INF4820

Modeling Word Meaning Vector Space Models

Erik Velldal

University of Oslo

Oct. 27, 2009

Topics for Today

- Modeling meaning by context
 - ▶ Inferring lexical semantics from contextual distributions
 - The distributional hypothesis
 - Ways to define context
 - ► Frequencies vs. association weights
- ▶ Representation in vector space models
 - Feature vectors
 - ▶ Feature space
 - Measuring semantic similarity in a "semantic space"

The Distributional Hypothesis

AKA The Contextual Theory of Meaning

- Meaning is use. (Wittgenstein, 1953)
- The meaning of entities, and the meaning of grammatical relations among them, is related to the restriction of combinations of these entities relative to other entities. (Harris, 1968)
- You shall know a word by the company it keeps. (Firth, 1968)

The Distributional Hypothesis

AKA The Contextual Theory of Meaning

- Meaning is use. (Wittgenstein, 1953)
- The meaning of entities, and the meaning of grammatical relations among them, is related to the restriction of combinations of these entities relative to other entities. (Harris, 1968)
- You shall know a word by the company it keeps. (Firth, 1968)

He was feeling seriously hung over after drinking too many shots of **retawerif** at the party last night.

Defining "Context"

- ▶ The basic idea: Capture the meaning of a word in terms of its context.
- Motivation: Can compare the meaning of words by comparing their contexts. No need for prior knowledge.
- ▶ Each word o_i represented by a set of feature functions $\{f_1, \ldots, f_n\}$. Each f_j records some property of the observed contexts of o_i .
- ► First task: Define context.

Defining "Context"

- ▶ The basic idea: Capture the meaning of a word in terms of its context.
- Motivation: Can compare the meaning of words by comparing their contexts. No need for prior knowledge.
- ▶ Each word o_i represented by a set of feature functions $\{f_1, \ldots, f_n\}$. Each f_i records some property of the observed contexts of o_i .
- ► First task: Define context.

Context windows

lacktriangle Context = neighborhood of $\pm n$ words before and after the focus word.

Defining "Context"

- ▶ The basic idea: Capture the meaning of a word in terms of its context.
- Motivation: Can compare the meaning of words by comparing their contexts. No need for prior knowledge.
- ▶ Each word o_i represented by a set of feature functions $\{f_1, \ldots, f_n\}$. Each f_j records some property of the observed contexts of o_i .
- ► First task: Define context.

Context windows

- lacktriangle Context = neighborhood of $\pm n$ words before and after the focus word.
- ► Rectangular; treating every word occurring within the window as equally important.
- ► Triangular; weighting the importance of a context word according to its distance from the target.
- ▶ Bag-of-Words (BoW); ignoring the linear ordering of the words.

Other BoW Approaches

- ► Context = all words co-occurring within the same *document*.
- ► Context = all words co-occurring within the same *sentence*.

Other BoW Approaches

- ► Context = all words co-occurring within the same *document*.
- ► Context = all words co-occurring within the same *sentence*.

Grammatical relations

- ► Context = the grammatical relations and dependencies that a target holds to other words.
- ▶ Intuition: E.g. nouns occurring in the same grammatical relations with the same verbs probably denote similar kinds of things:
 - ... to {drink | pour | spilf} some {milk | water | wine} ...
- ► Requires deeper linguistic analysis than a simple windowing approach, but PoS-tagging + shallow parsing is enough.

What is a word (again)?

- ▶ Different levels of abstraction and morphological normalization:
- ► Full-form words vs. stemming vs. lemmatization . . .

What is a word (again)?

- ▶ Different levels of abstraction and morphological normalization:
- ► Full-form words vs. stemming vs. lemmatization . . .

Stop-words

- ► Filter out closed-class words or function words by using a so-called stop-list.
- ► The idea is that only *content* words contributes significantly to indicate the meaning of a word.

Different Types of Contexts ⇒ Different Types of Similarity

- ▶ Different kinds of context may indicate different relations of semantic similarity.
- ▶ 'Relatedness' vs. 'sameness'. Or domain vs. content.
- ► Similarity in domain : {car, road, gas, service, traffic, driver, license}
- ► Similarity in content: {car, train, bicycle, truck, vehicle, airplane, buss}
- ▶ While broader definitions of context (windowing, BoW, etc.) tend to give clues for *domain-based relatedness*, more fine-grained grammatical contexts give clues for *content-based similarity*.

Examples from Oslo Corpus

- ► Throughout the next lectures we'll sometimes be looking at examples of contextual features extracted from the Oslo Corpus.
- Developed by the Text Laboratory at UiO
- ▶ 18.5 mill words
- ▶ The corpus is annotated by the Oslo-Bergen Tagger.
- ► A shallow parser then extracts grammatical features for (lemmatized) nouns indicating;
 - adjectival modifications
 - prepositional phrases
 - possessive modification
 - noun-noun conjunction
 - ▶ noun-noun modification
 - verbal arguments (subj., dir., ind., and prepositional objects)

Grammatical Context Features

Kunden bestilte den mest eksklusive vinen på menyen. Customer-the ordered the most exclusive wine on menu-the. 'The customer ordered the most exclusive wine on the menu.'

► Example of grammatical context features:

Target	Feature
kunde (customer)	SUBJ_OF bestille (order)
<i>vin</i> (wine)	OBJ_OF bestille (order)
<i>vin</i> (wine)	ADJ_MOD_BY eksklusiv (exclusive)
vin (wine)	PP_MOD_BY meny (menu)
meny (menu)	PP_MOD_OF vin (wine)

Feature Vectors

- ▶ A feature vector is an *n*-dimensional vector of numerical features describing some object.
- Let the set of n feature functions describing the lexical contexts of a word o_i be represented as a feature vector $F(o_i) = \vec{f_i} = \langle f_{i1}, \dots, f_{in} \rangle$.
- ▶ E.g. let $o_i = vin$, and $f_i = (OBJ OF bestille)$.
- ▶ Then $f_{ij} = f(vin, (OBJ_OF bestille)) = 4$ would mean that we have observed vin (wine) to be the object of the verb bestille (order) in our corpus 4 times.

Feature Vectors

- ▶ A feature vector is an *n*-dimensional vector of numerical features describing some object.
- Let the set of n feature functions describing the lexical contexts of a word o_i be represented as a feature vector $F(o_i) = \vec{f_i} = \langle f_{i1}, \dots, f_{in} \rangle$.
- ▶ E.g. let $o_i = vin$, and $f_i = (OBJ OF bestille)$.
- ▶ Then $f_{ij} = f(vin, (OBJ_OF bestille)) = 4$ would mean that we have observed vin (wine) to be the object of the verb bestille (order) in our corpus 4 times.
- ► A wide range of algorithms for pattern matching and machine learning relies on feature vectors as a means of representing objects numerically.
- ► (Feature vectors can represent arbitrary objects; e.g. pixels of images for OCR or face recognition.)

The Feature Space

- ► The feature vectors can be interpreted geometrically; as positioned in a feature space (= vector space model).
- ▶ A vector space model is defined by a system of d dimensions or coordinates where objects are represented as real valued vectors in the space \Re^n .
- ▶ The *dimensions* of our space represent contextual *features*.
- ▶ The *points* in our space represent *words* (e.g. noun distributions).
- ► The points are positioned in the space according to their values along the various contextual dimensions.

Semantic Spaces

- ▶ When using a vector space model with context vectors, combined with the distributional hypothesis, we sometimes speak of having defined a semantic space.
- ightharpoonup Semantic similarity \Rightarrow Distributional similarity \Rightarrow Spatial proximity

Semantic Spaces

- When using a vector space model with context vectors, combined with the distributional hypothesis, we sometimes speak of having defined a semantic space.
- ► Semantic similarity ⇒ Distributional similarity ⇒ Spatial proximity

Formally defined as a triple $\langle F, A, s \rangle$:

- ▶ $F = \{\vec{f_1}, \dots, \vec{f_n}\}$ is the set of *feature vectors*. f_{ij} gives the co-occurrence count for the ith word and the jth context.
- ▶ A is a measure of association strength for a word–context pair, in the form of a statistical test of dependence. Maps each element f_{ij} of the feature vectors in F to a real value.
- ► s is a similarity function.
- \blacktriangleright (We've talked about F; next up is A, then s.)

Word-Context Association

- ▶ We want our feature vectors to reflect which contexts are the most salient or relevant for each word.
- ▶ Problem: Raw co-occurrence frequencies alone, or even MLE probabilities, are not a good indicators of relevance.

Word-Context Association

- ▶ We want our feature vectors to reflect which contexts are the most salient or relevant for each word.
- ► Problem: Raw co-occurrence frequencies alone, or even MLE probabilities, are not a good indicators of relevance.
- ► Consider the noun *vin* (wine) as a direct object of the verbs *kjøpe* (buy) and *helle* (pour):
 - $f(\text{vin}, (\text{obj_of kjøpe})) = 14$
 - $f(vin, (obj_of helle)) = 8$
 - ▶ ... but the feature (obj_of helle) seems more indicative of the semantics of *vin* than (obj_of kjøpe).

Word-Context Association

- ▶ We want our feature vectors to reflect which contexts are the most salient or relevant for each word.
- ▶ Problem: Raw co-occurrence frequencies alone, or even MLE probabilities, are not a good indicators of relevance.
- ► Consider the noun *vin* (wine) as a direct object of the verbs *kjøpe* (buy) and *helle* (pour):
 - $f(\text{vin}, (\text{obj_of kjøpe})) = 14$
 - $f(vin, (obj_of helle)) = 8$
 - but the feature (obj_of helle) seems more indicative of the semantics of vin than (obj_of kjøpe).
- ► Solution: Weight the frequency counts by an association function. "Normalize" frequencies for chance co-occurrence.

Pointwise Mutual Information

▶ Defines the association between a feature f and an observation o as a likelihood ratio of their joint probability and the product of their marginal probabilities:

$$I(f,o) = \log_2 \frac{P(f,o)}{P(f)P(o)} = \log_2 \frac{P(f)P(o|f)}{P(f)P(o)}$$
$$= \log_2 \frac{P(o|f)}{P(o)}$$

- ▶ Perfect independence: P(f,o) = P(f)P(o) and I(f,o) = 0.
- ▶ Perfect dependence: If f and o always occur together then P(o|f) = 1 and $I(f,o) = \log_2 1/P(o)$.

Pointwise Mutual Information

▶ Defines the association between a feature f and an observation o as a likelihood ratio of their joint probability and the product of their marginal probabilities:

$$\begin{split} I(f,o) = &\log_2 \frac{P(f,o)}{P(f)P(o)} = \log_2 \frac{P(f)P(o|f)}{P(f)P(o)} \\ = &\log_2 \frac{P(o|f)}{P(o)} \end{split}$$

- ▶ Perfect independence: P(f,o) = P(f)P(o) and I(f,o) = 0.
- ▶ Perfect dependence: If f and o always occur together then P(o|f) = 1 and $I(f,o) = \log_2 1/P(o)$.
- ▶ A smaller marginal probability P(o) leads to a larger association score I(f, o). → Overestimates the correlation of rare events.

The Log Odds Ratio

▶ Measures the magnitude of association between an observed object o and a feature f independently of their marginal probabilities:

$$\log \theta(f, o) = \log \frac{P(f, o)/P(f, \neg o)}{P(\neg f, o)/P(\neg f, \neg o)}$$

- $lackbox{}{ heta}(f,o)$ expresses how much the chance of observing o increases when the feature f is present.
- ▶ $\log \theta(f, o) > 0$ means the probability of seeing o increases when f is present. $\log \theta = 0$ indicates distributional independence.

The Log Odds Ratio

▶ Measures the magnitude of association between an observed object *o* and a feature *f* independently of their marginal probabilities:

$$\log \theta(f, o) = \log \frac{P(f, o) / P(f, \neg o)}{P(\neg f, o) / P(\neg f, \neg o)}$$

- $lackbox{}{ heta}(f,o)$ expresses how much the chance of observing o increases when the feature f is present.
- ▶ $\log \theta(f, o) > 0$ means the probability of seeing o increases when f is present. $\log \theta = 0$ indicates distributional independence.
- ► There's also a host of other association measures in use, and most take the form of a statistical test of dependence; e.g. the t-test, log likelihood, Fisher's exact test, Jaccard...

Negative Correlations

- Negatively correlated pairs (f, o) are usually ignored when measuring word–context associations (e.g. if $\log \theta(f, o) < 0$).
- ▶ Unreliable estimates about negative correlations in sparse data.
- ▶ Both unobserved or negatively correlated co-occurrence pairs are assumed to have zero association.

Negative Correlations

- Negatively correlated pairs (f, o) are usually ignored when measuring word–context associations (e.g. if $\log \theta(f, o) < 0$).
- ▶ Unreliable estimates about negative correlations in sparse data.
- ▶ Both unobserved or negatively correlated co-occurrence pairs are assumed to have zero association.
- ▶ We will use $X = \{\vec{x}_1, \dots, \vec{x}_k\}$ to denote the set of 'association vectors' that results from applying the association weighting.
- ► That is, $\vec{x}_i = \langle A(f_{i1}), \dots, A(f_{in}) \rangle$, where $A = \log \theta$

The 20 most salient local contexts of the noun *teori* (theory):

		Context Feature		
Rank	Frequency	Feat. Type	Feat. Word	Association
0	17	subj_of	forklare (explain, account for)	3.88
1	75	adj_mod_by	økonomisk (economical)	3.74
2	12	adj_mod_by	vitenskapelig (scientific)	3.60
3	5	noun_con	erfaring (experience, practice)	3.30
4	8	obj_of	presentere (present, introduce)	3.25
5	13	obj_of	utvikle (develop, evolve, grow)	3.00
6	6	pp_mod_of	utgangspunkt (point of departure)	2.98
7	5	pp_mod_of	kunnskap (knowledge)	2.81
8	6	adj_mod_by	administrativ (administrative)	2.80
9	4	subj_of	stemme (agree, correspond)	2.71
10	5	subj_of	tilsi (indicate, justify)	2.71
11	5	obj_of	støtte (support, back up,)	2.70
12	6	obj_of	styrke (strengthen)	2.65
13	5	subj_of	beskrive (describe)	2.51
14	4	adj_mod_by	tradisjonell (traditional)	2.49
15	3	subj_of	bekrefte (confirm, acknowledge)	2.44
16	3	subj_of	oppfatte (understand, interpret, perceive)	2.24
17	2	pp_mod_of	motsetning (opposition, opposite, contrast)	2.20
18	3	pp_mod_of	forskjell (difference, distinction)	2.17
19	4	obj_of	nevne (mention)	2.17

Euclidean Distance

- ▶ Vector space models let us compute the *semantic similarity* of words in terms of *spatial proximity*.
- ► Some standard metrics for measuring *distance* in the space are based on the the family of so-called Minkowski metrics, computing the length (or *norm*) of the *difference* of the vectors;

$$d_M(\vec{x}, \vec{y}) = \sqrt[p]{\sum_{i=1}^n |\vec{x}_i - \vec{y}_i|^p}$$
 (1)

- ▶ The most commonly used measure is the Euclidean distance or L_2 distance, for which we have p=2
- ▶ Other common metrics include the Manhattan distance (or L_1 norm) for which p = 1.

- ▶ However, a potential problem with the L_2 norm is that it is very sensitive to extreme values and the length of the vectors.
- ▶ As vectors of words with different *frequencies* will tend to have different length, the frequency will also affect the similarity judgment.

▶ Note that, although our association weighting to some degree already 'normalizes' the differences in frequency, words with initially long 'frequency vectors', will also tend to have longer 'association vectors'.

- ▶ Note that, although our association weighting to some degree already 'normalizes' the differences in frequency, words with initially long 'frequency vectors', will also tend to have longer 'association vectors'.
- ▶ One way to reduce effect of frequency / length is to first normalize all our vectors to have unit length, i.e.:

$$\|\vec{x}\| = \sqrt{\sum_{i=1}^{n} \vec{x}_i^2} = \sum_{i=1}^{n} \vec{x}_i^2 = 1$$

- ► Note that, although our association weighting to some degree already 'normalizes' the differences in frequency, words with initially long 'frequency vectors', will also tend to have longer 'association vectors'.
- ▶ One way to reduce effect of frequency / length is to first normalize all our vectors to have unit length, i.e.:

$$\|\vec{x}\| = \sqrt{\sum_{i=1}^{n} \vec{x}_i^2} = \sum_{i=1}^{n} \vec{x}_i^2 = 1$$

- ▶ It is also common to instead compute the *cosine* of the angles of the vectors;
 - ► Under different interpretations the measure is also known as the normalized correlation coefficient or the normalized inner product...

Cosine Similarity

▶ Similarity as a function of the angle between the vectors:

$$\cos(\vec{x}, \vec{y}) = \frac{\sum_{i} \vec{x}_{i} \vec{y}_{i}}{\sqrt{\sum_{i} \vec{x}_{i}^{2}} \sqrt{\sum_{i} \vec{y}_{i}^{2}}} = \frac{\vec{x} \cdot \vec{y}}{\|\vec{x}\| \|\vec{y}\|}$$

- ightharpoonup Constant range between 0 and 1. Avoids the arbitrary scaling caused by dimensionality, frequency or the range of the association measure A.
- ▶ As the angle between the vectors shortens, the cosine approaches 1.

Cosine Similarity

▶ Similarity as a function of the angle between the vectors:

$$\cos(\vec{x}, \vec{y}) = \frac{\sum_{i} \vec{x}_{i} \vec{y}_{i}}{\sqrt{\sum_{i} \vec{x}_{i}^{2}} \sqrt{\sum_{i} \vec{y}_{i}^{2}}} = \frac{\vec{x} \cdot \vec{y}}{\|\vec{x}\| \|\vec{y}\|}$$

- ightharpoonup Constant range between 0 and 1. Avoids the arbitrary scaling caused by dimensionality, frequency or the range of the association measure A.
- ▶ As the angle between the vectors shortens, the cosine approaches 1.
- ► When applied to *normalized* vectors, the cosine can be simplified to the *dot product* alone:

$$\cos(\vec{x}, \vec{y}) = \vec{x} \cdot \vec{y} = \sum_{i=1}^{n} \vec{x}_i \vec{y}_i$$

Cosine Similarity

▶ Similarity as a function of the angle between the vectors:

$$\cos(\vec{x}, \vec{y}) = \frac{\sum_{i} \vec{x}_{i} \vec{y}_{i}}{\sqrt{\sum_{i} \vec{x}_{i}^{2}} \sqrt{\sum_{i} \vec{y}_{i}^{2}}} = \frac{\vec{x} \cdot \vec{y}}{\|\vec{x}\| \|\vec{y}\|}$$

- ► Constant range between 0 and 1. Avoids the arbitrary scaling caused by dimensionality, frequency or the range of the association measure A.
- ▶ As the angle between the vectors shortens, the cosine approaches 1.
- ► When applied to *normalized* vectors, the cosine can be simplified to the *dot product* alone:

$$\cos(\vec{x}, \vec{y}) = \vec{x} \cdot \vec{y} = \sum_{i=1}^{n} \vec{x}_i \vec{y}_i$$

▶ The same relative rank order as the Euclidean distance for unit vectors.

Next Week

- ► Computing neighbor relations in the semantic space
- ► Vector space models for Information Retrieval (IR)
- ▶ Representing classes in the vector space
 - Clusters, centroids, memoids...
- ► Representing class membership
 - ▶ Boolean, fuzzy, probabilistic...
- ► Classification algorithms
 - ► KNN-classification / c-means, etc.
- ▶ Dealing with (very) high-dimensional sparse vectors.
- Reading: The chapter Vector Space Classification at http://informationretrieval.org/.

- Dagan, I., Lee, L., & Pereira, F. (1999). Similarity-based models of word cooccurrence probabilities. *Machine Learning*, 34(1-3), 43-69.
- Firth, J. R. (1968). A synopsis of linguistic theory. In F. R. Palmer (Ed.), Selected papers of j. r. firth: 1952–1959. Longman.
- Grefenstette, G. (1992). SEXTANT: Exploring unexplored contexts for semantic extraction from syntactic analysis. In *Proceedings of the 30th Meeting of the Association for Computational Linguistics* (pp. 324–326). Newark, Delaware.
- Harris, Z. S. (1968). Mathematical structures of language. New York: Wiley.
- Hindle, D. (1990). Noun classification from predicate-argument structures. In *Acl:90* (pp. 268–275). Pittsburgh, USA.
- Lin, D. (1998). Automatic retrieval and clustering of similar words. In *Proceedings of the 17th International Conference on Computational Linguistics and the 36th Annual Meeting of the Association for Computational Linguistics* (pp. 768–774). Montreal, Canada.
- Resnik, P. (1993). Selection and information: A class-based approach to lexical relationships. Unpublished doctoral dissertation, Department of Computer and Information Science, University of Pennsylvania.
- Wittgenstein, L. (1953). Philosophical investigations. Oxford: Blackwell.

