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Topics for Today

◮ Quick recap from last lecture
◮ “The contextual theory of meaning” (aka “the distributional

hypothesis”)
◮ Representing words in a vector space model

◮ Representing classes in the vector space
◮ Clusters, centroids, medoids. . .

◮ Representing class membership
◮ Boolean, fuzzy, probabilistic. . .

◮ Automatically assigning objects to classes
◮ Rocchio classification and kNN-classification

◮ Reading: Section 14-14.4 in Manning, Raghavan & Schütze (2008),
Introduction to Information Retrieval;
http://informationretrieval.org/.
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Topics We Covered Last Week

Modeling meaning by context

◮ The basic idea: Capture the meaning of a word in terms of its context.

◮ Motivation: Can compare the meaning of words by comparing their
contexts. No need for prior knowledge.

◮ Each word oi represented by a set of feature functions {f1, . . . , fn}.
Each fj records some property of the observed contexts of oi.

◮ Different ways to define context; windows of ±n words, BoW,
grammatical relations.
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◮ Motivation: Can compare the meaning of words by comparing their
contexts. No need for prior knowledge.

◮ Each word oi represented by a set of feature functions {f1, . . . , fn}.
Each fj records some property of the observed contexts of oi.

◮ Different ways to define context; windows of ±n words, BoW,
grammatical relations.

The Contextual Theory of Meaning / The Distributional Hypothesis

◮ Meaning is use. (Wittgenstein, 1953)

◮ The availability of large amounts of electronic texts, coupled with the
computing power of modern machines, lets us implement in practice
the classic empiricist claims of Firth, Harris, Wittgenstein, et al.
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Topics We Covered Last Week (cont’d)

Vector space models

◮ Interpret the feature vectors ~f as points positioned in
multidimensional space ℜn.

◮ Each feature defines a dimension in the space.

◮ Can measure how close different words are in the space by computing
e.g. the euclidean distance or the cosine.

◮ Semantic similarity ⇒ Distributional similarity ⇒ Spatial proximity
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Topics We Covered Last Week (cont’d)

Vector space models

◮ Interpret the feature vectors ~f as points positioned in
multidimensional space ℜn.

◮ Each feature defines a dimension in the space.

◮ Can measure how close different words are in the space by computing
e.g. the euclidean distance or the cosine.

◮ Semantic similarity ⇒ Distributional similarity ⇒ Spatial proximity

Association Weighting

◮ Raw frequencies not a good indicator of relevance.

◮ Instead, compute association scores for word–feature pairs based on
measures of statistical dependence (e.g. pointwise mutual information,
log odds ratio, log likelihood ratio, etc.)
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An Aside: Term—Document Vector Models for IE

◮ So far we’ve looked at vector space models for detecting words with
similar meanings.

◮ It’s important to realize that similar models (feature vectors + the
spatial metaphor) is widely used for other purposes as well.
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An Aside: Term—Document Vector Models for IE

◮ So far we’ve looked at vector space models for detecting words with
similar meanings.

◮ It’s important to realize that similar models (feature vectors + the
spatial metaphor) is widely used for other purposes as well.

◮ For example, vector space models are commonly used in IR/IE for
finding documents with similar content.

◮ Each document dj is represented by a feature vector, with features
corresponding to the terms t1, . . . , tn occurring in the documents.

◮ Computing the spatial distance between the document vectors in the
feature space, lets us rank how similar they are in content.
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An Aside: Term—Document Vector Models for IE (cont’d)
◮ Just as the association measures we applied in our context—word

semantic space model, a weighting function is applied to the raw term
frequencies to better bring out the relevance of different term features.
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An Aside: Term—Document Vector Models for IE (cont’d)
◮ Just as the association measures we applied in our context—word

semantic space model, a weighting function is applied to the raw term
frequencies to better bring out the relevance of different term features.

◮ The most commonly used weighting function is tf-idf:

◮ The term frequency tf(ti, dj) denote the number of times the term ti
occurs in document dj .

◮ The document frequency df(ti) denote the total number of documents
in the collection that the term occurs in.

◮ The inverse document frequency is defined as idf(ti) = log
(

N
df(ti)

)

,

where N is the total number of documents in the collection.

◮ The weight given to term ti in document dj is then computed as

tf-idf(ti, dj) = tf(ti, dj) × idf(ti)

◮ A high tf-idf is obtained if a term has a high frequency in the given
document and a low frequency in the document collection as whole.
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An Aside: Term—Document Vector Models for IE (cont’d)

◮ The term–document vectors can also be used for scoring and ranking
a document’s relevance relative to a given search query.

◮ Represent the search query as a vector, just like for the documents.

◮ The relevance of documents relative to the query can be ranked
according to their distance to the query in the feature space.
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The Proximity Matrix

◮ For a given set of objects {o1, . . . , om} the proximity matrix, R is a
square m × m matrix where element Rij gives the proximity (or
distance) between oi and oj.

◮ In our semantic space model, Rij would give the dot-product of the
normalized feature vectors ~xi and ~xj, representing the words oi and oj.
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The Proximity Matrix

◮ For a given set of objects {o1, . . . , om} the proximity matrix, R is a
square m × m matrix where element Rij gives the proximity (or
distance) between oi and oj.

◮ In our semantic space model, Rij would give the dot-product of the
normalized feature vectors ~xi and ~xj, representing the words oi and oj.

◮ Note that, if our similarity measure is symmetric, i.e.
sim(~x, ~y) = sim(~y, ~x), then R will also be symmetric, i.e. Rij = Rji

◮ Metrics like Euclidean distance, cosine similarity, or the dot-product
are all symmetric.

◮ Computing all the pairwise similarities once and then storing them in
R can help save time in many applications.

◮ E.g., by sorting the row elements of R, we get access to an important
type of similarity relation; nearest neighbors. . .
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Nearest Neighbors

kNN

◮ The k points closest in the space to a given target point.

◮ Such kNN sets can be used as an approximation to classes.

◮ Dagan, Lee, & Pereira, 1999 suggest the use of nearest neighbors

averaging , e.g. when smoothing the probabilities in a language-model.
Like class-based methods, but each word defines its own class.
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Nearest Neighbors

kNN

◮ The k points closest in the space to a given target point.

◮ Such kNN sets can be used as an approximation to classes.

◮ Dagan et al., 1999 suggest the use of nearest neighbors averaging ,
e.g. when smoothing the probabilities in a language-model. Like
class-based methods, but each word defines its own class.

RNN

◮ Reciprocal/Respective Nearest Neighbors

◮ Can be used to identify words that are substitutable or near-synonyms,
(Hindle, 1990; Lin, 1998),

◮ Query expansion for IR, etc.
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The 10 nearest neighbors of the noun norge (Norway):

Rank Neighbor Similarity

1 danmark (Denmark) 0.579
2 sverige (Sweden) 0.567
3 tyskland (Germany) 0.562
4 russland (Russia) 0.550
5 kina (China) 0.533
6 bergen (Bergen) 0.512
7 frankrike (France) 0.511
8 land (land, country) 0.508
9 england (England) 0.499

10 finland (Finland) 0.498

(kNN relations computed for our semantic space example; log-odds weighted noun

vectors with features based on grammatical relations extracted from the Oslo Corpus.)
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The 10 nearest neighbors of the target noun konflikt (conflict):

Rank Neighbor Similarity

1 problem (problem) 0.537
2 krise (crisis) 0.481
3 strid (fight, discord, controversy) 0.470
4 uenighet (disagreement) 0.453
5 motsetning (contrast, difference, opposition) 0.438
6 vanskelighet (difficulty, trouble) 0.432
7 kris (?) 0.426
8 misforståelse (misunderstanding) 0.425
9 brudd (break, rupture) 0.420

10 krangel (quarrel) 0.412

(kNN relations computed for our semantic space example; log-odds weighted noun

vectors with features based on grammatical relations extracted from the Oslo Corpus.)
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Problems with our Nearest Neighbor Lists

◮ The semantic coherency of the lists are reduced by polysemous targets
and polysemous neighbors.

◮ The retrieved words may be similar to distinct senses of the target.

◮ Given the target word, we tend to automatically select the appropriate
reading of the neighboring words, —can make the kNN sets seem
more semantically coherent than they really are.

◮ Resnik, 1993 on sense conflation:

“If each token is associated with a single point in semantic space, then

words having multiple senses will occupy a point determined by the

relative frequencies of the individual senses.”

◮ Not necessarily a problem is our goal is restricted to capturing
distributional similarity as such. . .
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The 10 nearest neighbors of the target noun mønster (pattern):

Rank Neighbor Similarity

1 norm (norm) 0.350
2 tradisjon (tradition) 0.321
3 variant (variety) 0.320
4 form (form) 0.319
5 stil (style) 0.317
6 struktur (structure) 0.317
7 ramme (frame) 0.316
8 trekk (feature, property) 0.314
9 fellesskap (community) 0.311

10 ram (ram ?) 0.311

(kNN relations computed for our semantic space example; log-odds weighted noun

vectors with features based on grammatical relations extracted from the Oslo Corpus.)
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Random Examples of RNNs in the Semantic Space:

Word 1 Word 2 Similarity

år (year) måned (month) 0.679
spørsmål (question) problemstilling (problem) 0.587
kamp (fight, game) turnering (tournament) 0.498
pasient (patient) klient (client) 0.579
slutt (end) begynnelse (beginning) 0.737
ressurs (resource) kapasitet (capacity) 0.511
økning (increase) reduksjon (decrease) 0.712
beløp (amount, sum) sum (sum) 0.550
besøk (visit) opphold (stay) 0.438
elv (river) bekk (river, stream) 0.417
olje (oil) gass (gass) 0.409
arbeidsmarked (labor marked) arbeidsliv (employment sector) 0.466
jørn (Jørn) ingrid (Ingrid) 0.706
koffert (suitcase) veske (bag, purse) 0.536
skepsis (skepticism, disbelief) misnøye (discontent, dissatisfaction) 0.365

Erik Velldal INF4820 14 / 21



Classes and Classification

◮ A class can be thought of as a collection of objects. Such as;
◮ Documents sharing the same category of content, e.g.

{di, . . . , dk} ⊂ SPORTS, {dl, . . . , dm} ⊂ ENTERTAINMENT

◮ Words expressing the same ontological concept, e.g.
{salmon, trout, tuna, barracuda} ⊂ FISH
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◮ A class can be thought of as a collection of objects. Such as;
◮ Documents sharing the same category of content, e.g.

{di, . . . , dk} ⊂ SPORTS, {dl, . . . , dm} ⊂ ENTERTAINMENT

◮ Words expressing the same ontological concept, e.g.
{salmon, trout, tuna, barracuda} ⊂ FISH

◮ In our vector space model, objects are represented as points, so a class
will correspond to a collection of points; a region.

◮ When a collection of points correspond to a densely populated region
in the space, we refer to the collection as a cluster.

◮ Classification: The task of automatically assigning class membership
to a given object. A core task in supervised machine learning.

◮ In a vector space model, classification is based on the The Contiguity
Hypothesis: Objects in the same class form a contiguous region, and
regions of different classes do not overlap.

Erik Velldal INF4820 15 / 21



Different Ways of Representing Classes

Exemplar-based

◮ No abstraction. Every stored instance of a group can potentially
represent the class.

◮ Used in so-called instance based or memory based learning (MBL).
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Different Ways of Representing Classes

Exemplar-based

◮ No abstraction. Every stored instance of a group can potentially
represent the class.

◮ Used in so-called instance based or memory based learning (MBL).

◮ One variant is to use medoids, – representing a class by a single
member that is considered central, typically the object with maximum
average similarity to other objects in the group.

Centroid-based

◮ The center of mass or center of gravity in the region.

◮ Given a class ci, where each object oj being a member is represented
as a feature vector ~xj , we can compute the class centroid ~µi as

~µi =
1

|ci|

∑

~xj∈ci

~xj
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Different Ways of Representing Classes (cont’d)

Some more notes on centroids, medoids and typicality

◮ Centroids similar to medoids in that we represent a group of objects by
a single point, a “prototype”.

◮ But while a medoid is an actual member of the group (the “most
typical” member), a centroid is an “abstract prototype”; an average.
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Different Ways of Representing Classes (cont’d)

Some more notes on centroids, medoids and typicality

◮ Centroids similar to medoids in that we represent a group of objects by
a single point, a “prototype”.

◮ But while a medoid is an actual member of the group (the “most
typical” member), a centroid is an “abstract prototype”; an average.

◮ The typicality of class members can be determined by their distance to
the prototype.

◮ The centroid could also be distance weighted; let each member’s
contribution to the average be determined by its average pairwise
similarity to the other members of the group.
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Different Ways of Representing Classes (cont’d)

Some more notes on centroids, medoids and typicality

◮ Centroids similar to medoids in that we represent a group of objects by
a single point, a “prototype”.

◮ But while a medoid is an actual member of the group (the “most
typical” member), a centroid is an “abstract prototype”; an average.

◮ The typicality of class members can be determined by their distance to
the prototype.

◮ The centroid could also be distance weighted; let each member’s
contribution to the average be determined by its average pairwise
similarity to the other members of the group.

◮ The discussion of how to represent classes in machine learning
parallels the discussion of how to represent classes and determine
typicality within linguistic and psychological prototype theory.
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Representing Class Membership

Hard Classes

◮ Membership considered a Boolean property: a given object is either
part of the class or it is not.

◮ A crisp membership function.

◮ A variant: disjunctive classes. Objects can be members of more than
one class, but the memberships are still crisp.

Soft Classes

◮ Class membership is a graded property.

◮ Probabilistic. The degree of membership for a given restricted to
[0, 1], and the sum across classes must be 1.

◮ Fuzzy: The membership function is still restricted to [0, 1], but
without the probabilistic constraint on the sum.
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Classification

◮ As said, vector space classification relies on the assumption that
objects in the same class form a contiguous region.

◮ Classification amounts to computing the boundaries in the space that
separate the classes: The decision boundaries.

◮ What counts as a good or accurate boundary?
◮ A boundary that leads to high classification accuracy on unseen test

items.

◮ How we end up drawing the the boundaries is influenced by how we
choose to represent the classes.
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Rocchio Classification

◮ Uses centroids to represent classes and define the boundaries of the
class regions.

◮ Each class ci represented by its centroid, computed as the average of
the normalized vectors ~xj of its members; ~µi = 1

|ci|

∑

~xj∈ci

~xj.

◮ To classify a new object oj , represented by a feature vector ~xj,
determine which centroid ~µi that ~xj is closest to, and assign it to the
corresponding class ci.

◮ The classification rule in Rocchio is to classify a point in accordance
with the region it falls into.
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Next Week

◮ More on Rocchio classifiers and kNN classifiers

◮ Linear vs. non-linear classifiers

◮ Voronoi Tessellations

◮ Unsupervised machine learning for class discovery: Clustering

◮ Flat vs. hierarchical clustering.

◮ C-Means Clustering.

◮ Reading: Chapter 16 in Manning, Raghavan & Schütze (2008),
Introduction to Information Retrieval;
http://informationretrieval.org/.
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