
INF4820

Formal Grammars and

Parsing Strategies

Erik Velldal

University of Oslo

Oct. 13, 2009

Erik Velldal INF4820 1 / 17

Topics for Today

◮ Formal Grammars
◮ Context Free Grammars
◮ Treebanks

◮ Parsing
◮ Basic strategies:
◮ Bottom-Up
◮ Top-Down

Erik Velldal INF4820 2 / 17

From Linear Order to Hierarchical Structure

◮ Some of the models we’ve looked at so far:
◮ n-gram models. Purely linear and surface oriented.
◮ HMMs. Adds one layer of abstraction; POS as hidden variables. Still

only linear.

◮ Today; Formal grammar. Adds hierarchical structure.
◮ In NLP, being a sub-discipline of AI, we’d like our programs to

understand language use (on some level).
◮ Finding the grammatical structure of sentences is a step towards

understanding.
◮ Shift focus from “sequences” to “sentences”.

Erik Velldal INF4820 3 / 17

Why We Need Structure

Constituency

◮ Word tends to lump together into groups that behave like single units.

◮ Constituents of the same type are interchangeable in similar syntactic
environments.

The decision

The controversial decision

The decision of the members

The decision of this year’s Nobel committee

surprises most of us.

Erik Velldal INF4820 4 / 17

Why We Need Structure

Constituency

◮ Word tends to lump together into groups that behave like single units.

◮ Constituents of the same type are interchangeable in similar syntactic
environments.

The decision

The controversial decision

The decision of the members

The decision of this year’s Nobel committee

surprises most of us.

Long-Distance Dependencies

◮ The decision of the Nobel committee members surprises most of us.

◮ Why would a purely linear model have problems predicting this?

◮ Verb agreement reflects a hierarchical structure of the sentence, not
just the linear order of words.

Erik Velldal INF4820 4 / 17

Why We Need Structure

Grammatical Roles

◮ The committee gave the prize to Obama.

◮ Obama was given the prize by the committee.

◮ The prize was given to Obama by the committee.

◮ Who gives what to whom?

◮ give(committee, prize, obama)

Erik Velldal INF4820 5 / 17

Why We Need Structure

(Courtesy of the Speculative Grammarian, –the journal of satirical linguistics.)

Erik Velldal INF4820 6 / 17

Context Free Grammars (CFGs)

◮ Phrase structure grammar

◮ Formal mathematical system for modeling constituent structure.

◮ Defined in terms of a lexicon and a set of rules

◮ Formal models of “language” in a broad sense
◮ natural languages, programming languages, communication

protocols. . .
◮ Can be expressed in the “meta-syntax” of the Backus-Naur Form

formalism.
◮ When looking up macros and special forms in the Common Lisp

HyperSpec, you’ve been reading (extended) BNF.

◮ Powerful enough to express sophisticated relations among words, yet
in a computationally tractable way.

Erik Velldal INF4820 7 / 17

CFGs (Formally This Time)

Formally, a CFG is a quadruple: G = 〈C, Σ, P, S〉

◮ C is the set of categories (aka non-terminals), e.g. {S, NP, VP, V};

◮ Σ is the vocabulary (aka terminals), e.g. {Kim, snow, saw, in};

◮ P is a set of category rewrite rules (aka productions), e.g.

S → NP VP
VP → V NP
NP → Kim
NP → snow
V → saw

◮ S ∈ C is the start symbol, a filter on complete (‘sentential’) results;

◮ for each rule ‘α → β1, β2, ..., βn’ ∈ P : α ∈ C and βi ∈ C ∪ Σ;
1 ≤ i ≤ n.

Erik Velldal INF4820 8 / 17

Derivation and Generation

◮ If we can use the rules in P to recursively rewrite S into a sequence
wn

i
where each wi ∈ Σ, we say that a wn

i
can be derived from S.

◮ Top-down view of generative grammars:
◮ For a grammar G, the language LG is defined as the set of strings that

can be derived from S.
◮ Grammatical strings =def strings generated by the grammar

◮ The “context-freeness” of CFGs refers to the fact that we rewrite
non-terminals without regard to the overall context in which they
occur.

Erik Velldal INF4820 9 / 17

Treebanks

◮ When training our HMM taggers we used corpus data annotated with
POS.

◮ When a corpus is annotated with grammatical structure, we call it
treebank.

◮ A treebank can define the grammar, or we can use a grammar to
construct a treebank.

◮ Most important use: Inferring stochastic grammars, e.g. Probabilistic
Context-Free Grammars (PCFGs).

◮ Each production is associated with a probability.

Erik Velldal INF4820 10 / 17

Parsing

◮ We now move from a declarative to a procedural view.

◮ Parsing = mapping a string to the derivation sequence(s) that could
have generated it.

◮ In parsing a sentence we attempt to recognize it wrt a grammar by
assigning syntactic structure to it.

◮ We define the task as a search problem.
◮ Find trees whose root is S and whose leafs cover exactly the words in

the input.
◮ Two basic constraints.

Erik Velldal INF4820 11 / 17

Parsing: Assigning Structure

S → NP VP
VP → V | V NP | VP PP
NP → NP PP
PP → P NP

NP → Kim | snow | Oslo
V → saw
P → in

S

�
�

�
�

H
H

H
H

NP

Kim

VP

�
�

�

H
H

H

VP
�
�

H
H

V

saw

NP

snow

PP
�� HH

P

in

NP

Oslo

S

�
�

�

H
H

H

NP

Kim

VP

�
�
�

H
H

H

V

saw

NP

�
�

H
H

NP

snow

PP
�� HH

P

in

NP

oslo

Erik Velldal INF4820 12 / 17

Parsing Strategy: Top-Down

Goal-directed search

◮ Starting from the root S, we try to build a tree down to the leafs,
matching the input.

Recursive Descent Parsing

◮ For a given parsing goal α, apply all rules in P where where α is the
LHS;

◮ Successively try to expand the RHS of each rule;
◮ For each βi in the RHS of each rule, working from left to right,

recursively attempt to parse βi;
◮ Termination: when α is a prefix of the input string, parsing succeeds.

◮ We successfully parse a string if a parsing goal S terminates
consuming the full input string.

◮ (Note; we have implicitly formulated this as a depth-first search, using
a stack and backtracking.)
Erik Velldal INF4820 13 / 17

Parsing Strategy: Top-Down

Advantages

◮ Never wastes time building trees that don’t result in an S.

Disadvantages

◮ Wastes time on exploring trees that are inconsistent with the input.

◮ Duplicated effort; When backtracking we may discard parsed
constituents that will need to be rebuilt again later.

◮ Exponential complexity
◮ Good candidate for memoization

◮ Doesn’t terminate in the case of rules that are directly left recursive;
◮ i.e. if the first symbol on the RHS is identical to the LHS non-terminal.
◮ It is possible to transform the grammar to remove left recursive rules.

Erik Velldal INF4820 14 / 17

Parsing Strategy: Bottom-Up

Data-directed search

◮ Starting with the input, we try to build a tree upwards that is rooted
in S and covers the entire input.

Shift-Reduce Parsing

◮ If a prefix of the symbols on top of the stack matches the RHS of a
grammar rule, reduce the RHS of the rule to its LHS, replacing the
RHS symbols on top of the stack with the non-terminal occurring on
the LHS of the rule.

◮ If not, shift (push) the next input token onto the stack.

◮ We have successfully recognized a string if the stack can be reduced
to the root symbol S when we get to the end of the input.

◮ What’s missing from our formulation so far?

Erik Velldal INF4820 15 / 17

Parsing Strategy: Bottom-Up

Data-directed search

◮ Starting with the input, we try to build a tree upwards that is rooted
in S and covers the entire input.

Shift-Reduce Parsing

◮ If a prefix of the symbols on top of the stack matches the RHS of a
grammar rule, reduce the RHS of the rule to its LHS, replacing the
RHS symbols on top of the stack with the non-terminal occurring on
the LHS of the rule.

◮ If not, shift (push) the next input token onto the stack.

◮ We have successfully recognized a string if the stack can be reduced
to the root symbol S when we get to the end of the input.

◮ What’s missing from our formulation so far? A mechanism for
backtracking to handle ambiguity and non-determinism!

Erik Velldal INF4820 15 / 17

Parsing Strategy: Bottom-Up

Advantages and disadvantages

◮ Never wastes time building trees that are not locally grounded in the
input.

◮ Wastes time on exploring trees that cannot lead to an S (or be joined
by their neighbors in an intermediate tree).

◮ (However, availability of partial analyses desirable for, at least, some
applications.)

◮ Unary left-recursive rules (e.g. ‘NP → NP’) would still be problematic.

Erik Velldal INF4820 16 / 17

Next Week

◮ Local and global syntactic ambiguity
◮ E.g. attachment ambiguity
◮ Increased coverage = increased ambiguity
◮ The backtracking approach is too inefficient

◮ Instead of just recognizing strings (accept/reject) or getting a parse,
we would like to be able to (efficiently) extract all possible parses.

◮ Dynamic programming for more efficient parsing:
◮ CKY
◮ Earley
◮ Chart parsing

Erik Velldal INF4820 17 / 17

