

a1

∫ b2

a2

(s2
xx + 2s2

xy + s2
yy)dy dx, (8)

5

which, after substitution into the definition of s in (7) can be expressed as

n1
∑

i=1

n2
∑

j=1

n1
∑

r=1

n2
∑

s=1

Eijrscijcrs,

where
Eijrs = Aijrs + 2Bijrs + Cijrs

and

Aijrs =

∫ b1

a1

B′′

i (x)B′′

r (x)dx

∫ b2

a2

Cj(y)Cs(y)dy,

Bijrs =

∫ b1

a1

B′

i(x)B′

r(x)dx

∫ b2

a2

C ′

j(y)C ′

s(y)dy,

Cijrs =

∫ b1

a1

Bi(x)Br(x)dx

∫ b2

a2

C ′′

j (y)C ′′

s (y)dy.

Similar to the univariate case, the resulting matrix A is by definition sym-
metric and positive semi-definite. An argument similar to the univariate case
shows that A is also positive definite if the data set contains any three points
xk that are not collinear (because if J = 0, s must be linear). Therefore,
there will be a unique minimizer for F for any ‘reasonable’ set of scattered
data: for any set of points xk that do not all lie on a straight line.

If the functions Bi and Cj are B-splines of orders K and L respectively
then as in the univariate case, the matrices G and E are sparse and therefore
A is sparse. In fact in this case

A(j−1)n1+i,(s−1)n1+r = 0

if either |i− r| ≥ K or |j − s| ≥ L. Therefore, there are at most (2K − 1)×
(2L − 1) non-zero elements in each row of A. The non-zero elements of A
are shown in Figure 1, for the values n1 = n2 = 20 when the spline s(x, y)
is bicubic (K = L = 4). An iterative method like the conjugate gradient
method works well with a sparse matrix such as A.

4 A numerical example

A data set of 10,000 points zk = (xk, yk, zk) is shown in Figure 2. These points
were parameterized, giving corresponding parameter points uk = (uk, vk).

6

Figure 1: Structure of matrix A when K = L = 4 and n1 = n2 = 20.

The least squares method was then applied to the parametrized points.
Specifically, the method was used to find

sr(u, v) =

n1
∑

i=1

n2
∑

j=1

Bi(u)Cj(v)cr
ij , r = 1, 2, 3,

such that
s1(uk) ≈ xk, s2(uk) ≈ yk, s3(uk) ≈ zk,

yielding a parametric spline surface

s(u) = (s1(u), s2(u), s3(u))

such that s(uk) ≈ zk.
The spline surface was chosen to be bicubic, i.e. K = L = 4, and to have

uniform knot vectors with n1 = n2 = 100. The resulting surface is shown
shaded in Figure 3 and via isocurves in Figure 4. The conjugate gradient
method was used to solve the three linear systems.

The parameter λ was chosen to be

λ = ‖BT B‖F/‖E‖F ,

where the ‖M‖F denotes the Frobenius norm of a matrix M ,
√

(
∑

ij M2
ij).

The effect of this heuristic is roughly speaking to ensure that the two contri-
butions BT B and λE to the matrix A have equal weight. This choice seems
to perform well in examples.

7

50
100

150
200 0

50
100

150
200

250

-50

0

50

100

150

Figure 2: Data set of m = 10, 000 points.

Figure 3: Approximate surface s(u).

8

Figure 4: Isocurves of the surface s(u).

9

