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Topics for Today
◮ More on unsupervised machine learning for data-driven categorization:

clustering.

◮ The task of automatically grouping observations into categories.

◮ A core set of tools within machine learning, data mining, and pattern
recognition.

◮ An example of flat clustering: k-Means

◮ Hierarchical clustering

◮ Agglomerative

◮ Divisive

◮ Measuring the distance between clusters

◮ Single-linkage, complete-linkage, average-linkage. . .

◮ Reading: Chapter 17 in Manning, Raghavan & Schütze (2008),
Introduction to Information Retrieval;
http://informationretrieval.org/.
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Catching Up: Partitional Clustering

◮ Creates a flat, one-level grouping of the data.

◮ Can be defined as an optimization problem: Search for the partitioning
of the data that minimizes some objective function.

◮ Optimize a globally defined measure of partition quality.

◮ Problem: Exponentially many possible partitions of the data.

◮ An exhaustive search over partitions not feasible. Instead we must
typically approximate the solution by iteratively refining an initial
(possibly random) partition until some stopping criterion is met.
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k-Means

◮ Unsupervised variant of the Rocchio classifier.

◮ Goal: Partition the n observed objects into k clusters C so that each
point ~xj belongs to the cluster ci with the nearest centroid ~µi.

◮ Typically assumes Euclidean distance as the similarity function s.
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k-Means

◮ Unsupervised variant of the Rocchio classifier.

◮ Goal: Partition the n observed objects into k clusters C so that each
point ~xj belongs to the cluster ci with the nearest centroid ~µi.

◮ Typically assumes Euclidean distance as the similarity function s.

◮ The optimization problem: For each cluster, minimize the
within-cluster sum of squares, Fs = WCSS:

WCSS =
∑

ci∈C

∑

~xj∈ci

‖~xj − ~µi‖
2

◮ WCSS also amounts to the more general measure of how well a model
fits the data known as the residual sum of squares (RSS).

◮ Minimizing WCSS is equivalent to minimizing the average squared
distance between objects and their cluster centroids (since n is fixed),
—a measure of how well each centroid represents the members
assigned to the cluster.
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k-Means (cont’d)

Algorithm

Initialize: Compute centroids for k random seeds.

Iterate:

Assign each object to the cluster with the nearest centroid.
Compute new centroids for the clusters.

Terminate: When stopping criterion is satisfied.
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k-Means (cont’d)

Algorithm

Initialize: Compute centroids for k random seeds.

Iterate:

Assign each object to the cluster with the nearest centroid.
Compute new centroids for the clusters.

Terminate: When stopping criterion is satisfied.

Properties

◮ In short, we keep reassigning memberships and recomputing centroids
until the configuration stabilizes.

◮ WCSS is monotonically decreasing (or unchanged) for each iteration.

◮ Guaranteed to converge but not to find the global minimum.

◮ The time complexity is linear, O(kn).
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k-Means Example for k = 2 in R
2

(Manning, Raghavan & Schütze 2008)

Erik Velldal INF4820 6 / 22



Comments on k-Means

“Seeding”

◮ We initialize the algorithm by choosing random seeds that we use to
compute the first set of centroids.

◮ Many ways to select the seeds:
◮ pick k random objects from the collection;
◮ pick k random points in the space;
◮ pick k sets of m random points and compute centroids for each set;
◮ compute an hierarchical clustering on a subset of the data to find k

initial clusters; etc..
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Comments on k-Means

“Seeding”

◮ We initialize the algorithm by choosing random seeds that we use to
compute the first set of centroids.

◮ Many ways to select the seeds:
◮ pick k random objects from the collection;
◮ pick k random points in the space;
◮ pick k sets of m random points and compute centroids for each set;
◮ compute an hierarchical clustering on a subset of the data to find k

initial clusters; etc..

◮ The heuristics involved in choosing the initial seeds can have a large
impact on the resulting clustering (because we typically end up only
finding a local minimum of the objective function).

◮ Outliers are troublemakers.
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Comments on k-Means

Termination Criterion

◮ Fixed number of iterations

◮ Clusters or centroids are unchanged between iterations.

◮ Threshold on the decrease of the objective function (absolute or
relative to previous iteration)
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Comments on k-Means

Termination Criterion

◮ Fixed number of iterations

◮ Clusters or centroids are unchanged between iterations.

◮ Threshold on the decrease of the objective function (absolute or
relative to previous iteration)

Some Close Relatives of k-Means

◮ k-Medoids: Like k-means but uses medoids instead of centroids to
represent the cluster centers.

◮ Fuzzy c-Means (FCM): Like k-means but assigns soft memberships in
[0, 1], where membership is a function of the centroid distance.

◮ The computations of both WCSS and centroids are weighted by the
membership function.
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Flat Clustering: The Good and the Bad

Pros

◮ Conceptually simple, and easy to implement.

◮ Efficient. Typically linear in the number of objects.

Cons

◮ The dependence on the random seeds makes the clustering
non-deterministic.

◮ The number of clusters k must be pre-specified. Often no principled
means of a priori specifying k.

◮ The clustering quality often considered inferior to that of the less
efficient hierarchical methods.

◮ Not as informative as the more stuctured clusterings produced by
hierarchical methods.
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Hierarchical Clustering

Divisive methods

◮ Initially regards all k objects as part of a single cluster.

◮ Splits the groups top-down into smaller and smaller clusters.

◮ Each split defines a binary branch in the tree.

◮ Stops when k singleton clusters remain (unless other criterion defined).

Agglomerative methods

◮ Initially regards each object as its own singleton cluster.

◮ Iteratively merges (agglomerates) the groups in a bottom-up fashion.

◮ Each merge defines a binary branch in the tree.

◮ Stops when only one cluster remains containing all the objects (unless
other criterion’s defined).
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Dendrograms

◮ A hierarchical clustering
is often visualized as a
binary tree structure
known as a dendrogram.

◮ A merge is shown as a
horizontal line
connecting two clusters.

◮ The y-axis coordinate of
the line corresponds to
the combination

similarity of the merged
cluster.
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◮ We here assume dot-products of normalized vectors; self-similarity = 1.
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Agglomerative Clustering

parameters: {o1, o2 . . . , on}, sim

C = {{o1}, {o2}, . . . , {on}}
T = []
do for i = 1 to n− 1
{cj , ck} ← arg max

{cj ,ck}⊆C ∧ j 6=k

sim(cj , ck)

C ← C\{cj , ck}
C ← C ∪ {cj ∪ ck}
T [i]← {cj , ck}

◮ At each stage, merge the pair of clusters that are most similar, as
defined by some measure of inter-cluster similarity; sim.

◮ Plugging in a different sim gives us a different sequence of merges T.
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Definitions of Inter-Cluster Similarity

◮ So far we’ve looked at ways to the define the similarity between

◮ pairs of objects.

◮ objects and a class.

◮ Now we’ll look at ways to define the similarity between classes or
clusters.
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Definitions of Inter-Cluster Similarity

◮ So far we’ve looked at ways to the define the similarity between

◮ pairs of objects.

◮ objects and a class.

◮ Now we’ll look at ways to define the similarity between classes or
clusters.

◮ In agglomerative clustering, a measure of cluster similarity sim(ci, cj)
is usually referred to as a linkage criterion (from graph theory):

◮ Single-linkage

◮ Complete-linkage

◮ Centroid-linkage

◮ Average-linkage

◮ The linkage criterion determines which pair of clusters we will merge
to a new cluster in each step.
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Single-Linkage

◮ Merge the two clusters with the
minimum distance between any
two members.

◮ Nearest-Neighbors.

A

B

C

D

E

◮ Can be computed efficiently by taking advantage of the fact that it’s
best-merge persistent:

◮ The distance of the two closest members is a local property that is not
affected by merging.

◮ Let the nearest neighbor of cluster ck be in either ci or cj . If we merge
ci ∪ cj = cl, the nearest neighbor of ck will be in cl.

◮ Undesirable chaining effect: Tendency to produce to ‘stretched’ and
‘straggly’ clusters.
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Complete-Linkage

◮ Merge the two clusters where
the maximum distance between
any two members is smallest.

◮ Farthest-Neighbors.

A

B

C

D

E

◮ Amounts to merging the two clusters whose merger has the smallest
diameter.

◮ Preference for compact clusters with small diameters.

◮ Sensitive to outliers.

◮ Not best-merge persistent: Distance defined as the diameter of a
merge is a non-local property that can change during merging.
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Centroid-Linkage

◮ Similarity of two clusters ci and
cj defined as the similarity
between their cluster centroids
~µi and ~µj (the mean vectors).

◮ Equivalent to the average
pairwise similarity between
objects from different clusters:

A

B

C

D

E

m1
m2

A

B

C

D

E

sim(ci, cj) = ~µi · ~µj =
1

|ci||cj |

∑

~x∈ci

∑

~y∈cj

~x · ~y
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Centroid-Linkage

◮ Similarity of two clusters ci and
cj defined as the similarity
between their cluster centroids
~µi and ~µj (the mean vectors).

◮ Equivalent to the average
pairwise similarity between
objects from different clusters:

A

B

C

D

E

m1
m2

A

B

C

D

E

sim(ci, cj) = ~µi · ~µj =
1

|ci||cj |

∑

~x∈ci

∑

~y∈cj

~x · ~y

◮ Like complete-link, not best-merge persistent.
◮ However, unlike the other linkage criterions, it is not monotonic and

subject to s.c. inversions: The combination similarity can increase
during the clustering.
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Inversions —A Problem with Centroid-Linkage

◮ We usually assume that
the clustering is
monotonic, i.e. the
combination similarity is
guaranteed to decrease

between iterations.

◮ For a non-monotonic

clustering criterion (e.g.
centroid-linkage),
inversions would show in
the dendrogram as
crossing lines.
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◮ The dotted circles in the dendrogram above indicate inversions: The
horizontal merge bar is lower than the bar of a previous merge.

◮ Violates the fundamental assumption that small clusters are more
coherent than large clusters.
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Average-Linkage

◮ AKA group average
agglomerative clustering.

◮ Merge the two clusters where
the average of all pairwise
similarities in their union is
highest.

A

B

C

D

E

◮ Aims to maximize the coherency of the merged cluster by considering
all pairwise similarities between the objects in the clusters.

◮ Let ci ∪ cj = ck, and sim(ci, cj) = W (ci,∪cj) = W (ck):

W (ck) =
1

|ck|(|ck| − 1)

∑

~x∈ck

∑

~x6=~y∈ck

~x · ~y

◮ Self-similarities are excluded in order to not penalize large clusters
(which have fewer self-similarities).
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Average-Linkage (cont’d)

◮ But not best-merge persistent.

◮ Compromise of complete- and
single-linkage.

A

B

C

D

E

◮ Commonly considered the best “default” linkage criterion for
agglomerative clustering.

◮ Can be computed very efficiently if we assume normalized vectors and
that the similarity measure of the feature vectors s = dot-product:

W (ck) =
1

|ck|(|ck| − 1)



(
∑

~x∈ck

~x)2 − |ck|
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Cutting the Tree

◮ Hierarchical methods
actually produce several

partitions; one for each
level of the tree.

◮ However, for many
applications we will want
to extract a set of
disjoint clusters.

◮ In order to turn the
nested partitions into a
single flat partitioning,
we cut the dendrogram.
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◮ A cutting criterion can be defined as a threshold on e.g. combination
similarity, relative drop in the similarity, number of root nodes, etc.
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Divisive Hierarchical Clustering

◮ Generates the nested partitions top-down:

◮ Start by considering all objects part of the same cluster (the root).

◮ Split the cluster using a flat clustering algorithm (e.g. by applying
k-means for k = 2).

◮ Recursively split the clusters until only singleton clusters remain.

◮ (Also possible to fix the desired levels and stop the clustering before we
reach the singleton leaves.)

◮ Flat methods such as k-means are generally very effective; linear in the
number of objects.

◮ Divisive methods are thereby also generally more efficient than
agglomerative methods, which are at least quadratic (single-link).

◮ Also has the advantage of being able to initially consider the global
distribution of the data, while the agglomerative methods must
commit to early decisions based on local patterns.
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Next (and Final) Week

◮ Summing up.

◮ Sample exam.
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