INF4820

Hidden Markov Models
 The Forward Algorithm
 The Viterbi Algorithm

Erik Velldal
University of Oslo

Oct. 06, 2009

Topics for Today

- Quick recap from last time: POS-tagging viewed as Bayesian classification.
- Formal specification of an $\mathrm{HMM} ;\left\langle Q, q_{0}, q_{F}, A, B\right\rangle$
- Dynamic Programming
- The Forward algorithm for computing the HMM probability of an observed sequence of words.
- The Viterbi algorithm for computing the HMM probability of an unobserved sequence of tags.
- Evaluating a tagger on test data

HMM Tagging as Bayesian Classification

- Given an observed sequence of words $O=\left(o_{1}, \ldots, o_{T}\right)$, we want to find the most probable sequence of tags $Q=\left(q_{1}, \ldots, q_{T}\right)$.
- Applying Bayes' Rule, we can state our search problem as

$$
\begin{aligned}
\hat{q}_{1}^{T}=\underset{q_{1}^{T}}{\arg \max } P\left(q_{1}^{T} \mid o_{1}^{T}\right) & =\underset{q_{1}^{T}}{\arg \max } \frac{P\left(o_{1}^{T} \mid q_{1}^{T}\right) P\left(q_{1}^{T}\right)}{P\left(o_{1}^{T}\right)} \\
& =\underset{q_{1}^{T}}{\arg \max } P\left(o_{1}^{T} \mid q_{1}^{T}\right) P\left(q_{1}^{T}\right)
\end{aligned}
$$

HMM Tagging as Bayesian Classification

- Given an observed sequence of words $O=\left(o_{1}, \ldots, o_{T}\right)$, we want to find the most probable sequence of tags $Q=\left(q_{1}, \ldots, q_{T}\right)$.
- Applying Bayes' Rule, we can state our search problem as

$$
\begin{aligned}
\hat{q}_{1}^{T}=\underset{q_{1}^{T}}{\arg \max } P\left(q_{1}^{T} \mid o_{1}^{T}\right) & =\underset{q_{1}^{T}}{\arg \max } \frac{P\left(o_{1}^{T} \mid q_{1}^{T}\right) P\left(q_{1}^{T}\right)}{P\left(o_{1}^{T}\right)} \\
& =\underset{q_{1}^{T}}{\arg \max } P\left(o_{1}^{T} \mid q_{1}^{T}\right) P\left(q_{1}^{T}\right)
\end{aligned}
$$

- This approach can also be viewed as Noisy-Channel Modeling:
- Shannon's metaphor: q_{1}^{T} is the result of transmitting o_{1}^{n} through a noisy channel, i.e. o_{1}^{T} is a scrambled version of q_{1}^{T}.
- Our task is to model the noise so we can decode the distorted sequence and recover the original source.

A Few Simplifying Assumptions

- Assume the Markov property for $P\left(q_{1}^{T}\right)$:

$$
\begin{aligned}
P\left(q_{1}^{T}\right) & =P\left(q_{1}\right) P\left(q_{2} \mid q_{1}\right) P\left(q_{3} \mid q_{1}, q_{2}\right) \ldots P\left(q_{n} \mid q_{1}^{n-1}\right) \\
& \approx \prod_{i} P\left(q_{i} \mid q_{i-1}\right)
\end{aligned}
$$

- Two more simplifying assumptions regarding $P\left(o_{1}^{T} \mid q_{1}^{T}\right)$.
- Each word is conditionally independent of the other words given the tags, and each word is conditionally independent of all tags but its own:

$$
\begin{aligned}
P\left(o_{1}^{T} \mid q_{1}^{T}\right) & =P\left(o_{1} \mid q_{1}^{T}\right) P\left(o_{2} \mid o_{1}, q_{1}^{T}\right) \ldots P\left(o_{n} \mid o_{1}^{n-1}, q_{1}^{T}\right) \\
& \approx \prod_{i} P\left(o_{i} \mid q_{i}\right)
\end{aligned}
$$

A Few Simplifying Assumptions

- Assume the Markov property for $P\left(q_{1}^{T}\right)$:

$$
\begin{aligned}
P\left(q_{1}^{T}\right) & =P\left(q_{1}\right) P\left(q_{2} \mid q_{1}\right) P\left(q_{3} \mid q_{1}, q_{2}\right) \ldots P\left(q_{n} \mid q_{1}^{n-1}\right) \\
& \approx \prod P\left(q_{i} \mid q_{i-1}\right)
\end{aligned}
$$

- Two more simplifying assumptions regarding $P\left(o_{1}^{T} \mid q_{1}^{T}\right)$.
- Each word is conditionally independent of the other words given the tags, and each word is conditionally independent of all tags but its own:

$$
\begin{aligned}
P\left(o_{1}^{T} \mid q_{1}^{T}\right) & =P\left(o_{1} \mid q_{1}^{T}\right) P\left(o_{2} \mid o_{1}, q_{1}^{T}\right) \ldots P\left(o_{n} \mid o_{1}^{n-1}, q_{1}^{T}\right) \\
& \approx \prod_{i} P\left(o_{i} \mid q_{i}\right)
\end{aligned}
$$

- We can now finally formulate the classification problem as:

$$
\hat{q}_{1}^{T}=\underset{q_{1}^{T}}{\arg \max } P\left(q_{1}^{T} \mid o_{1}^{T}\right) \approx \underset{q_{1}^{T}}{\arg \max } \prod_{i} P\left(o_{i} \mid q_{i}\right) P\left(q_{i} \mid q_{i-1}\right)
$$

Supervised Training

Tag Transition Probabilities
Assuming we have a training corpus of previously tagged text, the MLE can be computed from the counts of observed tags:

$$
P\left(q_{i} \mid q_{i-1}\right)=\frac{C\left(q_{i-1}, q_{i}\right)}{C\left(q_{i-1}\right)}
$$

Supervised Training

Tag Transition Probabilities
Assuming we have a training corpus of previously tagged text, the MLE can be computed from the counts of observed tags:

$$
P\left(q_{i} \mid q_{i-1}\right)=\frac{C\left(q_{i-1}, q_{i}\right)}{C\left(q_{i-1}\right)}
$$

Word Likelihoods (AKA Emission Probabilities)
Computed from relative frequencies in the same way: $P\left(o_{i} \mid q_{i}\right)=\frac{C\left(q_{i}, o_{i}\right)}{C\left(q_{i}\right)}$

Supervised Training

Tag Transition Probabilities
Assuming we have a training corpus of previously tagged text, the MLE can be computed from the counts of observed tags:

$$
P\left(q_{i} \mid q_{i-1}\right)=\frac{C\left(q_{i-1}, q_{i}\right)}{C\left(q_{i-1}\right)}
$$

Word Likelihoods (AKA Emission Probabilities)
Computed from relative frequencies in the same way: $P\left(o_{i} \mid q_{i}\right)=\frac{C\left(q_{i}, o_{i}\right)}{C\left(q_{i}\right)}$

Sparse Data Problem

The issues related to MLE / smoothing that we discussed for n-gram models also applies here...

Formal Specification of an $\mathrm{HMM}:\left\langle Q, q_{0}, q_{F}, A, B\right\rangle$

- Q: A set of states $\left\{q_{1}, \ldots, q_{N}\right\}$
- $B=b_{i}\left(o_{t}\right)$: Emission probabilities (or observation likelihoods).

Represents the probability of state q_{i} generating observation o_{t}.

- q_{0}, q_{F} : Start state / final state (not associated with observations).
- $A=\left(\begin{array}{ccc}a_{11} & \ldots & a_{1 N} \\ \vdots & \ddots & \vdots \\ a_{N 1} & \ldots & a_{N N}\end{array}\right):$ Transition probability table.
- An element $a_{i j}$ records the probability of moving from q_{i} to q_{j}, and $\forall i \sum_{j=1}^{N} a_{i j}=1$.
- In addition to the ordinary transition probabilities a_{11} through $a_{N N}$, we also assume a set of probabilities $a_{01}, \ldots, a_{0 N}$ out of the start state q_{0}, and a set of probabilities $a_{1 F}, \ldots, a_{N F}$ into the final state q_{F}.

Likelihood and Decoding

- Let $O=\left(o_{1}, o_{2}, \ldots, o_{T}\right)$ be a sequence of observations, where each o_{i} is member of some vocabulary $V=\left\{v_{1}, \ldots, v_{L}\right\}$.
- Then, for a given HMM, there are two problems we want to solve:

1. What is the likelihood of O ? (Likelihood)
2. What is the most probable underlying sequence of hidden variables $Q=\left(q_{1}, q_{2}, \ldots, q_{T}\right)$? (Decoding)

The Jason Eisner Ice Cream Problem

Given a sequence of observations O, each o_{i} corresponding to the number (1,2 or 3) of ice creams eaten on a given day, figure out the correct "hidden" sequence Q of weather states (HOT or COLD) which caused Jason to eat the ice cream. (Taken from Jurafsky \& Martin, 2009)

Computing the Likelihood (Take One)

- Let's start by assuming that we have actually observed both O and Q. The joint probability $P(O, Q)$ can be computed as

$$
P(O, Q)=P(O \mid Q) P(Q)=\prod_{i=1}^{T} P\left(o_{i} \mid q_{i}\right) \prod_{i=1}^{T} P\left(q_{i} \mid q_{i-1}\right)
$$

Computing the Likelihood (Take One)

- Let's start by assuming that we have actually observed both O and Q. The joint probability $P(O, Q)$ can be computed as

$$
P(O, Q)=P(O \mid Q) P(Q)=\prod_{i=1}^{T} P\left(o_{i} \mid q_{i}\right) \prod_{i=1}^{T} P\left(q_{i} \mid q_{i-1}\right)
$$

- Problem: We don't actually know the state sequence Q.
- Instead, compute the sum over all possible state sequences, weighted by their probability:

$$
P(O)=\sum_{Q} P(O, Q)=\sum_{Q} P(O \mid Q) P(Q)
$$

Computing the Likelihood (Take One)

- Let's start by assuming that we have actually observed both O and Q. The joint probability $P(O, Q)$ can be computed as

$$
P(O, Q)=P(O \mid Q) P(Q)=\prod_{i=1}^{T} P\left(o_{i} \mid q_{i}\right) \prod_{i=1}^{T} P\left(q_{i} \mid q_{i-1}\right)
$$

- Problem: We don't actually know the state sequence Q.
- Instead, compute the sum over all possible state sequences, weighted by their probability:

$$
P(O)=\sum_{Q} P(O, Q)=\sum_{Q} P(O \mid Q) P(Q)
$$

- More problems: For N possible states and T observations, there are a total of N^{T} possible state sequences. Exponential computational complexity, $O\left(N^{T} T\right)$.

Computing the Likelihood (Take Two)

The Forward Algorithm

- Relies on dynamic programming to reduce the complexity to $O\left(N^{2} T\right)$.
- The trick is to store and reuse the results of intermediate and partial computations.
- This is done by recursively filling the cells of a s.c. trellis structure.

Computing the Likelihood (Take Two)

The Forward Algorithm

- Relies on dynamic programming to reduce the complexity to $O\left(N^{2} T\right)$.
- The trick is to store and reuse the results of intermediate and partial computations.
- This is done by recursively filling the cells of a s.c. trellis structure.
- A cell $\alpha_{t}(j)$ in the forward trellis stores the probability of being in state q_{j} after seeing the t first observations.

$$
\alpha_{t}(j)=P\left(o_{1}, \ldots, o_{t}, q_{t}=j\right)
$$

- The value of each cell $\alpha_{t}(j)$ is computed by summing over the probabilities of all possible paths that could lead to that cell.

$$
\alpha_{t}(j)=\sum_{i=1}^{N} \alpha_{t-1}(i) a_{i j} b_{j}\left(o_{t}\right)
$$

The Forward Trellis for the Ice Cream Problem

The Forward Algorithm

1. Initialization. For each j from 1 to N :

$$
\alpha_{1}(j)=a_{0 j} b_{j}\left(o_{1}\right)
$$

2. Recursion. For each t from 2 to T, for each j from 1 to N :

$$
\alpha_{t}(j)=\sum_{i=1}^{N} \alpha_{t-1}(i) a_{i j} b_{j}\left(o_{t}\right)
$$

3. Termination.

$$
P(O)=\alpha_{T}(F)=\sum_{i=1}^{N} \alpha_{T}(i) a_{i F}
$$

Decoding

- Extracting the most probable sequence of hidden variables $Q=\left(q_{1}, \ldots, q_{T}\right)$ considered to be the source of a given sequence of observations $O=\left(o_{1}, \ldots, o_{T}\right)$.
- For the ice cream problem this amounts to finding the most probable sequence of weather states, given what we've seen of Jason's ice cream eating.

Decoding

- Extracting the most probable sequence of hidden variables $Q=\left(q_{1}, \ldots, q_{T}\right)$ considered to be the source of a given sequence of observations $O=\left(o_{1}, \ldots, o_{T}\right)$.
- For the ice cream problem this amounts to finding the most probable sequence of weather states, given what we've seen of Jason's ice cream eating.
- Just as for the likelihood, the naive approach (computing the probability of each possible state sequence) is not computationally tractable due the exponentially large number of state sequences.
- Again we can reduce the complexity by using a trellis-based dynamic programming technique: The Viterbi algorithm.

The Viterbi Trellis

- Let each cell of the Viterbi trellis $v_{t}(j)$ represent the probability of our HMM being in state q_{j} after seeing the first sub-sequence of observations $o_{1} \ldots, o_{t}$ and passing through the most probable sequence of states q_{1}, \ldots, q_{t-1}.

$$
v_{t}(j)=\max _{\left(q_{1}, \ldots, q_{t-1}\right)} P\left(o_{1}, \ldots, o_{t}, q_{1}, \ldots, q_{t-1}, q_{t}=j\right)
$$

- Moving forward through the trellis, each cell is updated recursively, based on the values of the previously computed cells:

$$
v_{t}(j)=\max _{i=1}^{N} v_{t-1}(i) a_{i j} b_{j}\left(o_{t}\right)
$$

The Backtrace

- So far the Viterbi algorithm is pretty much identical to the Forward algorithm, except that each cell stores the max probability (instead of the sum) of all the possible paths so far.

The Backtrace

- So far the Viterbi algorithm is pretty much identical to the Forward algorithm, except that each cell stores the max probability (instead of the sum) of all the possible paths so far.
- But, since we also want to extract the actual state sequence that corresponds to the most probable path, we need to keep track of our path through the trellis.
- Let $b t_{t}(j)$ denote the backtrace pointer from state q_{j} at time t, back to the previous node q_{t-1} of the most probable subpath to this node.

The Viterbi Trellis for the Ice Cream Problem

The Viterbi Algorithm

1. Initialization. For each j from 1 to N :

$$
\begin{aligned}
v_{1}(j) & =a_{0 j} b_{j}\left(o_{1}\right) \text { and } \\
b t_{1}(j) & =0
\end{aligned}
$$

2. Recursion. For each t from 2 to T, for each j from 1 to N :

$$
\begin{aligned}
v_{t}(j) & =\stackrel{N}{\max _{i=1}^{N} v_{t-1}(i) a_{i j} b_{j}\left(o_{t}\right) \text { and }} \\
b t_{t}(j) & =\underset{i=1}{\arg } \underset{\max }{\max } v_{t-1}(i) a_{i j}
\end{aligned}
$$

3. Termination

$$
\begin{aligned}
v_{T}(F) & =\max _{i=1}^{N} v_{T}(i) a_{i F} \text { and } \\
b t_{T}(F) & =\underset{i=1}{\arg }{ }_{i=1}^{N} v_{T}(i) a_{i F}
\end{aligned}
$$

(A Practical Tip)

- When multiplying many small probabilities, we risk getting values that are too close to zero to be represented: Underflow.

(A Practical Tip)

- When multiplying many small probabilities, we risk getting values that are too close to zero to be represented: Underflow.
- It is often helpful to work in "log-space":

$$
\log (\max f)=\max (\log f)
$$

- Reduces multiplication to addition.

$$
\log \prod_{i} P_{i}=\sum_{i} \log P_{i}
$$

(A Practical Tip)

- When multiplying many small probabilities, we risk getting values that are too close to zero to be represented: Underflow.
- It is often helpful to work in "log-space":

$$
\log (\max f)=\max (\log f)
$$

- Reduces multiplication to addition.

$$
\log \prod_{i} P_{i}=\sum_{i} \log P_{i}
$$

- (But beware that $\log \left(\sum f\right) \neq \sum(\log f)$, so for situations like the Forward algorithm we can't use the log-space trick. Might want to use scaling instead.)

Unsupervised Training

- So far we have assumed that we can estimate the relevant probabilities directly from annotated training data.
- This amounts to what we call supervised training.
- However, we don't always have this luxury.

Unsupervised Training

- So far we have assumed that we can estimate the relevant probabilities directly from annotated training data.
- This amounts to what we call supervised training.
- However, we don't always have this luxury.
- HMMs can also be trained unsupervised.
- The Forward-Backward algorithm is a dynamic programming technique for iteratively computing the probabilities based only on the observations and initial sets of possible states (e.g. from lexicon look-up, in the case of POS tagging).
- Based on the more general Expectation Maximization (EM) algorithm.

Evaluation

- Using a manually labeled test set as our gold standard, we can compute the accuracy of our model: The percentage of tags in test set that the tagger gets right.

Evaluation

- Using a manually labeled test set as our gold standard, we can compute the accuracy of our model: The percentage of tags in test set that the tagger gets right.
- Compare the accuracy to some reference models: an upper-bound and a baseline.
- An upper-bound ceiling can be based on e.g. how well humans would do on the task or by assuming an "oracle".
- A lower-bound baseline can be based on the accuracy expected by e.g. random choice, always picking the tags with the highest frequency, or applying a unigram model.
- Standard hypothesis tests can be applied to test the statistical significance of any differences.

