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In this lecture we introduce spline curves and study some of their basic
properties.

1 Spline curves

For any integers d > 0 and n > 1, we call a sequence (t1,ta, ..., thidr1),
t; € R, a knot vector if t; < t;1; and t; < t;1441. Such a sequence of knots
together with a sequence of control points c; € R™, i = 1,...,n, define a
spline curve

s(t) = i c;Ni(t), teR, (1)

where the functions N? are B-splines. These B-splines can be defined recur-

sively:
1 te ti, tl X
NO(t) = i) ®
0 otherwise,
and for d > 1,
t—1; _ t; -1 _
Ni(t) = = NI (#) + N (). 3)
terd tz tz+d+1 terl

We use the convention here that
N; !
Nt=—"" =0, if tip, =t;.
Livr — 1

From this recursion it follows that N is a piecewise polynomial of degree d,
which is positive in (¢;,%;1441) and zero outside [t;, tiyav1]-
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2 Evaluation

Similar to Bezier curves, there are two ways of evaluating a spline curve.
One way is to use the recursion (3) and then the formula (1). Suppose

te [tkathrl)- Then,
k
-3 e

i=k—d

and we only need to compute N{ ,(t),..., Ni(t), for all the other B-splines
are zero in [tg, tr41). The recursion (3) can then be carried out in a triangular
scheme,

I = NIS Nl%l ngd ]glglfd
Nk Nkal N/Zl—d+1

Nk Nk—d+2

Nl

Alternatively, one can use a more direct recursion algorithm. Let ¢ = ¢;,
t=k—d,....,k. Thenforr=1,....,d,andi =k —d+r,...,k, let

e Ll NP (@)
Y lipdrier — 4T titdt1—r —ti

One can show that the last point computed is the point on the curve, cf =
s(t). Similar to the de Casteljau algorithm, this can be shown by showing,
more generally, by induction on r, that

Y. GNT(). ()

i=k—d+r

This algorithm can also be arranged in a triangular scheme, here row-wise,
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3 Control points from the polar form

In analogy to Bezier curves we can express control points of spline curves in
terms of polar forms. Recall that the d-variate polar form P|p|(z1, ..., zq)
of the polynomial

p(r) = Z a;x’, a; € R, (6)
is ;
P[p](xl, e ,l‘d) = Z aiSi(xl, e ,{L‘d),

where S; is the symmetric polynomial
d
Si(x1,...,2q) = Z xklx;@---xki/ E (7)
1<k1<ko<---<k;<d

Consider again the spline curve s restricted to some non-empty interval
[tr,txr1). In this interval s is a polynomial which we can denote by sy,

k
se(t) = > eNH(t),  tE [th i)
i=k—d
Theorem 1 Fori=k—d,... k,
c; = Plsi](tit1, .- tivra)-
To prove this let

c; = Pls)(tiz1, - tigdar,t, ..., 1).
——

T

Since P[si] is multi-affine and symmetric, and since
t=(1—-a)t;+ ativari1,

where



it follows that c| satisfies the recursion (4). Therefore,

k
ONd

i=k—d

and so, by the diagonal property of P[sy],

k k
sk(t) = Z ONd Z Plse](tivts--- 7ti+d>Nid<t>'
i=k—d i=k—d

Moreover, this equation also shows that any polynomial of degree < d in the
interval [t, t541) can be expressed as a linear combination of the polynomials
NZ ..., N2 and since there are d+1 of these, it follows that N¢ , ... N¢,
when restricted to [tg, tr41), form a basis for 4. Hence the theorem follows.

4 Derivatives and smoothness

Some simple calculations show that from (7),

7
Si(ilfl, <oy Ld—1, b) - Si(ilfl, <oy Tg—1, a) = (b - a)aszq(%l, cee 7$Ud71)7
and therefore, since
d
= Z iaixi717 (8)
i=1

we deduce that

1

Plpl(z1, ... x4-1,b) — Plpl(x1,...,24-1,a) = (b—a)=

dp[pl] ('rlu s 7xd71)7

which gives a formula for the polar form of the first derivative p’ in terms of
the polar form of p, for any b # a.

Consider again the first derivative of the spline segment s;. Since it is a
polynomial of degree < d — 1, there must be coefficients dy_41, . .., d such

that i
> AN

i=k—d+1



We can now use the polar form to determine these coefficients,

d; = Ps)(tit1, - - -, tiva—1)-
Using the formula above with a = t; and b = ¢, 4, it follows that

d
di = 7(Ci — ci—l)-
tiva —t;

Since these coefficients are independent of &, it follows that

k
S(t)= > &N, teR
i=k—d+1

We can continue to differentiate in this way, and thus express the higher
derivatives of s as splines of lower degree.
Consider now the smoothness of s. Suppose first that

ti <tiy1 ="+ =tiza < tiyds1,

in which case we say that

is a d-fold knot, or that the knot z has multiplicity d. We can use polar forms
to show that s is continuous at z. Consider the control point c;. From the
theorem, we can express it in terms of the polar form of either the segment
s; or the adjacent segment s;, 4, and we find

¢; = Plsil(tit1, .- - tiva) = Plsil(z, - - -, 2) = si(2),
d

and
C;, = ’P[Sﬂ_d] (ti-i-la Ce ,ti-i-d) = P[Si+d](z, ey Z) = SH_d(Z),
d
and therefore s is indeed continuous at z.

It follows that the (d — r)-th derivative of s, being a linear combination
of the B-splines N/, is continuous at an r-fold knot. Thus, s has smoothness
d — r at a knot of multiplicity r. In particular, at a simple knot, i.e., at a
knot with multiplicity 1, s has smoothness C41!.



