
INF4820

Part 1: Non-Deterministic FSAs

Part 2: Lisp variables, binding and scope. And macros.

Erik Velldal

University of Oslo

Sep. 15, 2009

Erik Velldal INF4820 1 / 20

Topics for Today

Wrapping up FSAs

◮ Machines as transition tables

◮ State-space search and NFSA recognition

◮ Depth-first vs breadth-first search

Erik Velldal INF4820 2 / 20

Topics for Today

Wrapping up FSAs

◮ Machines as transition tables

◮ State-space search and NFSA recognition

◮ Depth-first vs breadth-first search

Common Lisp variables

◮ Scope, binding and shadowing

◮ Lexical vs dynamic scope. (Local vs global variables)

◮ let/let*

◮ Closures

◮ Assignment

◮ Macros (maybe)

Erik Velldal INF4820 2 / 20

Transition Matrix for an NFSA

An NFSA for the sheep language (“baa!”, “baaa!”, “baaaa!”, “baaaaa!”,...).

Erik Velldal INF4820 3 / 20

Transition Matrix for an NFSA

An NFSA for the sheep language (“baa!”, “baaa!”, “baaaa!”, “baaaaa!”,...).

Alternatively, the machine can be represented as a matrix or a table:

Transition Table

Input

State ! a b

0 ∅ ∅ 1

1 ∅ 2 ∅

2 ∅ 2,3 ∅

3 4 ∅ ∅

Erik Velldal INF4820 3 / 20

Non-Deterministic Recognition: State-Space Search

◮ With NFSAs there might exist several paths through the machine for a
given string.

◮ Successful recognition of a string means that there exists at least one
path through the machine that leads to an accept state.

◮ Failure occurs when none of the possible paths leads to an accept
state.

◮ We’ll walk through an example of a simple recognition task (based on
depth-first search and backtracking).

Erik Velldal INF4820 4 / 20

Erik Velldal INF4820 5 / 20

Some Terminology (from Seibel 2005)

Binding form

A form introducing a variable such as a function definition or a let

expression.

Scope

The area of the program where the variable name can be used to refer to
the variable’s binding. Lexically scoped variables can be referred to only by
code that is textually within their binding form.

Shadowing

When binding forms are nested and introduce variables of the same name,
the innermost binding “shadows” the outer bindings.

Erik Velldal INF4820 6 / 20

Bindings, Scope and Shadowing

(setq foo 24)

(let ((foo 42)

(bar foo))

(print bar))

 24

Erik Velldal INF4820 7 / 20

Bindings, Scope and Shadowing

(setq foo 24)

(let ((foo 42)

(bar foo))

(print bar))

 24

(let* ((foo 42)

(bar foo))

(print bar))

 42

Erik Velldal INF4820 7 / 20

Bindings, Scope and Shadowing

(setq foo 24)

(let ((foo 42)

(bar foo))

(print bar))

 24

(let* ((foo 42)

(bar foo))

(print bar))

 42

⇐⇒

(let ((foo 42))

(let ((bar foo))

(print bar)))

 42

Erik Velldal INF4820 7 / 20

Bindings, Scope and Shadowing (cont’d)

(defun foo ()

(let ((foo 42)

(values))

(push foo values)

(flet ((foo ()

(push foo values)))

(foo)

(let ((foo 21))

(push foo values)

(foo)))

values))

◮ What is returned by a call to
(foo)?

Erik Velldal INF4820 8 / 20

Bindings, Scope and Shadowing (cont’d)

(defun foo ()

(let ((foo 42)

(values))

(push foo values)

(flet ((foo ()

(push foo values)))

(foo)

(let ((foo 21))

(push foo values)

(foo)))

values))

◮ What is returned by a call to
(foo)?

◮ → (42 21 42 42)

Erik Velldal INF4820 8 / 20

Bindings, Scope and Shadowing (cont’d)

(defun foo ()

(let ((foo 42)

(values))

(push foo values)

(flet ((foo ()

(push foo values)))

(foo)

(let ((foo 21))

(push foo values)

(foo)))

values))

◮ What is returned by a call to
(foo)?

◮ → (42 21 42 42)

◮ The inner flet-defined foo is
actually also an example of a
closure: free variables that are
“closed over” by a function
object.

Erik Velldal INF4820 8 / 20

Closures

◮ So far we’ve focused on the idea that local variables in Lisp are based
on lexical scoping.

Erik Velldal INF4820 9 / 20

Closures

◮ So far we’ve focused on the idea that local variables in Lisp are based
on lexical scoping.

◮ But, in Lisp the concept of closures still makes possible the use of
variable references in functions that are called in code outside the
scope of the binding form that introduced the variables.

Erik Velldal INF4820 9 / 20

Closures

◮ So far we’ve focused on the idea that local variables in Lisp are based
on lexical scoping.

◮ But, in Lisp the concept of closures still makes possible the use of
variable references in functions that are called in code outside the
scope of the binding form that introduced the variables.

◮ Confused yet?

Erik Velldal INF4820 9 / 20

Closures. An Example.

(let ((c 0))

(defun counter (action &optional (n 1))

(case action

(add (incf c n))

(sub (decf c n))

(print (format t "Current count = ~d.~%" c)))))

◮ When a function is defined in a non-null lexical environment, we say
that it “closes over” and captures the bindings of its free variables.

Erik Velldal INF4820 10 / 20

Closures. An Example.

(let ((c 0))

(defun counter (action &optional (n 1))

(case action

(add (incf c n))

(sub (decf c n))

(print (format t "Current count = ~d.~%" c)))))

◮ When a function is defined in a non-null lexical environment, we say
that it “closes over” and captures the bindings of its free variables.

(counter ’sub 11) → -11

(counter ’add) → -10

(counter ’print) Current count = -10.

Erik Velldal INF4820 10 / 20

Closures. Another Example.

◮ An example of a function that returns an anonymous function,
implementing (very simple) memoization through lexical closure:

(defun memoize (fn)

(let ((cache (make-hash-table :test #’equal)))

#’(lambda (&rest args)

(multiple-value-bind

(val stored-p) (gethash args cache)

(if stored-p

val

(setf (gethash args cache)

(apply fn args)))))))

Erik Velldal INF4820 11 / 20

Closures. Another Example.

◮ An example of a function that returns an anonymous function,
implementing (very simple) memoization through lexical closure:

(defun memoize (fn)

(let ((cache (make-hash-table :test #’equal)))

#’(lambda (&rest args)

(multiple-value-bind

(val stored-p) (gethash args cache)

(if stored-p

val

(setf (gethash args cache)

(apply fn args)))))))

(setf mem-ccc (memoize #’complex-costly-computation))

(funcall mem-ccc arguments)

Erik Velldal INF4820 11 / 20

Dynamic Variables

AKA Special Variables

◮ Lisp’s global variables have dynamic scope.

◮ defparameter / defvar

◮ Global variables are handy for environment variables and parameters
that we don’t want to pass around (such as standard I/O streams).

Erik Velldal INF4820 12 / 20

Dynamic Variables

AKA Special Variables

◮ Lisp’s global variables have dynamic scope.

◮ defparameter / defvar

◮ Global variables are handy for environment variables and parameters
that we don’t want to pass around (such as standard I/O streams).

Dynamic how?

◮ So far we’ve only looked at lexically scoped local variables...

◮ When binding a dynamic variable in e.g. a let, the new binding can
be seen by all code invoked during the execution of form (not just
within the textual bounds).

Erik Velldal INF4820 12 / 20

Dynamic Variables (cont’d)

(Example from an interactive ACL session in Emacs)

CL-USER(32): (defparameter *base* (exp 1))

BASE

CL-USER(33): *base*

2.7182817

CL-USER(34): (defun my-exp (x)

(expt *base* x))

MY-EXP

CL-USER(35): (my-exp 4)

54.598145

CL-USER(36): (let ((*base* 2))

(my-exp 4))

16

CL-USER(37):

Erik Velldal INF4820 13 / 20

Assignment

◮ setq and setf
◮ (setf goo "abc")

Erik Velldal INF4820 14 / 20

Assignment

◮ setq and setf
◮ (setf goo "abc")

◮ Through so called modify macros, specialized variants of setf are
defined for access to places in lists, arrays, hash-tables, structs, etc.

(setf (aref goo 1) #\n)

(incf bar 5)

(incf (gethash ’key table 0) 1)

Erik Velldal INF4820 14 / 20

Assignment

◮ setq and setf
◮ (setf goo "abc")

◮ Through so called modify macros, specialized variants of setf are
defined for access to places in lists, arrays, hash-tables, structs, etc.

(setf (aref goo 1) #\n)

(incf bar 5)

(incf (gethash ’key table 0) 1)

◮ When thinking about assignment, don’t confuse named variables and
other places that can hold values...

◮ Or, in other words; binding is not always the same as assignment.

(Cf. First Assignment Part B, exercise 2b on functional variants of
push / pop).

Erik Velldal INF4820 14 / 20

Macros

◮ With defmacro we can write Lisp code that generates Lisp code.

◮ Macro expansion time vs runtime

Important operators when writing macros

◮ ’: Quota suppresses evaluation.

◮ ‘: Backquote also suppresses evaluation, but..

◮ ,: A comma inside a backquoted form means the following subform
should be evaluated.

◮ @: “Explodes” lists.

Erik Velldal INF4820 15 / 20

Macros. A Rather Silly Example

CL-USER(53): (defmacro dolist-reverse ((e list) &rest body)

‘(let ((r (reverse ,list)))

(dolist (,e r)

,@body)))

DOLIST-REVERSE

Erik Velldal INF4820 16 / 20

Macros. A Rather Silly Example

CL-USER(53): (defmacro dolist-reverse ((e list) &rest body)

‘(let ((r (reverse ,list)))

(dolist (,e r)

,@body)))

DOLIST-REVERSE

CL-USER(54): (dolist-reverse (x (list 1 2 3))

(print x))

3

2

1

NIL

Erik Velldal INF4820 16 / 20

Macros. A Rather Silly Example

CL-USER(53): (defmacro dolist-reverse ((e list) &rest body)

‘(let ((r (reverse ,list)))

(dolist (,e r)

,@body)))

DOLIST-REVERSE

CL-USER(54): (dolist-reverse (x (list 1 2 3))

(print x))

3

2

1

NIL

All according to plan. Or..?

Erik Velldal INF4820 16 / 20

Unintended variable capture can be a pitfall...

CL-USER(55): (let ((r 42))

(dolist-reverse (x (list 1 2 3))

(print (list x r))))

(3 (3 2 1))

(2 (3 2 1))

(1 (3 2 1))

NIL

CL-USER(56):

Not quite what we wanted...

Erik Velldal INF4820 17 / 20

gensym to the rescue!

CL-USER(56): (defmacro dolist-reverse ((e list) &rest body)

(let ((r (gensym)))

‘(let ((,r (reverse ,list)))

(dolist (,e ,r)

,@body))))

DOLIST-REVERSE

CL-USER(57): (let ((r 42))

(dolist-reverse (x (list 1 2 3))

(print (list x r))))

(3 42)

(2 42)

(1 42)

NIL

All according to plan. (No, really!)

Erik Velldal INF4820 18 / 20

A more useful example, do-set-permutations

Macro definitions can even be recursive!

(defmacro do-set-permutations (lists &body body)

(if (null (cdr lists))

‘(dolist ,(first lists)

,@body)

‘(dolist ,(first lists)

(do-set-permutations ,(cdr lists)

,@body))))

Erik Velldal INF4820 19 / 20

Usig our new macro, do-set-permutations

CL-USER(190): (do-set-permutations ((x ’(a b))

(y ’(1 2 3))

(z ’(foo)))

(print (list x y z)))

(A 1 FOO)

(A 2 FOO)

(A 3 FOO)

(B 1 FOO)

(B 2 FOO)

(B 3 FOO)

NIL

Erik Velldal INF4820 20 / 20

