
—INF4820—

Classification
Clustering

Erik Velldal

University of Oslo

Nov. 10, 2009

Erik Velldal INF4820 1 / 22



Topics for Today

◮ Quick recap from last lecture:
◮ Neighbor relations; kNN and RNN
◮ Ways to represent classes (exemplar-based vs. centroid-based).
◮ Ways to represent class membership (hard vs. soft).
◮ The classification problem in vector space models.

◮ More on Rocchio classifiers and kNN classifiers

◮ Linear vs. non-linear classifiers

◮ Voronoi Tessellations

◮ Unsupervised machine learning for class discovery: Clustering

◮ Flat vs. hierarchical clustering

◮ k-Means Clustering

◮ Reading: Chapter 16 in Manning, Raghavan & Schütze (2008),
Introduction to Information Retrieval;
http://informationretrieval.org/.

Erik Velldal INF4820 2 / 22

http://informationretrieval.org/


The Classification Task

◮ The task of automatically assigning objects to pre-defined classes.

◮ A core problem in machine learning (ML).

◮ Example of a supervised learning task (the training data contains
labeled data, indicating what we want to learn).

◮ Vector space classification relies on the assumption that objects (i.e.
points) in the same class form contiguous and non-overlapping regions
in the space. (“The contiguity hypothesis”)

◮ Classification amounts to defining boundaries in the space that
separate objects in different classes: The decision boundaries.

◮ The goal is to find boundaries that gives high classification accuracy
on unseen test items.
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Rocchio Classification

◮ Uses centroids to represent classes and define the boundaries of the
class regions.

◮ Each class ci represented by its centroid ~µi, computed as the average
of the normalized vectors ~xj of its members;

~µi =
1

|ci|

∑

~xj∈ci

~xj

◮ To classify a new object oj , represented by a feature vector ~xj,
determine which centroid ~µi that ~xj is closest to, and assign it to the
corresponding class ci.
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The Decision Boundary of the Rocchio Classifier

◮ Defines the boundary between
two classes by the set of points
that are equidistant from the
centroids.

◮ In two dimensions: This set of
points always corresponds to a
line.

◮ In multiple dimensions: A line in
2D corresponds to a hyperplane

in a higher-dimensional space.
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Problems with the Rocchio Classifier

◮ Implicitly assumes that classes are spheres with similar radii.

◮ Ignores details of the distribution of points within a class, only based
on the centroid distance.

◮ Does not work well for classes than cannot be accurately represented
by a single prototype or “center” (e.g. classes covering disconnected or
elongated regions).
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Problems with the Rocchio Classifier

◮ Implicitly assumes that classes are spheres with similar radii.

◮ Ignores details of the distribution of points within a class, only based
on the centroid distance.

◮ Does not work well for classes than cannot be accurately represented
by a single prototype or “center” (e.g. classes covering disconnected or
elongated regions).

◮ Because the Rocchio classifier defines a linear decision boundary, it is
only suitable for problems involving linearly separable classes.
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KNN-classification

◮ k Nearest Neighbor classification.

◮ An example of a non-linear classifier.

◮ For k = 1: Assign each object to the class of its closest neighbor.

◮ For k > 1: Assign each object to the majority class among its k

closest neighbors.

◮ Rationale: given the contiguity hypothesis, we expect a test object oi

to have the same label as the training objects located in the local
region surrounding ~xi.

◮ The parameter k must be specified in advance, either by manually or
by optimizing on held-out data.
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KNN-classification (cont’d)

The Voronoi Tessellation

◮ Defines the decision boundaries of the kNN classifier.

◮ Assuming k = 1: For a given set of objects in the space, let each
object define a cell consisting of all points that are closer to that
object than to other objects.

◮ Each such Voronoi cell will be a convex polygon.

◮ Decomposing a space into such Voronoi cells gives us the so-called
Voronoi tessellation.

◮ In the general case of k ≥ 1, the Voronoi cells will be given by the
regions in the space for which the set of k nearest neighbors is the
same. Partitions the space into convex polygons.
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Voronoi Tessellation for 1NN (Manning, Raghavan & Schütze 2008)

The decision boundary for the 1NN classifier is defined along the regions of
Voronoi cells for the objects in each class. Shows the non-linearity of kNN.
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“Softened” KNN-classification

A Probabilistic Version

◮ Estimate the probability of membership in class c as the proportion of
the k nearest neighbors in c.
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“Softened” KNN-classification

A Probabilistic Version

◮ Estimate the probability of membership in class c as the proportion of
the k nearest neighbors in c.

A Distance Weighted Version

◮ The score for a given class ci can be computed as

score(ci, oj) =
∑

~xn∈knn(~xj)

I(ci, ~xn) sim( ~xn, ~xj)

where knn(~xj) is the set of k nearest neighbors of ~xj , sim is whatever
similarity measure we’re using, e.g. the cosine function, and I(ci, ~xn) is
simply a membership function returning 1 if ~xn ∈ ci and 0 otherwise.

◮ Such distance weighted votes can often give more accurate results,
e.g. in the case of ties.
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Two Categorization Tasks in Machine Learning

Classification

◮ Supervised learning, requiring labeled training data.

◮ Train a classifier to automatically assign new instances to predefined

classes.
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Two Categorization Tasks in Machine Learning

Classification

◮ Supervised learning, requiring labeled training data.

◮ Train a classifier to automatically assign new instances to predefined

classes.

Clustering

◮ Unsupervised learning from unlabeled data.

◮ Automatically group similar objects together.

◮ No predefined classes or structure, we only specify the similarity
measure. Relies on “self-organization”.

◮ General objective: partition the data into subsets, so that the similarity
among members of the same group is high (homogeneity) while the
similarity between the groups themselves is low (heterogeneity).
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Example Applications of Cluster Analysis

◮ Visualization and explorative data analysis.
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Example Applications of Cluster Analysis

◮ Visualization and explorative data analysis.

◮ Generalization and abstraction. “Reason by analogy”.
◮ Lets us define class-based models even when predefined classes are not

available.
◮ E.g. using cluster-analysis of words to define class-based language

models.
◮ Helps alleviating the sparse data problem.
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◮ Lets us define class-based models even when predefined classes are not

available.
◮ E.g. using cluster-analysis of words to define class-based language

models.
◮ Helps alleviating the sparse data problem.

◮ Many applications within IR. Examples:
◮ Speed up search: For a clustered document collection, first retrieve the

most relevant cluster, then retrieve documents from within the cluster.
◮ Presenting the search results: Instead of ranked lists, organize the

results as clusters (see e.g. Clusty.com or Google’s wonder wheel).
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Example Applications of Cluster Analysis

◮ Visualization and explorative data analysis.

◮ Generalization and abstraction. “Reason by analogy”.
◮ Lets us define class-based models even when predefined classes are not

available.
◮ E.g. using cluster-analysis of words to define class-based language

models.
◮ Helps alleviating the sparse data problem.

◮ Many applications within IR. Examples:
◮ Speed up search: For a clustered document collection, first retrieve the

most relevant cluster, then retrieve documents from within the cluster.
◮ Presenting the search results: Instead of ranked lists, organize the

results as clusters (see e.g. Clusty.com or Google’s wonder wheel).

◮ News aggregation / topic directories.

◮ Social network analysis; identify sub-communities and user segments.
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Types of Clustering Methods

Different methods can be divided according to the memberships they create
and the procedure by which the clusters are formed:

Procedure























Flat

Hierarchical

{

Agglomerative

Divisive

Hybrid

Memberships











Hard

Soft

Disjunctive
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Types of Clustering Methods (cont’d)

Hierarchical

◮ Creates a tree structure of hierarchically nested clusters

◮ Divisive (top-down): Let all objects be members of the same cluster;
then successively split the group into smaller and maximally dissimilar
clusters until all objects is its own singleton cluster.

◮ Agglomerative (bottom-up): Let each object define its own cluster;
then successively merge most similar clusters until only one remains.
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Types of Clustering Methods (cont’d)

Hierarchical

◮ Creates a tree structure of hierarchically nested clusters

◮ Divisive (top-down): Let all objects be members of the same cluster;
then successively split the group into smaller and maximally dissimilar
clusters until all objects is its own singleton cluster.

◮ Agglomerative (bottom-up): Let each object define its own cluster;
then successively merge most similar clusters until only one remains.

Flat

◮ Often referred to as partitional clustering when assuming hard and
disjoint clusters. (But can also be soft.)

◮ Tries to directly decompose the data into a set of clusters.
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Flat Clustering

◮ Given a set of objects O = {o1, . . . , on}, a hard flat clustering
algorithm seeks to construct a set of clusters C = {c1, . . . , ck}, where
each object oi is assigned to a single cluster ci.

◮ More formally, we want to define an assignment γ : O → C that
optimizes some objective function Fs(γ).

◮ The cardinality k (= the number of clusters) must typically be
manually specified as a parameter to the algorithm.

◮ But the most important parameter is the similarity function s.

◮ The objective function is defined in terms of the similarity function,
and generally we want to optimize for:

◮ High intra-cluster similarity

◮ Low inter-cluster similarity

Erik Velldal INF4820 15 / 22



Flat Clustering (cont’d)

◮ Optimization problems are search problems:

◮ There’s a finite number of possible of partitionings of O.

◮ Naive solution: enumerate all possible assignments Γ = {γ1, . . . , γm}
and choose

γ̂ = arg min
γ∈Γ

Fs(γ)
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Flat Clustering (cont’d)

◮ Optimization problems are search problems:

◮ There’s a finite number of possible of partitionings of O.

◮ Naive solution: enumerate all possible assignments Γ = {γ1, . . . , γm}
and choose

γ̂ = arg min
γ∈Γ

Fs(γ)

◮ Problem: Exponentially many possible partitions

◮ Instead, approximate the solution by iteratively improving on an initial
(possibly random) partition until some stopping criterion is met.
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Next Week

◮ More on flat clustering: k-Means

◮ Different ways of measuring the distance between classes or clusters.

◮ Flat vs. hierarchical clustering

◮ Agglomerative vs. divisive hierarchical clustering

◮ Reading: Chapter 17 in Manning, Raghavan & Schütze (2008),
Introduction to Information Retrieval;
http://informationretrieval.org/ (see course web-page for the
relevant sections).
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