
INF4820

Chart Parsing

Erik Velldal

University of Oslo

Oct. 20, 2009

Erik Velldal INF4820 1 / 19

Topics for Today

◮ Continue looking at parsing
◮ Analysis of sentence structure
◮ Natural language understanding

◮ The ambiguity challenge
◮ Last week implicitly assumed that we could either explore all parses in

parallel (requires an unrealistic amount of memory), or that we could
use a backtracking approach (too inefficient due to the degree of
ambiguity in realistic grammars).

◮ Today we look at dynamic programming for parsing.
◮ Chart Parsing; CKY, Earley, etc.
◮ Ambiguity packing

Erik Velldal INF4820 2 / 19

Ambiguity

◮ Consider the possible PP-attachments in a sentence like

I called the guy with the iPhone from work.

◮ Global: Several ways to derive a full tree for the sentence.

◮ Local: Even when there’s only one grammatical analysis for the full
sentence in the end, there might still be several possible analyses for
words and sub-strings.

◮ Also, we typically want the possibility to access to all grammatical
complete parses for a given string, and the same sub-trees re-enter in
different parses.

◮ Trees do not provide a good way of representing ambiguity: each
possibility requires a separate tree.

◮ Local ambiguities multiply. . .

Erik Velldal INF4820 3 / 19

. . . pretty big dog’s house. . .

�
�

�
�

H
H

H
H

�
�

H
H

pretty big
�

��
H

HH

�� HH

dog ’s
house

�
�

��

H
H

HH

pretty
�

�
�

H
H

H

big �
��

H
HH

�� HH

dog ’s
house

�
�
�

H
H

H

�
��

H
HH

�
��

H
HH

�
�

H
H

pretty big
dog

’s
house

�
�

�

H
H

H

�
�

��

H
H

HH

�
��

H
HH

pretty �� HH

big dog

’s

house

�
�

�
��

H
H

H
HH

pretty �
��

H
HH

�
�

H
H

�� HH

big dog
’s

house

Erik Velldal INF4820 4 / 19

Ambiguity (cont’d)

◮ Recall the efficiency problems with backtracking approaches like
recursive descent.

◮ Consider the famous garden path sentence

The horse raced [PP past the barn] fell.

◮ Structural and lexical ambiguities often lead the parser to build trees
that it may eventually discard because they cannot be used in a
complete parse for the whole input.

◮ The same sub-tree may be built several times: when backtracking the
parser forgets about the previous structures and starts all over again.

◮ Exponential complexity in the worst case. Waste time by repeatedly
re-parsing the same sub-string, and waste memory representing the
same sub-trees several times.

Erik Velldal INF4820 5 / 19

Dynamic Programming for Parsing

◮ Dynamic Programming: Simplify a search problem by systematically
computing solutions to sub-problems and storing them in a table. The
overall problem is solved by re-using the solutions for the sub-problems.

Erik Velldal INF4820 6 / 19

Dynamic Programming for Parsing

◮ Dynamic Programming: Simplify a search problem by systematically
computing solutions to sub-problems and storing them in a table. The
overall problem is solved by re-using the solutions for the sub-problems.

◮ For parsing, the sub-problems are analyses of sub-strings, and the
table represents a chart.

◮ The chart can be visualized as a graph, recording the sub-trees that
have been found, indexed by the string positions they span.

◮ Vertices (nodes): Positions in the string wn
1 , starting from before the

first word (0), ending after the final word (n):

0 Kim 1 adored 2 snow 3 in 4 Oslo 5

◮ Edges (arcs): Span vertices from a start point to an end, representing a
rule instantiation over a sub-string.

Erik Velldal INF4820 6 / 19

Bounding Ambiguity — The Parse Chart

◮ For many sub-strings, more than one way of deriving the same
category.

◮ NPs: 1 | 2 | 3 | 6 | 7 | 9

◮ PPs: 4 | 5 | 8

u

2

u

3

u

4

u

5

u

6

u

7

boys with hats from France

1 2 3

4 5

6 7

8

9

Erik Velldal INF4820 7 / 19

Bounding Ambiguity — The Parse Chart

◮ For many sub-strings, more than one way of deriving the same
category.

◮ NPs: 1 | 2 | 3 | 6 | 7 | 9

◮ PPs: 4 | 5 | 8

◮ 9 ≡ 1 + 8 | 6 + 5

u

2

u

3

u

4

u

5

u

6

u

7

boys with hats from France

1 2 3

4 5

6 7

8

9

Erik Velldal INF4820 7 / 19

Bounding Ambiguity — The Parse Chart

◮ For many sub-strings, more than one way of deriving the same
category.

◮ NPs: 1 | 2 | 3 | 6 | 7 | 9

◮ PPs: 4 | 5 | 8

◮ 9 ≡ 1 + 8 | 6 + 5

◮ Parse forest: a single item represents multiple trees (Billot & Lang, 89)

u

2

u

3

u

4

u

5

u

6

u

7

boys with hats from France

1 2 3

4 5

6 7

8

9

Erik Velldal INF4820 7 / 19

CKY (Cocke, Kasami, & Younger)

◮ The simplest chart algorithm.

◮ The simplest version of CKY is for a CFG in Chomsky Normal Form:
◮ α→ β1β2 or α→ w (for {α, β1, β2} ⊆ C and w ∈ Σ)

Erik Velldal INF4820 8 / 19

CKY (Cocke, Kasami, & Younger)

◮ The simplest chart algorithm.

◮ The simplest version of CKY is for a CFG in Chomsky Normal Form:
◮ α→ β1β2 or α→ w (for {α, β1, β2} ⊆ C and w ∈ Σ)

◮ Visualize the chart as an n-by-n matrix or table.

◮ Use chart to record partial analyses, indexing them by string positions.
◮ Row indexes start.
◮ Column indexes end.

◮ Processing the input left to right, we incrementally fill the chart table.

◮ CKY is designed to guarantee that the parser only looks for rules that
use a constituent from i to j after it has determined all the
constituents that end at i. Otherwise something might be missed.

Erik Velldal INF4820 8 / 19

The CKY Algorithm

input: w1, . . . , wn

for j = 1 to n do

chart[j−1,j] ← {α |α→ wj ∈ P}

for i = j − 2 down to 0 do

for k = i + 1 to j − 1 do

chart[i,j] ← chart[i,j]∪

{α |α→ β1 β2 ∈ P, β1 ∈ chart[i,k], β2 ∈ chart[k,j]}

[1,3] ← [1,2] + [2,3]
[0,3] ← [0,1] + [1,3]
· · ·
[3,5] ← [3,4] + [4,5]
[2,5] ← [2,3] + [3,5]
[1,5] ← [1,2] + [2,5]
[0,5] ← [0,1] + [1,5]

1 2 3 4 5

0 NP S S

1 V VP VP

2 NP NP

3 P PP

4 NP

Erik Velldal INF4820 9 / 19

The CKY Algorithm (cont’d)

◮ What’s missing?
◮ So far we just have a chart recognizer: We only determine whether the

input is in the language generated by the grammar.
◮ To read out a parse tree, each α in the chart need to record pointers to

which βi and βj it combines.

Erik Velldal INF4820 10 / 19

Chart Parsing

◮ Rigid control structure of CKY as defined above: Working left to right
and bottom-up, fill the upper triangular matrix column by column.

◮ In the more general formulation of “active” chart parsing as introduced
by Martin Kay, the order of computation is more flexible:

◮ No assumptions about earlier results.
◮ Active edges encode partial rule instantiations, “waiting” for additional

(adjacent and passive) constituents to complete: [1, 2, VP → V •NP].

◮ Parser can fill in chart cells in any order and guarantee completeness.

Erik Velldal INF4820 11 / 19

Active Chart Parsing

◮ The items in the parse chart are called edges.

◮ An edge is a (possibly partial) rule instantiation over a sub-string.

◮ The chart indexes edges by start and end string position (aka vertices).

◮ “Dotted rules”; a dot in a rule RHS indicates degree of completion:
α→ β1...βi−1 • βi...βn

◮ Active edges (aka incomplete items)—partial RHS:
[1, 2,VP → V •NP]

◮ Passive edges (aka complete items)— full RHS:
[1, 3,VP → V NP•]

◮ The key principle for processing edges is given by what Kay termed
The Fundamental Rule:
[i, j, α→ β1...βl−1 • βl...βn] + [j, k, βl → γ+•]

7→ [i, k, α→ β1...βl • βl+1...βn]

Erik Velldal INF4820 12 / 19

An Example of a (Near-)Complete Chart

1 2 3 4 5

0

S→NP•VP
NP→NP•PP
NP→Kim•

S→NP VP•

1
VP→V•NP
V→adored•

VP→VP•PP
VP→VNP•

VP→VP•PP
VP→VP PP•
VP→VPP•

2
NP→NP•PP
NP→snow•

NP→NP•PP
NP→NP PP•

3
PP→P•NP

P→in• PP→P NP•

4
NP→NP•PP
NP→Oslo•

�

�

�

�
0 Kim 1 adored 2 snow 3 in 4 Oslo 5

Erik Velldal INF4820 13 / 19

(Even) More Active Edges
0 1 2 3

0

S→ •NP VP
NP→ •NP PP
NP→ •Kim

S→NP•VP
NP→NP•PP
NP→Kim•

S→NP VP•

1

VP→ •VP PP
VP→ •VNP
V→ •adored

VP→V•NP
V→adored•

VP→VP•PP
VP→VNP•

2
NP→ •NP PP
NP→ •snow

NP→NP•PP
NP→snow•

3

◮ Processing: scan, predict, complete.

◮ Edges in each cell chart [i,i] represent “predictions”. Can be constructed
bottom-up or top-down.

◮ “Completing”; apply fundamental rule until no additional edges can be
derived.

Erik Velldal INF4820 14 / 19

The Agenda

◮ The actual parsing is chart-driven; mostly just a question of invoking
the fundamental rule (cf. “completing”).

◮ However, we also sometimes consult the grammar rules (cf.
“predicting”), and we need some way of deciding in what order to
process the new edges.

◮ Rather than adding new edges to the chart directly, we first add to the
agenda.

◮ The agenda is simply as a set of edges waiting to be added to the
chart, and it determines in what order possibilities are tried.

◮ Stack agenda: every time an edge is added, it is placed on the front of
the agenda. (Depth-first)

◮ Queue agenda: every time an edge is added, it is placed on the end of
the agenda. (Breadth-first)

Erik Velldal INF4820 15 / 19

Backpointers: Recording the Derivation History

0 1 1 3

0

2: S→ •NP VP
1: NP→ •NP PP
0: NP→ •Kim

10: S→8•VP
9: NP→8•PP
8: NP→Kim•

17: S→8 15•

1

5: VP→ •VP PP
4: VP→ •VNP
3: V→ •adored

12: VP→11•NP
11: V→adored•

16: VP→15•PP
15: VP→11 13•

2
7: NP→ •NP PP
6: NP→ •snow

14: NP→13•PP
13: NP→snow•

3

◮ Use edges to record derivation trees: backpointers to daughters.

◮ A single edge can represent multiple derivations: backpointer sets.

Erik Velldal INF4820 16 / 19

Ambiguity Packing in the Chart

General Idea

◮ Maintain only one edge for each α from i to j (the “representative”).

◮ Record alternate sequences of daughters for α in the representative.

◮ (E.g. only one NP representative for a pretty big dog’s house)

Implementation

◮ Group passive edges into equivalence classes by identity of α, i, and j.

◮ Search chart for existing equivalent edge (h, say) for each new edge e.

◮ When h (the ‘host’ edge) exists, pack e into h to record equivalence.

◮ e not added to the chart, no derivations with or further processing of e.

◮ Unpacking: the process of multiplying out all alternative daughters for
all result edges.

Erik Velldal INF4820 17 / 19

Chart Parsing, Summarized

Basic Notions

◮ Specialized dynamic programming

◮ Use chart to record partial analyses, indexing them by string positions.

◮ Treat multiple ways of deriving the same category for some sub-string
as equivalent; pursue only once when combining with other
constituents.

Key Benefits

◮ Avoid redundancy in computation and representation of results.

◮ Provides a general framework (“algorithm schema”) in which
alternative parsing strategies can be implemented.

◮ Efficient indexing of constituents: no search by start or end positions.

◮ Compute parse forest with exponential “extension” in polynomial time.

Erik Velldal INF4820 18 / 19

The Hardest Problem Still Remains

◮ How to make a final choice among all the possible readings?

◮ Grammatical knowledge vs. world knowledge.

◮ Identifying the correct reading is an “AI complete” problem.

◮ Syntactic disambiguation seems to require deeper semantic and
pragmatic knowledge: common sense.

Erik Velldal INF4820 19 / 19

The Hardest Problem Still Remains

◮ How to make a final choice among all the possible readings?

◮ Grammatical knowledge vs. world knowledge.

◮ Identifying the correct reading is an “AI complete” problem.

◮ Syntactic disambiguation seems to require deeper semantic and
pragmatic knowledge: common sense.

◮ Where to attach the with-PP?

He scrubbed the dog with the

{

collar.

brush.

Erik Velldal INF4820 19 / 19

The Hardest Problem Still Remains

◮ How to make a final choice among all the possible readings?

◮ Grammatical knowledge vs. world knowledge.

◮ Identifying the correct reading is an “AI complete” problem.

◮ Syntactic disambiguation seems to require deeper semantic and
pragmatic knowledge: common sense.

◮ Where to attach the with-PP?

He scrubbed the dog with the

{

collar.

brush.

◮ A good case for empirical methods: Usage statistics as a proxy for
common sense.

Erik Velldal INF4820 19 / 19

