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Topics for Today

◮ Modeling meaning by context
◮ Inferring lexical semantics from contextual distributions
◮ The distributional hypothesis
◮ Ways to define context
◮ Frequencies vs. association weights

◮ Representation in vector space models
◮ Feature vectors
◮ Feature space
◮ Measuring semantic similarity in a “semantic space”
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The Distributional Hypothesis

AKA The Contextual Theory of Meaning

– Meaning is use. (Wittgenstein, 1953)

– The meaning of entities, and the meaning of grammatical relations

among them, is related to the restriction of combinations of these

entities relative to other entities. (Harris, 1968)

– You shall know a word by the company it keeps. (Firth, 1968)
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The Distributional Hypothesis

AKA The Contextual Theory of Meaning

– Meaning is use. (Wittgenstein, 1953)

– The meaning of entities, and the meaning of grammatical relations

among them, is related to the restriction of combinations of these

entities relative to other entities. (Harris, 1968)

– You shall know a word by the company it keeps. (Firth, 1968)
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�

�
He was feeling seriously hung over after drinking too many
shots of retawerif at the party last night.
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Defining “Context”

◮ The basic idea: Capture the meaning of a word in terms of its context.

◮ Motivation: Can compare the meaning of words by comparing their
contexts. No need for prior knowledge.

◮ Each word oi represented by a set of feature functions {f1, . . . , fn}.
Each fj records some property of the observed contexts of oi.

◮ First task: Define context.
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Defining “Context”

◮ The basic idea: Capture the meaning of a word in terms of its context.

◮ Motivation: Can compare the meaning of words by comparing their
contexts. No need for prior knowledge.

◮ Each word oi represented by a set of feature functions {f1, . . . , fn}.
Each fj records some property of the observed contexts of oi.

◮ First task: Define context.

Context windows

◮ Context = neighborhood of ±n words before and after the focus word.

◮ Rectangular; treating every word occurring within the window as
equally important.

◮ Triangular; weighting the importance of a context word according to
its distance from the target.

◮ Bag-of-Words (BoW); ignoring the linear ordering of the words.

Erik Velldal INF4820 4 / 22



Defining “Context” (cont’d)

Other BoW Approaches

◮ Context = all words co-occurring within the same document.

◮ Context = all words co-occurring within the same sentence.
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Defining “Context” (cont’d)

Other BoW Approaches

◮ Context = all words co-occurring within the same document.

◮ Context = all words co-occurring within the same sentence.

Grammatical relations

◮ Context = the grammatical relations and dependencies that a target
holds to other words.

◮ Intuition: E.g. nouns occurring in the same grammatical relations with
the same verbs probably denote similar kinds of things:

. . . to {drink | pour | spill} some {milk | water | wine} . . .

◮ Requires deeper linguistic analysis than a simple windowing approach,
but PoS-tagging + shallow parsing is enough.
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Defining “Context” (cont’d)

What is a word (again)?

◮ Different levels of abstraction and morphological normalization:

◮ Full-form words vs. stemming vs. lemmatization . . .
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Defining “Context” (cont’d)

What is a word (again)?

◮ Different levels of abstraction and morphological normalization:

◮ Full-form words vs. stemming vs. lemmatization . . .

Stop-words

◮ Filter out closed-class words or function words by using a so-called
stop-list.

◮ The idea is that only content words contributes significantly to
indicate the meaning of a word.
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Different Types of Contexts ⇒

Different Types of Similarity

◮ Different kinds of context may indicate different relations of semantic
similarity.

◮ ‘Relatedness’ vs. ‘sameness’. Or domain vs. content.

◮ Similarity in domain :
{car, road, gas, service, traffic, driver, license}

◮ Similarity in content:
{car, train, bicycle, truck, vehicle, airplane, buss}

◮ While broader definitions of context (windowing, BoW, etc.) tend to
give clues for domain-based relatedness, more fine-grained
grammatical contexts give clues for content-based similarity.
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Examples from Oslo Corpus

◮ Throughout the next lectures we’ll sometimes be looking at examples
of contextual features extracted from the Oslo Corpus.

◮ Developed by the Text Laboratory at UiO

◮ 18.5 mill words

◮ The corpus is annotated by the Oslo-Bergen Tagger.

◮ A shallow parser then extracts grammatical features for (lemmatized)
nouns indicating;

◮ adjectival modifications
◮ prepositional phrases
◮ possessive modification
◮ noun-noun conjunction
◮ noun-noun modification
◮ verbal arguments (subj., dir., ind., and prepositional objects)
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Grammatical Context Features

�

�

�

�

Kunden

Customer-the

bestilte

ordered

den

the

mest

most

eksklusive

exclusive

vinen

wine

på

on

menyen.

menu-the.

‘The customer ordered the most exclusive wine on the menu.’

◮ Example of grammatical context features:

Target Feature

kunde (customer) SUBJ_OF bestille (order)
vin (wine) OBJ_OF bestille (order)
vin (wine) ADJ_MOD_BY eksklusiv (exclusive)
vin (wine) PP_MOD_BY meny (menu)
meny (menu) PP_MOD_OF vin (wine)
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Feature Vectors

◮ A feature vector is an n-dimensional vector of numerical features
describing some object.

◮ Let the set of n feature functions describing the lexical contexts of a
word oi be represented as a feature vector F (oi) = ~fi = 〈fi1, . . . , fin〉.

◮ E.g. let oi = vin, and fj = (OBJ_OF bestille).

◮ Then fij = f(vin, (OBJ_OF bestille)) = 4 would mean that we
have observed vin (wine) to be the object of the verb bestille (order)
in our corpus 4 times.
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Feature Vectors

◮ A feature vector is an n-dimensional vector of numerical features
describing some object.

◮ Let the set of n feature functions describing the lexical contexts of a
word oi be represented as a feature vector F (oi) = ~fi = 〈fi1, . . . , fin〉.

◮ E.g. let oi = vin, and fj = (OBJ_OF bestille).

◮ Then fij = f(vin, (OBJ_OF bestille)) = 4 would mean that we
have observed vin (wine) to be the object of the verb bestille (order)
in our corpus 4 times.

◮ A wide range of algorithms for pattern matching and machine learning
relies on feature vectors as a means of representing objects
numerically.

◮ (Feature vectors can represent arbitrary objects; e.g. pixels of images
for OCR or face recognition.)
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The Feature Space

◮ The feature vectors can be interpreted geometrically; as positioned in
a feature space (= vector space model).

◮ A vector space model is defined by a system of d dimensions or
coordinates where objects are represented as real valued vectors in the
space ℜn.

◮ The dimensions of our space represent contextual features.

◮ The points in our space represent words (e.g. noun distributions).

◮ The points are positioned in the space according to their values along
the various contextual dimensions.
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Semantic Spaces

◮ When using a vector space model with context vectors, combined with
the distributional hypothesis, we sometimes speak of having defined a
semantic space.

◮ Semantic similarity ⇒ Distributional similarity ⇒ Spatial proximity
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Semantic Spaces

◮ When using a vector space model with context vectors, combined with
the distributional hypothesis, we sometimes speak of having defined a
semantic space.

◮ Semantic similarity ⇒ Distributional similarity ⇒ Spatial proximity

Formally defined as a triple 〈F, A, s〉:

◮ F = {~f1, . . . , ~fn} is the set of feature vectors. fij gives the
co-occurrence count for the ith word and the jth context.

◮ A is a measure of association strength for a word–context pair, in the
form of a statistical test of dependence. Maps each element fij of the
feature vectors in F to a real value.

◮ s is a similarity function.

◮ (We’ve talked about F; next up is A, then s.)
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Word–Context Association

◮ We want our feature vectors to reflect which contexts are the most
salient or relevant for each word.

◮ Problem: Raw co-occurrence frequencies alone, or even MLE
probabilities, are not a good indicators of relevance.
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Word–Context Association

◮ We want our feature vectors to reflect which contexts are the most
salient or relevant for each word.

◮ Problem: Raw co-occurrence frequencies alone, or even MLE
probabilities, are not a good indicators of relevance.

◮ Consider the noun vin (wine) as a direct object of the verbs kjøpe
(buy) and helle (pour):

◮ f(vin, (obj_of kjøpe)) = 14

◮ f(vin, (obj_of helle)) = 8

◮ . . . but the feature (obj_of helle) seems more indicative of the
semantics of vin than (obj_of kjøpe).
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Word–Context Association

◮ We want our feature vectors to reflect which contexts are the most
salient or relevant for each word.

◮ Problem: Raw co-occurrence frequencies alone, or even MLE
probabilities, are not a good indicators of relevance.

◮ Consider the noun vin (wine) as a direct object of the verbs kjøpe
(buy) and helle (pour):

◮ f(vin, (obj_of kjøpe)) = 14

◮ f(vin, (obj_of helle)) = 8

◮ . . . but the feature (obj_of helle) seems more indicative of the
semantics of vin than (obj_of kjøpe).

◮ Solution: Weight the frequency counts by an association function.
“Normalize” frequencies for chance co-occurrence.
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Pointwise Mutual Information

◮ Defines the association between a feature f and an observation o as a
likelihood ratio of their joint probability and the product of their
marginal probabilities:

I(f, o) = log2

P (f, o)

P (f)P (o)
= log2

P (f)P (o|f)

P (f)P (o)

= log2

P (o|f)

P (o)

◮ Perfect independence: P (f, o) = P (f)P (o) and I(f, o) = 0.

◮ Perfect dependence: If f and o always occur together then
P (o|f) = 1 and I(f, o) = log2 1/P (o).
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Pointwise Mutual Information

◮ Defines the association between a feature f and an observation o as a
likelihood ratio of their joint probability and the product of their
marginal probabilities:

I(f, o) = log2

P (f, o)

P (f)P (o)
= log2

P (f)P (o|f)

P (f)P (o)

= log2

P (o|f)

P (o)

◮ Perfect independence: P (f, o) = P (f)P (o) and I(f, o) = 0.

◮ Perfect dependence: If f and o always occur together then
P (o|f) = 1 and I(f, o) = log2 1/P (o).

◮ A smaller marginal probability P (o) leads to a larger association score

I(f, o). → Overestimates the correlation of rare events.
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The Log Odds Ratio

◮ Measures the magnitude of association between an observed object o
and a feature f independently of their marginal probabilities:

log θ(f, o) = log
P (f, o)/P (f,¬o)

P (¬f, o)/P (¬f,¬o)

◮ θ(f, o) expresses how much the chance of observing o increases when
the feature f is present.

◮ log θ(f, o) > 0 means the probability of seeing o increases when f is
present. log θ = 0 indicates distributional independence.
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The Log Odds Ratio

◮ Measures the magnitude of association between an observed object o
and a feature f independently of their marginal probabilities:

log θ(f, o) = log
P (f, o)/P (f,¬o)

P (¬f, o)/P (¬f,¬o)

◮ θ(f, o) expresses how much the chance of observing o increases when
the feature f is present.

◮ log θ(f, o) > 0 means the probability of seeing o increases when f is
present. log θ = 0 indicates distributional independence.

◮ There’s also a host of other association measures in use, and most
take the form of a statistical test of dependence; e.g. the t-test, log
likelihood, Fisher’s exact test, Jaccard. . .
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Negative Correlations

◮ Negatively correlated pairs (f, o) are usually ignored when measuring
word–context associations (e.g. if log θ(f, o) < 0).

◮ Unreliable estimates about negative correlations in sparse data.

◮ Both unobserved or negatively correlated co-occurrence pairs are
assumed to have zero association.
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Negative Correlations

◮ Negatively correlated pairs (f, o) are usually ignored when measuring
word–context associations (e.g. if log θ(f, o) < 0).

◮ Unreliable estimates about negative correlations in sparse data.

◮ Both unobserved or negatively correlated co-occurrence pairs are
assumed to have zero association.

◮ We will use X = {~x1, . . . , ~xk} to denote the set of ‘association
vectors’ that results from applying the association weighting.

◮ That is, ~xi = 〈A (fi1) , . . . , A (fin)〉,
where A = log θ
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The 20 most salient local contexts of the noun teori (theory):

Context Feature

Rank Frequency Feat. Type Feat. Word Association

0 17 subj_of forklare (explain, account for) 3.88
1 75 adj_mod_by økonomisk (economical) 3.74
2 12 adj_mod_by vitenskapelig (scientific) 3.60
3 5 noun_con erfaring (experience, practice) 3.30
4 8 obj_of presentere (present, introduce) 3.25
5 13 obj_of utvikle (develop, evolve, grow) 3.00
6 6 pp_mod_of utgangspunkt (point of departure) 2.98
7 5 pp_mod_of kunnskap (knowledge) 2.81
8 6 adj_mod_by administrativ (administrative) 2.80
9 4 subj_of stemme (agree, correspond) 2.71

10 5 subj_of tilsi (indicate, justify) 2.71
11 5 obj_of støtte (support, back up,) 2.70
12 6 obj_of styrke (strengthen) 2.65
13 5 subj_of beskrive (describe) 2.51
14 4 adj_mod_by tradisjonell (traditional) 2.49
15 3 subj_of bekrefte (confirm, acknowledge) 2.44
16 3 subj_of oppfatte (understand, interpret, perceive) 2.24
17 2 pp_mod_of motsetning (opposition, opposite, contrast) 2.20
18 3 pp_mod_of forskjell (difference, distinction) 2.17
19 4 obj_of nevne (mention) 2.17

Erik Velldal INF4820 17 / 22



Euclidean Distance

◮ Vector space models let us compute the semantic similarity of words in
terms of spatial proximity.

◮ Some standard metrics for measuring distance in the space are based
on the the family of so-called Minkowski metrics, computing the
length (or norm) of the difference of the vectors;

dM (~x, ~y) = p

√

√

√

√

n
∑

i=1

|~xi − ~yi|
p (1)

◮ The most commonly used measure is the Euclidean distance or L2

distance, for which we have p = 2

◮ Other common metrics include the Manhattan distance (or L1 norm)
for which p = 1.
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Euclidean Distance (cont’d)
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Euclidean Distance (cont’d)

◮ However, a potential problem with the L2 norm is that it is very
sensitive to extreme values and the length of the vectors.

◮ As vectors of words with different frequencies will tend to have
different length, the frequency will also affect the similarity judgment.
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Euclidean Distance (cont’d)

◮ Note that, although our association weighting to some degree already
‘normalizes’ the differences in frequency, words with initially long
‘frequency vectors’, will also tend to have longer ‘association vectors’.
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Euclidean Distance (cont’d)

◮ Note that, although our association weighting to some degree already
‘normalizes’ the differences in frequency, words with initially long
‘frequency vectors’, will also tend to have longer ‘association vectors’.

◮ One way to reduce effect of frequency / length is to first normalize all
our vectors to have unit length, i.e.:

‖~x‖ =

√

∑n

i=1
~x2

i =
n

∑

i=1

~x2

i = 1
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Euclidean Distance (cont’d)

◮ Note that, although our association weighting to some degree already
‘normalizes’ the differences in frequency, words with initially long
‘frequency vectors’, will also tend to have longer ‘association vectors’.

◮ One way to reduce effect of frequency / length is to first normalize all
our vectors to have unit length, i.e.:

‖~x‖ =

√

∑n

i=1
~x2

i =
n

∑

i=1

~x2

i = 1

◮ It is also common to instead compute the cosine of the angles of the
vectors;

◮ Under different interpretations the measure is also known as the
normalized correlation coefficient or the normalized inner product. . .
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Cosine Similarity

◮ Similarity as a function of the angle between the vectors:

cos(~x, ~y) =

∑

i ~xi~yi
√

∑

i

~x2

i

√

∑

i

~y2

i

=
~x · ~y

‖~x‖‖~y‖

◮ Constant range between 0 and 1. Avoids the arbitrary scaling caused
by dimensionality, frequency or the range of the association measure A.

◮ As the angle between the vectors shortens, the cosine approaches 1.
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◮ Constant range between 0 and 1. Avoids the arbitrary scaling caused
by dimensionality, frequency or the range of the association measure A.

◮ As the angle between the vectors shortens, the cosine approaches 1.

◮ When applied to normalized vectors, the cosine can be simplified to
the dot product alone:

cos(~x, ~y) = ~x · ~y =
n

∑

i=1
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Cosine Similarity

◮ Similarity as a function of the angle between the vectors:

cos(~x, ~y) =

∑

i ~xi~yi
√

∑

i

~x2

i

√

∑

i

~y2

i

=
~x · ~y

‖~x‖‖~y‖

◮ Constant range between 0 and 1. Avoids the arbitrary scaling caused
by dimensionality, frequency or the range of the association measure A.

◮ As the angle between the vectors shortens, the cosine approaches 1.

◮ When applied to normalized vectors, the cosine can be simplified to
the dot product alone:

cos(~x, ~y) = ~x · ~y =
n

∑

i=1

~xi~yi

◮ The same relative rank order as the Euclidean distance for unit vectors.
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Next Week

◮ Computing neighbor relations in the semantic space

◮ Vector space models for Information Retrieval (IR)

◮ Representing classes in the vector space
◮ Clusters, centroids, memoids. . .

◮ Representing class membership
◮ Boolean, fuzzy, probabilistic. . .

◮ Classification algorithms
◮ KNN-classification / c-means, etc.

◮ Dealing with (very) high-dimensional sparse vectors.

◮ Reading: The chapter Vector Space Classification at
http://informationretrieval.org/.
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