
INF4820

Hidden Markov Models

The Forward Algorithm

The Viterbi Algorithm

Erik Velldal

University of Oslo

Oct. 06, 2009

Erik Velldal INF4820 1 / 20

Topics for Today

◮ Quick recap from last time: POS-tagging viewed as Bayesian
classification.

◮ Formal specification of an HMM; 〈Q, q0, qF , A, B〉

◮ Dynamic Programming
◮ The Forward algorithm for computing the HMM probability of an

observed sequence of words.
◮ The Viterbi algorithm for computing the HMM probability of an

unobserved sequence of tags.

◮ Evaluating a tagger on test data

Erik Velldal INF4820 2 / 20

HMM Tagging as Bayesian Classification

◮ Given an observed sequence of words O = (o1, . . . , oT), we want to
find the most probable sequence of tags Q = (q1, . . . , qT).

◮ Applying Bayes’ Rule, we can state our search problem as

q̂T
1 = arg max

qT

1

P (qT
1 |o

T
1) = arg max

qT

1

P (oT
1 |q

T
1)P (qT

1)

P (oT
1)

= arg max
qT

1

P (oT
1 |q

T
1)P (qT

1)

Erik Velldal INF4820 3 / 20

HMM Tagging as Bayesian Classification

◮ Given an observed sequence of words O = (o1, . . . , oT), we want to
find the most probable sequence of tags Q = (q1, . . . , qT).

◮ Applying Bayes’ Rule, we can state our search problem as

q̂T
1 = arg max

qT

1

P (qT
1 |o

T
1) = arg max

qT

1

P (oT
1 |q

T
1)P (qT

1)

P (oT
1)

= arg max
qT

1

P (oT
1 |q

T
1)P (qT

1)

◮ This approach can also be viewed as Noisy-Channel Modeling:
◮ Shannon’s metaphor: qT

1
is the result of transmitting on

1
through a

noisy channel, i.e. oT
1

is a scrambled version of qT
1
.

◮ Our task is to model the noise so we can decode the distorted sequence
and recover the original source.

Erik Velldal INF4820 3 / 20

A Few Simplifying Assumptions
◮ Assume the Markov property for P (qT

1):

P (qT
1) = P (q1)P (q2|q1)P (q3|q1, q2) . . . P (qn|q

n−1
1)

≈
∏

i

P (qi|qi−1)

◮ Two more simplifying assumptions regarding P (oT
1 |q

T
1).

◮ Each word is conditionally independent of the other words given the
tags, and each word is conditionally independent of all tags but its own:

P (oT
1
|qT

1
) = P (o1|q

T
1

)P (o2|o1, q
T
1

) . . . P (on|o
n−1

1
, qT

1
)

≈
∏

i

P (oi|qi)

Erik Velldal INF4820 4 / 20

A Few Simplifying Assumptions
◮ Assume the Markov property for P (qT

1):

P (qT
1) = P (q1)P (q2|q1)P (q3|q1, q2) . . . P (qn|q

n−1
1)

≈
∏

i

P (qi|qi−1)

◮ Two more simplifying assumptions regarding P (oT
1 |q

T
1).

◮ Each word is conditionally independent of the other words given the
tags, and each word is conditionally independent of all tags but its own:

P (oT
1
|qT

1
) = P (o1|q

T
1

)P (o2|o1, q
T
1

) . . . P (on|o
n−1

1
, qT

1
)

≈
∏

i

P (oi|qi)

◮ We can now finally formulate the classification problem as:

q̂T
1 = arg max

qT

1

P (qT
1 |o

T
1) ≈ arg max

qT

1

∏

i

P (oi|qi)P (qi|qi−1)

Erik Velldal INF4820 4 / 20

Supervised Training

Tag Transition Probabilities

Assuming we have a training corpus of previously tagged text, the MLE can
be computed from the counts of observed tags:

P (qi|qi−1) =
C(qi−1, qi)

C(qi−1)

Erik Velldal INF4820 5 / 20

Supervised Training

Tag Transition Probabilities

Assuming we have a training corpus of previously tagged text, the MLE can
be computed from the counts of observed tags:

P (qi|qi−1) =
C(qi−1, qi)

C(qi−1)

Word Likelihoods (AKA Emission Probabilities)

Computed from relative frequencies in the same way: P (oi|qi) = C(qi,oi)
C(qi)

Erik Velldal INF4820 5 / 20

Supervised Training

Tag Transition Probabilities

Assuming we have a training corpus of previously tagged text, the MLE can
be computed from the counts of observed tags:

P (qi|qi−1) =
C(qi−1, qi)

C(qi−1)

Word Likelihoods (AKA Emission Probabilities)

Computed from relative frequencies in the same way: P (oi|qi) = C(qi,oi)
C(qi)

Sparse Data Problem

The issues related to MLE / smoothing that we discussed for n-gram
models also applies here. . .

Erik Velldal INF4820 5 / 20

Formal Specification of an HMM: 〈Q, q0, qF , A, B〉

◮ Q: A set of states {q1, . . . , qN}

◮ B = bi(ot): Emission probabilities (or observation likelihoods).
Represents the probability of state qi generating observation ot.

◮ q0, qF : Start state / final state (not associated with observations).

◮ A =

a11 . . . a1N

...
. . .

...
aN1 . . . aNN

: Transition probability table.

◮ An element aij records the probability of moving from qi to qj , and

∀i
∑N

j=1
aij = 1.

◮ In addition to the ordinary transition probabilities a11 through aNN , we
also assume a set of probabilities a01, . . . , a0N out of the start state q0,
and a set of probabilities a1F , . . . , aNF into the final state qF .

Erik Velldal INF4820 6 / 20

Likelihood and Decoding

◮ Let O = (o1, o2, . . . , oT) be a sequence of observations, where each oi

is member of some vocabulary V = {v1, . . . , vL}.

◮ Then, for a given HMM, there are two problems we want to solve:

1. What is the likelihood of O? (Likelihood)
2. What is the most probable underlying sequence of hidden variables

Q = (q1, q2, . . . , qT)? (Decoding)

Erik Velldal INF4820 7 / 20

The Jason Eisner Ice Cream Problem

Given a sequence of observations O, each oi corresponding to the number
(1, 2 or 3) of ice creams eaten on a given day, figure out the correct
“hidden” sequence Q of weather states (HOT or COLD) which caused
Jason to eat the ice cream. (Taken from Jurafsky & Martin, 2009)

Erik Velldal INF4820 8 / 20

Computing the Likelihood (Take One)

◮ Let’s start by assuming that we have actually observed both O and Q.
The joint probability P (O, Q) can be computed as

P (O, Q) = P (O|Q)P (Q) =
T

∏

i=1

P (oi|qi)
T

∏

i=1

P (qi|qi−1)

Erik Velldal INF4820 9 / 20

Computing the Likelihood (Take One)

◮ Let’s start by assuming that we have actually observed both O and Q.
The joint probability P (O, Q) can be computed as

P (O, Q) = P (O|Q)P (Q) =
T

∏

i=1

P (oi|qi)
T

∏

i=1

P (qi|qi−1)

◮ Problem: We don’t actually know the state sequence Q.

◮ Instead, compute the sum over all possible state sequences, weighted
by their probability:

P (O) =
∑

Q

P (O, Q) =
∑

Q

P (O|Q)P (Q)

Erik Velldal INF4820 9 / 20

Computing the Likelihood (Take One)

◮ Let’s start by assuming that we have actually observed both O and Q.
The joint probability P (O, Q) can be computed as

P (O, Q) = P (O|Q)P (Q) =
T

∏

i=1

P (oi|qi)
T

∏

i=1

P (qi|qi−1)

◮ Problem: We don’t actually know the state sequence Q.

◮ Instead, compute the sum over all possible state sequences, weighted
by their probability:

P (O) =
∑

Q

P (O, Q) =
∑

Q

P (O|Q)P (Q)

◮ More problems: For N possible states and T observations, there are a
total of NT possible state sequences. Exponential computational
complexity, O(NT T).

Erik Velldal INF4820 9 / 20

Computing the Likelihood (Take Two)

The Forward Algorithm

◮ Relies on dynamic programming to reduce the complexity to O(N2T).

◮ The trick is to store and reuse the results of intermediate and partial
computations.

◮ This is done by recursively filling the cells of a s.c. trellis structure.

Erik Velldal INF4820 10 / 20

Computing the Likelihood (Take Two)

The Forward Algorithm

◮ Relies on dynamic programming to reduce the complexity to O(N2T).

◮ The trick is to store and reuse the results of intermediate and partial
computations.

◮ This is done by recursively filling the cells of a s.c. trellis structure.

◮ A cell αt(j) in the forward trellis stores the probability of being in
state qj after seeing the t first observations.

αt(j) = P (o1, . . . , ot, qt = j)

◮ The value of each cell αt(j) is computed by summing over the
probabilities of all possible paths that could lead to that cell.

αt(j) =
N

∑

i=1

αt−1(i) aij bj(ot)

Erik Velldal INF4820 10 / 20

The Forward Trellis for the Ice Cream Problem

Erik Velldal INF4820 11 / 20

The Forward Algorithm

1. Initialization. For each j from 1 to N :

α1(j) = a0j bj(o1)

2. Recursion. For each t from 2 to T , for each j from 1 to N :

αt(j) =
N

∑

i=1

αt−1(i) aij bj(ot)

3. Termination.

P (O) = αT (F) =
N

∑

i=1

αT (i) aiF

Erik Velldal INF4820 12 / 20

Decoding

◮ Extracting the most probable sequence of hidden variables
Q = (q1, . . . , qT) considered to be the source of a given sequence of
observations O = (o1, . . . , oT).

◮ For the ice cream problem this amounts to finding the most probable
sequence of weather states, given what we’ve seen of Jason’s ice
cream eating.

Erik Velldal INF4820 13 / 20

Decoding

◮ Extracting the most probable sequence of hidden variables
Q = (q1, . . . , qT) considered to be the source of a given sequence of
observations O = (o1, . . . , oT).

◮ For the ice cream problem this amounts to finding the most probable
sequence of weather states, given what we’ve seen of Jason’s ice
cream eating.

◮ Just as for the likelihood, the naive approach (computing the
probability of each possible state sequence) is not computationally
tractable due the exponentially large number of state sequences.

◮ Again we can reduce the complexity by using a trellis-based dynamic
programming technique: The Viterbi algorithm.

Erik Velldal INF4820 13 / 20

The Viterbi Trellis

◮ Let each cell of the Viterbi trellis vt(j) represent the probability of our
HMM being in state qj after seeing the first sub-sequence of
observations o1 . . . , ot and passing through the most probable
sequence of states q1, . . . , qt−1.

vt(j) = max
(q1,...,qt−1)

P (o1, . . . , ot, q1, . . . , qt−1, qt = j)

◮ Moving forward through the trellis, each cell is updated recursively,
based on the values of the previously computed cells:

vt(j) =
N

max
i=1

vt−1(i) aij bj(ot)

Erik Velldal INF4820 14 / 20

The Backtrace

◮ So far the Viterbi algorithm is pretty much identical to the Forward
algorithm, except that each cell stores the max probability (instead of
the sum) of all the possible paths so far.

Erik Velldal INF4820 15 / 20

The Backtrace

◮ So far the Viterbi algorithm is pretty much identical to the Forward
algorithm, except that each cell stores the max probability (instead of
the sum) of all the possible paths so far.

◮ But, since we also want to extract the actual state sequence that
corresponds to the most probable path, we need to keep track of our
path through the trellis.

◮ Let btt(j) denote the backtrace pointer from state qj at time t, back
to the previous node qt−1 of the most probable subpath to this node.

Erik Velldal INF4820 15 / 20

The Viterbi Trellis for the Ice Cream Problem

Erik Velldal INF4820 16 / 20

The Viterbi Algorithm

1. Initialization. For each j from 1 to N :

v1(j) = a0j bj(o1) and

bt1(j) = 0

2. Recursion. For each t from 2 to T , for each j from 1 to N :

vt(j) =
N

max
i=1

vt−1(i) aij bj(ot) and

btt(j) =
N

arg max
i=1

vt−1(i) aij

3. Termination

vT (F) =
N

max
i=1

vT (i) aiF and

btT (F) =
N

arg max
i=1

vT (i) aiF

Erik Velldal INF4820 17 / 20

(A Practical Tip)

◮ When multiplying many small probabilities, we risk getting values that
are too close to zero to be represented: Underflow.

Erik Velldal INF4820 18 / 20

(A Practical Tip)

◮ When multiplying many small probabilities, we risk getting values that
are too close to zero to be represented: Underflow.

◮ It is often helpful to work in “log-space”:

log(max f) = max(log f)

◮ Reduces multiplication to addition.

log
∏

i

Pi =
∑

i

log Pi

Erik Velldal INF4820 18 / 20

(A Practical Tip)

◮ When multiplying many small probabilities, we risk getting values that
are too close to zero to be represented: Underflow.

◮ It is often helpful to work in “log-space”:

log(max f) = max(log f)

◮ Reduces multiplication to addition.

log
∏

i

Pi =
∑

i

log Pi

◮ (But beware that log(
∑

f) 6=
∑

(log f), so for situations like the
Forward algorithm we can’t use the log-space trick. Might want to use
scaling instead.)

Erik Velldal INF4820 18 / 20

Unsupervised Training

◮ So far we have assumed that we can estimate the relevant probabilities
directly from annotated training data.

◮ This amounts to what we call supervised training.

◮ However, we don’t always have this luxury.

Erik Velldal INF4820 19 / 20

Unsupervised Training

◮ So far we have assumed that we can estimate the relevant probabilities
directly from annotated training data.

◮ This amounts to what we call supervised training.

◮ However, we don’t always have this luxury.

◮ HMMs can also be trained unsupervised.
◮ The Forward-Backward algorithm is a dynamic programming technique

for iteratively computing the probabilities based only on the
observations and initial sets of possible states (e.g. from lexicon
look-up, in the case of POS tagging).

◮ Based on the more general Expectation Maximization (EM) algorithm.

Erik Velldal INF4820 19 / 20

Evaluation

◮ Using a manually labeled test set as our gold standard, we can
compute the accuracy of our model: The percentage of tags in test
set that the tagger gets right.

Erik Velldal INF4820 20 / 20

Evaluation

◮ Using a manually labeled test set as our gold standard, we can
compute the accuracy of our model: The percentage of tags in test
set that the tagger gets right.

◮ Compare the accuracy to some reference models: an upper-bound and
a baseline.

◮ An upper-bound ceiling can be based on e.g. how well humans would
do on the task or by assuming an “oracle”.

◮ A lower-bound baseline can be based on the accuracy expected by e.g.
random choice, always picking the tags with the highest frequency, or
applying a unigram model.

◮ Standard hypothesis tests can be applied to test the statistical
significance of any differences.

Erik Velldal INF4820 20 / 20

